Overview

1 Graph Theory
 - Perfect Graphs
 - Chordal Graphs

2 SSA Form
 - Dominance
 - ϕ-functions

3 Interference Graphs
 - Non-SSA Interference Graphs
 - Perfect Elimination Orders
 - Chordal Graphs

4 Interference Graphs of SSA-form Programs
 - Dominance and Liveness
 - Dominance and Interference
 - Spilling
 - Implementing ϕ-functions

5 Intuition
Overview

1. Graph Theory
 - Perfect Graphs
 - Chordal Graphs

2. SSA Form
 - Dominance
 - ϕ-functions

3. Interference Graphs
 - Non-SSA Interference Graphs
 - Perfect Elimination Orders
 - Chordal Graphs

4. Interference Graphs of SSA-form Programs
 - Dominance and Liveness
 - Dominance and Interference
 - Spilling
 - Implementing ϕ-functions

5. Intuition
Complete Graphs and Cycles

Complete Graph K^5

Cycle C^5
Induced Subgraphs

Graph with a C^4 subgraph

Graph with a C^4 induced subgraph
Induced Subgraphs

Graph with a C^4 subgraph

Graph with a C^4 induced subgraph

Note

Induced complete graphs are called cliques
Clique number and Chromatic number

Definition

\[\omega(G) \] Size of the largest clique in \(G \)

\[\chi(G) \] Number of colors in a minimum coloring of \(G \)

Corollary

\[\omega(G) \leq \chi(G) \]

holds for each graph \(G \)

\[
\begin{array}{c}
\omega(G) & 3 \\
\chi(G) & 2
\end{array}
\]
Clique number and Chromatic number

Definition

\[\omega(G) \] Size of the largest clique in \(G \)

\[\chi(G) \] Number of colors in a minimum coloring of \(G \)

Corollary

\[\omega(G) \leq \chi(G) \] holds for each graph \(G \)
Clique number and Chromatic number

Definition

\[\omega(G) \] Size of the largest clique in \(G \)

\[\chi(G) \] Number of colors in a minimum coloring of \(G \)

Corollary

\[\omega(G) \leq \chi(G) \] holds for each graph \(G \)

<table>
<thead>
<tr>
<th>(\omega(G))</th>
<th>(\chi(G))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Perfect Graphs

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>G is perfect ⇐⇒ $\chi(H) = \omega(H)$ for each induced subgraph H of G</td>
</tr>
</tbody>
</table>
Perfect Graphs

Definition

G is perfect $\iff \chi(H) = \omega(H)$ for each induced subgraph H of G
Perfect Graphs

Definition

G is perfect $\iff \chi(H) = \omega(H)$ for each induced subgraph H of G

<table>
<thead>
<tr>
<th>perfect?</th>
<th>✓</th>
<th>✓</th>
</tr>
</thead>
</table>
Chordal Graphs

Definition

G is chordal $\iff G$ contains no induced cycles longer than 3
Chordal Graphs

Definition

G is chordal $\iff G$ contains no induced cycles longer than 3

Theorem

Chordal graphs are perfect

Theorem

Chordal graphs can be colored optimally in $O(|V| \cdot \omega(G))$
Chordal Graphs

Definition

\[G \text{ is chordal } \iff G \text{ contains no induced cycles longer than 3} \]

Theorem

Chordal graphs are perfect

\[\text{Chordal graphs are perfect} \]
Chordal Graphs

Definition

G is chordal $\iff G$ contains no induced cycles longer than 3

Theorem

Chordal graphs are perfect

Theorem

Chordal graphs can be colored optimally in $O(|V| \cdot \omega(G))$
Overview

1. Graph Theory
 - Perfect Graphs
 - Chordal Graphs

2. SSA Form
 - Dominance
 - ϕ-functions

3. Interference Graphs
 - Non-SSA Interference Graphs
 - Perfect Elimination Orders
 - Chordal Graphs

4. Interference Graphs of SSA-form Programs
 - Dominance and Liveness
 - Dominance and Interference
 - Spilling
 - Implementing ϕ-functions

5. Intuition
Dominance

Definition

Every use of a variable is dominated by its definition

\[v \leftarrow \cdots \]

You cannot reach the use without passing by the definition. Otherwise, you could use uninitialized variables.

Dominance induces a tree on the control flow graph. Sometimes called strict SSA.
Dominance

Definition

Every use of a variable is dominated by its definition

- You cannot reach the use without passing by the definition
- Else, you could use uninitialized variables
- Dominance induces a tree on the control flow graph
- Sometimes called strict SSA
What do ϕ-functions mean?

\[z_1 \leftarrow \phi(x_1, y_1) \]
\[z_2 \leftarrow \phi(x_2, y_2) \]
\[z_3 \leftarrow \phi(x_3, y_3) \]

Frequent misconception

Put a sequence of copies in the predecessors
What do ϕ-functions mean?

Frequent misconception

Put a sequence of copies in the predecessors
What do ϕ-functions mean?

Lost Copy Problem

$\begin{align*}
&\ x_1 \leftarrow \\
&\ x_3 \leftarrow x_1 \\
&\ x_3 \leftarrow \phi(x_1, x_2) \\
&\ x_2 \leftarrow x_3 + 1 \\
\end{align*}$

$\begin{align*}
&\ x_2 \leftarrow x_3 + 1 \\
&\ x_3 \leftarrow x_2 \\
\end{align*}$

Cannot simply push copies in predecessor

Copies are also executed if we jump out of the loop

Need to remove critical edges (loopback edge)
What do ϕ-functions mean?

Lost Copy Problem

- Cannot simply push copies in predecessor
- Copies are also executed if we jump out of the loop
- Need to remove critical edges (loopback edge)
What do ϕ-functions mean?

Swap Problem

\[
\begin{align*}
a_1 &\leftarrow \\
b_1 &\leftarrow \\
a_2 &\leftarrow \phi(a_1, b_2) \\
b_2 &\leftarrow \phi(b_1, a_2)
\end{align*}
\]

\[
\begin{align*}
a_1 &\leftarrow \\
b_1 &\leftarrow \\
a_2 &\leftarrow a_1 \\
b_2 &\leftarrow b_1
\end{align*}
\]

\[
\begin{align*}
a_1 &\leftarrow \\
b_1 &\leftarrow \\
a_2 &\leftarrow b_2 \\
b_2 &\leftarrow a_2
\end{align*}
\]
What do ϕ-functions mean?

Swap Problem

- a_2 overwritten before used
- All ϕs in a block need to be evaluated simultaneously
What do ϕ-functions mean?

The Reality

ϕ-functions correspond to parallel copies on the incoming edges
\(\phi\)-functions and uses

\[
\begin{align*}
z_1 & \leftarrow \phi(x_1, y_1) \\
z_2 & \leftarrow \phi(x_2, y_2) \\
z_3 & \leftarrow \phi(x_3, y_3)
\end{align*}
\]

- Does not fulfill dominance property
- \(\phi\)s do not use their operands in the \(\phi\)-block
- Uses happen in the predecessors
ϕ-functions and uses

- Does not fulfill dominance property
- ϕs do not use their operands in the ϕ-block
- Uses happen in the predecessors

Split ϕ-functions in two parts:
- Split critical edges
- Read part (ϕ^r) in the predecessors
- Write part (ϕ^w) in the block
- Correct modelling of liveness
Overview

1 Graph Theory
 - Perfect Graphs
 - Chordal Graphs

2 SSA Form
 - Dominance
 - ϕ-functions

3 Interference Graphs
 - Non-SSA Interference Graphs
 - Perfect Elimination Orders
 - Chordal Graphs

4 Interference Graphs of SSA-form Programs
 - Dominance and Liveness
 - Dominance and Interference
 - Spilling
 - Implementing ϕ-functions

5 Intuition
Non-SSA Interference Graphs
An inconvenient property

The number of live variables at each instruction (register pressure) is 2
However, we need 3 registers for a correct register allocation
In theory, this gap can be arbitrarily large (Mycielski Graphs)
Graph-Coloring Register Allocation

[Chaitin '80, Briggs '92, Appel & George '96, Park & Moon '04]

- Every undirected graph can occur as an interference graph
 \[\Rightarrow\] Finding a k-coloring is NP-complete

- Color using heuristic
 \[\Rightarrow\] Iteration necessary

- Might introduce spills although IG is k-colorable

- Rebuilding the IG each iteration is costly
Spill-code insertion is **crucial** for the program’s performance.

Hence, it should be very sensitive to the structure of the program.

- Place load and stores carefully
- Avoid spilling in loops!

Here, it is merely a fail-safe for coloring.
Subsequently remove the nodes from the graph

Example graph:

```
  a -- b -- c
   |    |
  d---e
```

elimination order
Subsequently remove the nodes from the graph.
Subsequently remove the nodes from the graph

But... this graph is 3-colorable. We obviously picked a wrong order.

elimination order
\[d, e, \]
Coloring

- Subsequently remove the nodes from the graph

![Graph Diagram]

But... this graph is 3-colorable. We obviously picked a wrong order.

elimination order

\[d, e, c, \]
Subsequently remove the nodes from the graph

elimination order
d, e, c, a,
Coloring

- Subsequently remove the nodes from the graph

![Graph diagram]

Elimination order: d, e, c, a, b

But... this graph is 3-colorable. We obviously picked a wrong order.
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

![Graph diagram]

- Elimination order: d, e, c, a, b

But... this graph is 3-colorable. We obviously picked a wrong order.
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

```
 elimination order
  d, e, c, a,
```

```latex
\begin{tikzpicture}
  \node (a) at (0,0) [fill, circle, inner sep=2pt] {a};
  \node (b) at (1,0) [fill, circle, inner sep=2pt, red] {b};
  \node (c) at (2,0) [fill, circle, inner sep=2pt] {c};
  \node (d) at (1,1.5) [fill, circle, inner sep=2pt] {d};
  \node (e) at (2,1.5) [fill, circle, inner sep=2pt] {e};

  \draw (a) -- (b) -- (c) -- (a);
  \draw (d) -- (b) -- (e) -- (d);
\end{tikzpicture}
```
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

But... this graph is 3-colorable. We obviously picked a wrong order.

elimination order

\[d, e, c, \]
Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

elimination order
d, e,
Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

elimination order

d,
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

But... this graph is 3-colorable. We obviously picked a wrong order.

elimination order
Coloring

- Subsequently remove the nodes from the graph
- Re-insert the nodes in reverse order
- Assign each node the next possible color

But...

this graph is 3-colorable. We obviously picked a wrong order.
Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

But... this graph is 3-colorable. We obviously picked a wrong order.
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

![Graph showing Perfect Elimination Order](image)

elimination order

a,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

Elimination order: a, c,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

Diagram

- Nodes: a, b, c, d, e
- Elimination order: a, c, d,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order
a, c, d, e,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

Elimination order: a, c, d, e, b

From Graph Theory [Berge '60, Fulkerson/Gross '65, Gavril '72]
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

Elimination order: a, c, d, e,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

Elimination order: a, c, d,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

![Graph Diagram]

elimination order

a, c,
Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d, e, c, a, b

elimination order
a,
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

Elimination order:

A PEO allows for an optimal coloring in $k \times |V|$.

The number of colors is bound by the size of the largest clique from Graph Theory [Berge '60, Fulkerson/Gross '65, Gavril '72].
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected.

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

- A PEO allows for an optimal coloring in \(k \times |V| \)
- The number of colors is bound by the size of the largest clique
Coloring
PEOs

- Graphs with holes larger than 3 have no PEO, e.g.

- G has a PEO \iff G is chordal
Graphs with holes larger than 3 have no PEO, e.g.

\[\text{\(G \) has a PEO} \iff \text{\(G \) is chordal} \]

Core Theorem of SSA Register Allocation

- The dominance relation in SSA programs induces a PEO in the IG
- Thus, SSA IGs are chordal
Overview

1. Graph Theory
 - Perfect Graphs
 - Chordal Graphs

2. SSA Form
 - Dominance
 - ϕ-functions

3. Interference Graphs
 - Non-SSA Interference Graphs
 - Perfect Elimination Orders
 - Chordal Graphs

4. Interference Graphs of SSA-form Programs
 - Dominance and Liveness
 - Dominance and Interference
 - Spilling
 - Implementing ϕ-functions

5. Intuition
Liveness and Dominance

- Each instruction \(\ell \) where a variable \(v \) is live, is dominated by \(v \)

```
start

v ← ···

ℓ : ···

··· ← v
```
Liveness and Dominance

- Each instruction ℓ where a variable v is live, is dominated by v

```
start

v ← ···

\ell : ···

··· ← v
```

Why?

- Assume ℓ is not dominated by v
- Then there's a path from `start` to some usage of v not containing the definition of v
- This cannot be since each value must have been defined before it is used
Liveness and Dominance

- Each instruction ℓ where a variable v is live, is dominated by v

Why?

- Assume ℓ is not dominated by v
- Then there’s a path from start to some usage of v not containing the definition of v
- This cannot be since each value must have been defined before it is used
Interference and Dominance

- Assume \(v, w \) interfere, i.e. they are live at some instruction \(\ell \)
- Then, \(v \geq \ell \) and \(w \geq \ell \)
- Since dominance is a tree, either \(v \geq w \) or \(w \geq v \)

![Diagram showing the relationship between \(v \) and \(w \) with \(\geq \) and \(\leq \) relations]

\(v \) \(\{\geq, \leq\} \) \(w \)
Interference and Dominance

- Assume \(v, w \) interfere, i.e. they are live at some instruction \(\ell \)
- Then, \(v \succeq \ell \) and \(w \succeq \ell \)
- Since dominance is a tree, either \(v \succeq w \) or \(w \succeq v \)

\[v \xrightarrow{\{\succeq, \preceq\}} w \]

Consequences

- Each edge in the IG is directed by dominance
- The interference graph is an “excerpt” of the dominance relation
Interference and Dominance

- Assume $v \trianglerighteq w$
- Then, v is live at w

Why?

If v and w interfere then there is a place where both are live w dominates all places where w is live

Hence, v is live inside w's dominance tree

Thus, v is live at w
Interference and Dominance

- Assume $v \preceq w$

- Then, v is live at w

 - Why?
 - If v and w interfere then there is a place where both are live
 - w dominates all places where w is live
 - Hence, v is live inside w's dominance tree
 - Thus, v is live at w
Interference and Dominance

Consider three nodes u, v, w in the IG:

Thus, they interfere.

Conclusion
All variables that . . . interfere with w dominate w. . . are mutually connected in the IG.
Interference and Dominance

Consider three nodes u, v, w in the IG:

- u is live at w
- v is live at w

Thus, they interfere
Interference and Dominance

Consider three nodes u, v, w in the IG:

- u is live at w
- v is live at w
- Thus, they interfere

Conclusion

All variables that . . . interfere with w . . . are mutually connected in the IG.
Interference and Dominance

Consider three nodes u, v, w in the IG:

- u is live at w
- v is live at w
- Thus, they interfere

Conclusion

All variables that ...
- interfere with w
- dominate w

... are **mutually connected** in the IG.
Dominance and PEOs

- Before a value v is added to a PEO, add all values whose definitions are dominated by v.
- A post order walk of the dominance tree defines a PEO.
- A pre order walk of the dominance tree yields a coloring sequence.
- IGs of SSA-form programs can be colored optimally in $O(\omega(G) \cdot |V|)$
- Without constructing the interference graph itself.
Theorem

For each clique in the IG there is a program point where all nodes in the clique are live.
For each clique in the IG there is a program point where all nodes in the clique are live.

- Dominance induces a total order inside the clique
 \[\Rightarrow \text{There is a “smallest” value } d \]
- All others are live at the definition of } d
Spilling

Consequences

- The chromatic number of the IG is exactly determined by the number of live variables at the labels

- Lowering the number of values live at each label to k makes the IG k-colorable

- We know in advance where values must be spilled
 \[\Rightarrow\] All labels where the pressure is larger than k

- Spilling can be done before coloring and

- Coloring will always succeed afterwards
Spilling

Consequences

- The chromatic number of the IG is exactly determined by the number of live variables at the labels.
- Lowering the number of values live at each label to \(k \) makes the IG \(k \)-colorable.
- We know in advance where values must be spilled \(\Rightarrow \) All labels where the pressure is larger than \(k \).
- Spilling can be done before coloring and.
- Coloring will always succeed afterwards.

Conclusion

- No iteration as in Chaitin/Briggs-allocators.
- No interference graph necessary.
Getting out of SSA

- We now have a k-coloring of the SSA interference graph
- Can we turn that program into a non-SSA program and maintain the coloring?
Getting out of SSA

We now have a k-coloring of the SSA interference graph.

Can we turn that program into a non-SSA program and maintain the coloring?

Central question

What to do about ϕ-functions?
Φ-Functions

- Consider following example

\[z_1 \leftarrow \phi(x_1, y_1) \]
\[z_2 \leftarrow \phi(x_2, y_2) \]
\[z_3 \leftarrow \phi(x_3, y_3) \]
Φ-Functions

- Consider following example

\[
(z_1, z_2, z_3) \leftarrow (x_1, x_2, x_3)
\]

\[
(z_1, z_2, z_3) \leftarrow (y_1, y_2, y_3)
\]

\[
\begin{align*}
z_1 &\leftarrow \phi(x_1, y_1) \\
z_2 &\leftarrow \phi(x_2, y_2) \\
z_3 &\leftarrow \phi(x_3, y_3)
\end{align*}
\]

- Φ-functions are parallel copies on control flow edges
Φ-Functions

- Consider following example

\[
\begin{align*}
(z_1, z_2, z_3) & \leftarrow (x_1, x_2, x_3) \\
(z_1, z_2, z_3) & \leftarrow (y_1, y_2, y_3)
\end{align*}
\]

\[
\begin{align*}
z_1 & \leftarrow \phi(x_1, y_1) \\
z_2 & \leftarrow \phi(x_2, y_2) \\
z_3 & \leftarrow \phi(x_3, y_3)
\end{align*}
\]

- Φ-functions are parallel copies on control flow edges

- Considering assigned registers ...
Φ-Functions

Consider following example

\[z_1 \leftarrow \phi(x_1, y_1) \]
\[z_2 \leftarrow \phi(x_2, y_2) \]
\[z_3 \leftarrow \phi(x_3, y_3) \]

Φ-functions are parallel copies on control flow edges

Considering assigned registers . . .

. . . Φs represent register permutations
A permutation can be implemented with copies if one auxiliary register is available.

Permutations can be implemented by a series of transpositions (i.e. swaps).

A transposition can be implemented by three XORs without a third register.
Intuition: Why do SSA IGs do not have cycles?
Why are SSA IGs chordal?

Program Live Ranges
\[a \leftarrow \cdots \]
\[b \leftarrow \cdots \]
\[c \leftarrow \cdots \]
\[d \leftarrow a + b \]
\[e \leftarrow c + 1 \]

How can we create a 4-cycle \(\{a, c, d, e\} \)?
Intuition: Why do SSA IGs do not have cycles?

Why are SSA IGs chordal?

Program Live Ranges

\[a \leftarrow \cdots \]
\[b \leftarrow \cdots \]
\[c \leftarrow \cdots \]
\[d \leftarrow a + b \]
\[e \leftarrow c + 1 \]
\[a \leftarrow \cdots \]

How can we create a 4-cycle \(\{a, c, d, e\} \)?

- Redefine \(a \) \(\implies \) SSA violated!
Intuition: ϕ-functions break cycles in the IG
Intuition: ϕ-functions break cycles in the IG

Program and live ranges

\[
\begin{align*}
 d & \leftarrow \cdots \\
 e_1 & \leftarrow a + \cdots \\
 & \leftarrow d \\
 e_3 & \leftarrow \phi(e_1, e_2)
\end{align*}
\]

Interference Graph

\[
\begin{align*}
 a & \rightarrow d \\
 b & \rightarrow e_1 \\
 & \rightarrow e_2 \\
 c & \rightarrow e_2 \\
 & \rightarrow e_3 \\
\end{align*}
\]
Intuition: Why destroying SSA before RA is bad

Parallel copies

\[(a', b', c', d') \leftarrow (a, b, c, d)\]

Sequential copies

\[
\begin{align*}
 d' &\leftarrow d \\
 c' &\leftarrow c \\
 b' &\leftarrow b \\
 a' &\leftarrow a
\end{align*}
\]
Intuition: Why destroying SSA before RA is bad

Parallel copies

\[(a', b', c', d') \leftarrow (a, b, c, d)\]

Sequential copies

\[
\begin{align*}
d' & \leftarrow d \\
c' & \leftarrow c \\
b' & \leftarrow b \\
a' & \leftarrow a
\end{align*}
\]
Intuition: Why destroying SSA before RA is bad

Parallel copies

\[(a', b', c', d') \leftarrow (a, b, c, d)\]

Sequential copies

\[
\begin{align*}
 d' & \leftarrow d \\
 c' & \leftarrow c \\
 b' & \leftarrow b \\
 a' & \leftarrow a
\end{align*}
\]
IGs of SSA-form programs are chordal

The dominance relation induces a PEO

No further spills after pressure is lowered

Register assignment optimal in linear time

Do not need to construct interference graph

Allocator without iteration

Summary