Instruction Selection on SSA Graphs

Sebastian Hack, Sebastian Buchwald, Andreas Zwinkau

Compiler Construction Course
W2017

Saarland University, Computer Science
Instruction Selection

[Diagram of instruction selection with nodes and edges labeled with 'Const', 'Add', 'Load', and 'ia32_Add']
Instruction Selection on SSA

- “Optimal” instruction selection on trees is polynomial
- SSA programs are directed graphs
 - Data dependence graphs
- Translating back from SSA graphs to trees is not satisfactory
- “Optimal” instruction selection is NP-complete on DAGs
- The problem is common subexpressions
- Doing it on graphs provides more opportunities for complex instructions:
 - Patterns with multiple results
 - DAG-like patterns
Instruction Selection on SSA

- Graph Rewriting

- For every machine instruction specify:
 - A set of graphs (patterns) of IR nodes
 - Every pattern has associated costs

1. Find all matchings of the patterns in the IR graph

2. Pick a correct and optimal matching

3. Replace each pattern by corresponding machine instruction

⇒ Result is an SSA graph with machine nodes
Graphs

- Let $G = (V, E)$ be a directed acyclic graph (DAG)
- Let Op be a set of operators
- Every node has a degree $\text{deg}_v : V \rightarrow \mathbb{N}_0$
- Every node $v \in V$ has an operator: $\text{op} : V \rightarrow Op$
- Every operator $o \in Op$ has an arity $\# : Op \rightarrow \mathbb{N}_0$
- Let $\square \in Op$ be an operator with $\# \square = 0$
- Nodes with operator \square denote “glue” points in the patterns (later)
- Every node’s degree must match the operator’s arity:
 \[\# \text{op} v = \text{deg} v \]

Definition (Program Graph)

A graph G is a program graph if it is acyclic and

\[\forall v \in V : \text{op} v \neq \square \]
Patterns

- A graph $P = (V, E)$ is rooted if there exists a node $v \in V_P$ such that there is a path from v to every node v' in P.

- If P is rooted, denote the root by $rt\ P$.

Definition (Pattern Graph, Pattern)

A graph P is a pattern if

- it is acyclic and rooted
- $op\ rt\ P \neq \Box$

- Note that we explicitly allow nodes with operator \Box in patterns.
Equivalence of Nodes in Patterns

- Complex patterns often have common sub-patterns

- Shall be treated as equivalent

- Selecting the common sub-pattern at the Add node shall enable selecting the complex instruction at Store and Load
Equivalence of Nodes in Patterns

Definition (Equivalence of nodes)

Consider two patterns P and Q and two nodes $v \in P$, $w \in Q$:

\[v \sim w : \iff v = w \]

\[\lor (\text{span } v \cong \text{span } w \land \text{rt } P \neq v \land \text{rt } Q \neq w) \]

- Either the two nodes are identical
- v, w are no pattern roots and their spanned subgraphs are isomorphic
- $\text{span } v$: induced subgraph that contains all nodes reachable from v
Matching of a Node

- Let $\mathcal{P} = \{P_1, P_2, \ldots \}$ be a set of patterns
- Let G be some program graph

Definition (Matching)

A matching \mathcal{M}_v of a node $v \in V_G$ with a set of patterns \mathcal{P} is a family of pairs

$$\mathcal{M}_v = \{(P_i, \nu_i)\}_{i \in I} \quad I \subseteq \{1, \ldots, |\mathcal{P}|\}$$

of patterns and injective graph morphisms $\nu_i : P_i \to G$ satisfying

$$v \in \text{ran} \nu_i \quad \text{and} \quad \op w \neq \Box \implies \op w = \op \nu_i(w) \quad \forall w \in P_i$$
Matchings

Example

Pattern P_A

Program Graph

Pattern P_B
Selection

- We have computed a covering of the graph
- i.e. instruction selection possibilities
- Now, find a subset of the covering that leads to good and correct code
- Cast the problem as a mathematical optimization problem:

 Partitioned Boolean Quadratic Programming (PBQP)
PBQP

Let $\mathbb{R}_\infty = \mathbb{R}_+ \cup \{\infty\}$ and

- $\vec{c}_i \in \mathbb{R}^{k_i}_\infty$ be cost vectors
- $C_{ij} \in \mathbb{R}^{k_i}_\infty \times \mathbb{R}^{k_j}_\infty$ be cost matrices

Definition (PBQP)

Minimize

$$\sum_{1 \leq i < j \leq n} \vec{x}_i^\top \cdot C_{ij} \cdot \vec{x}_j + \sum_{1 \leq i \leq n} \vec{x}_i^\top \cdot \vec{c}_i$$

with respect to

- $\vec{x}_i \in \{0, 1\}^{k_i}$
- $\vec{x}_i^\top \cdot \vec{1} = 1, \quad 1 \leq i \leq n$
- $\vec{x}_i^\top \cdot C_{ij} \cdot \vec{x}_j < \infty, \quad 1 \leq i < j \leq n$
\(\tilde{x}_i \) are selection vectors

- Exactly one component is 1
- This selects the component
- Cost matrices relate selection of made in different selection vectors
- Can be modelled as a graph:
 - cost vectors are nodes
 - matrices are edges
 - only draw non-null matrix edges
PBQP as a Graph

- Colors indicate selection vectors $\vec{x}_i = (0\ 1\ 0)^T$ and $\vec{x}_j = (1\ 0)^T$
- This selection contributes the cost of 6 to the global costs
- Edge direction solely to indicate order of ij in the matrix subscript
Mapping Instruction Selection to PBQP

Add

Add

Add+Const

Const

Const

\[
\begin{align*}
\text{Add} & \quad \text{Add} \\
\text{Add+Const} & \quad \text{Const} \\
\text{Const} & \quad \text{Add}
\end{align*}
\]

\[
\begin{pmatrix}
50 \\
0
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 \\
\infty
\end{pmatrix}
\]

\[
\begin{pmatrix}
\infty \\
0
\end{pmatrix}
\]

\[
\begin{pmatrix}
100 \\
100
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 \\
\infty
\end{pmatrix}
\]

\[
\begin{pmatrix}
\infty \\
0
\end{pmatrix}
\]

\[
\begin{pmatrix}
100 \\
100
\end{pmatrix}
\]
Mapping Instruction Selection to PBQP

Cost vectors are defined by node coverings:

- Let \mathcal{M}_v be a node matching of v

- The alternatives of the node are given by partitioning the matchings by equivalence:

$$\mathcal{M}_v/\sim$$

- Common sub-patterns have to result in the same choice

- Costs come from an external specification
Mapping Instruction Selection to PBQP

- Matrices have to maintain selection correctness

- Consider two alternatives

\[A_u = (P_u, \iota_u) \quad A_v = (P_v, \iota_v) \]

at two nodes \(u, v \) connected by an edge \(u \rightarrow v \).

- The matrix entry for those alternatives is

\[
c(A_u, A_v) = \begin{cases}
\infty & \text{op} \iota_u^{-1}(v) = \square \quad \text{and} \quad \iota_v^{-1}(v) \neq \text{rt} \ P_v \\
\infty & \text{op} \iota_u^{-1}(v) \neq \square \quad \text{and} \quad \iota_u^{-1}(v) \not\sim \iota_v^{-1}(v) \\
0 & \text{else}
\end{cases}
\]

Id est:

- If \(A_u \) selects a leaf at \(v \), \(A_v \) has to select a root

- If \(A_u \) does not select a leaf, both subpatterns have to be equivalent
Example

Program Graph

```
   Phi
   ↓
  Add
  /     \
/   \    /   \    /
 Phi  Const  Load  Load
```

18
Example

Patterns

LAC (Load+Add+Const)
LA (Load+Add)
AC (Add+Const)

C (Const)
P (Phi)
L (Load)
A (Add)
Example

Matchings

\[
\begin{align*}
\text{P} &\quad \text{Phi} \\
\text{A, AC, LA}_1, \text{LAC}_1, \text{LA}_2, \text{LAC}_2 &\quad \text{Add} &\quad \text{C, AC, LAC}_1, \text{LAC}_2 \\
\text{L}_1, \text{LA}_1, \text{LAC}_1 &\quad \text{Load} &\quad \text{L}_2, \text{LA}_2, \text{LAC}_2
\end{align*}
\]
Example

PBQP Instance
Reducing the Problem

Optimality-preserving reductions of the problem:

- Independent edges (e.g. matrix of zeroes):

- Nodes of degree 1:

- Nodes of degree 2:
Reducing the Problem

- **Heuristic Reduction:**

 Chose the local minimum at a node

- **Leads to a linear algorithm**

- **Each reduction eliminates at least one edge**

- **If all edges are reduced, minimizing nodes separately is easy**
Summary

- Map instruction selection to an optimization problem
- SSA graphs are sparse \implies reductions often applied
- In practice: heuristic reduction rarely happens
- Efficiently solvable
- Convenient mechanism:
 - Implementor specifies patterns and costs
 - maps each pattern to an machine node
 - Rest is automatic

- Criteria for pattern sets that allow for correct selections in every program not discussed here!
Literature

