Summary:

The paper proposes an approach called Fast Track, which intends to optimize the run-
time of sequential programs by supporting unsafe optimizations through speculative
execution.

Unlike other approaches, we’ve seen so far, the presented approach does not really try to
perform an automatic parallelization of the given program. Instead it uses the parallel
execution to provide some kind of fall-back while allowing possibly unsafe optimizations
on the given program.

In general, the execution of a so-called fast-track region, a code region where unsafe
optimization is allowed, is done independently in parallel by two different processes: the
normal and the fast instance. Together, this execution is called a dual-track instance.
As anticipated by the name, the fast instance executes the code of the region, which
has been optimized optimistically to gain an advantage in terms of the execution time.
The normal instance just executes the unchanged code. During the execution of both
instances, the changes done to the memory are observed and recorded. Therefore the
memory is mapped to each process as read-only at first, until the first write access is
detected. Afterwards the memory is duplicated and the access recorded for conflict
detection. As in other approaches, this is realized by the virtual memory handling capa-
bilities of the hardware and the OS, such as “page-fault” handlers. After both instances
are finished, the memory is compared for differences, in which case the fast track exe-
cution is aborted and the result from the normal used.

Obviously, the approach is safe and provides a worst case run-time close to the sequential
execution, since in the worst-case, the result is indeed the sequential one. The question
now is, why is this approach useful at all and yields a performance gain?

Indeed, both versions of the code region are always executed in parallel, but the execu-
tion won’t be stopped, if the code region is done. Actually, the fast instance is sooner
able to execute the sequential code after and outside the fast-track region. Finally, when
the sequential execution of the normal instance completes, and both computations are
considered equal, then there is no need to re-execute the sequential code after the region,
since this has already been done by the fast-track process. When a fast-track region is
encountered again, the normal process can be immediately started at this point, which
yields a performance gain in terms of the execution time. If at any time, the execution
of an fast instance is wrong or slower than the normal instance, the fast instance can be
just aborted. Afterwards the execution can be restarted after the fast-track region with
the result of the normal instance.

The approach therefore offers an interesting speed-up in the optimistic case, while pro-
viding a near as sequential run-time in the worst case.



Summary T3

The paper of this week deals with an approach called "Fast Track" and
describes how speed up programs with the help of parallelism. In contrast to
the papers we discussed in the last weeks this approach does not use
parallelism in order to execute different parts of code by different cores
or processors. Instead Fast Track enables the compiler to optimize the
program more aggressively which would lead to a loss of correctness. So it
uses instances running the safe original code in parallel to verify the
results of the fast instance. The speedup arises due to the fact that the
execution of the program can continue as soon as the fast instance has
finished and does not need to wait for the normal instance. If the
verification fails all further computations run by the fast instance that
are based on the result of the failed one will by undone by a rollback.
Beneficial applications for these technique are Memoization where one has to
make a compromise between the benefit of precomputed results and overhead in
loads and stores. Using Fast Track always the faster variant wins this race.
Another field where Fast Track can be used is the optimization in compiler,
because there are many optimizations that destroy safety but provide a high
speedup.

To use Fast Track the programmer has to call the function FastTrack which
returns a boolean value whether the current process is the fast or the
normal instance. Based on this condition the corresponding code can be
executed. At this point the dual-track instance starts and it ends at the
call of the EndDualTrack function which behaves as a joint point. Nested
dual-track instances are allowed, but statements containing side effects
(system calls, file input / output) are forbidden.

Technically the system is based on UNIX processes each with a separate
address space. To enable rollbacks changes to the memory have to be
recorded. Data on the stack is protected by the compiler and data on the
heap as well as global variables are protected by the 0S paging support
manipulating access bits and installing customized page-fault handlers that
are able to record all memory accesses.

Questions / Opinion:

1. On page 2 the authors write about "late bindings", what are these?



1 Summary

In this paper, the authors present Fast Track, a system that allows to run un-
safe, aggressively optimized code on a fast track of execution. To guarantee
correctness, the system runs a safe version of the code on a separate process to
verify the results of the fast track. Fast Track can be used directly by a com-
piler, but also offers a programmable interface to manually mark unsafe code.
The unsafe code is run in parallel to its safe version, where the two processes are
generally spawned synchronously. If the machine only provides two cores, the
processes can also be spawned asynchronously to increase the performance gain.
When the normal instance terminates, it verifies the results of the fast instance.
When an error appears on the fast instance or the results of the normal and the
fast instance differ, then a new fast instance is started at the next dual-track
instance; it is considered an error if the normal instance terminates faster than
the fast instance.

Fast-track regions can be nested, however, no new processes are spawned. The
system forbids abnormal branches, system calls, and I/O inside a dual-track re-
gion. The system uses paging to protect global and heap data and access maps
to detect errors.

Considering a set of parameters that significantly affect the possible perfor-
mance, the authors derive a model to compute potential speed ups. They claim
that the parameters can be efficiently monitored at run time such that the model
can be used to tune Fast Track at run time.

In the evaluation section, the authors present their hand-crafted benchmark.
Their results show significant performance improvement.

2 Questions

I think this paper is missing important information about how their system is
designed and how it operates. Especially the underlying techniques used by
Fast Track should be explained.

Furthermore, the experimental results are highly questionable. How represen-
tative is their synthetic test? It would have been better to use different, well
known tests.



Fast Track:Supporting Unsafe Optimizations
with Software Speculation

1 Summary

Fast track is a parallelization technique that mainly focusses on improving
the performance by exploiting unsafe optimizations done on the programs.
Similar to the previous paper discussed, there is an execution of both sequen-
tial and fast track version. However, one of the differences is that sequential
version is continued even though fast track version wins the race.

Programmer or compiler inserts the optimizations into the code that
might be unsafe. Such portions in the code are executed in dual track.
This means both optimized and unoptimized versions are executed as sep-
arate processes in parallel. Such executions are made independent of each
other by replicating address space or possibly using Copy-on-Write. Vari-
ables that are changed by both processes are recorded. Global and heap
data are protected using a modified page fault handler. When a fast track
execution finishes, which is likely to happen before sequential execution, it
starts execution of the next dual track in the code. When a sequential ex-
ecution finishes, process compares its modified data with that of fast track
execution. If they are different or fast track is still in execution, fast track
process is aborted. And next dual track in the code is started. Sequential
execution ensures correctness of the system, and is the performance of the
system in worst case.

Dual track executions are highly resource intensive. Authors discuss few
optimizations like enforcing a limit on number of dual track executions that
can be active at the same time. There is also a limit on the amount of
dynamic memory that can be allocated by a fast track process. While starting
a dual track execution if only one processor is available, sequential track is
started on the available processor. Fast track execution waits for a processor
to be idle.

2 Questions
1. In asynchronous dual-track execution, is there any advantage in start-

ing normal execution instead of fast track execution when there is only
one processor available?



2. In section 4.1, author discusses about converting global data to heap
data. I don’t understand how that helps.



Fast Track: Supporting Unsafe Optimizations with Software
Speculation

Summary

This paper introduces a source code level software speculation scheme that facilitates multi-
core systems to accelerate sequantial programs by running both a safe version and a unsafely
optimized version of certain program parts. The kind of optimization is in general not fixed. As
a special application told to be convenient, memoization is mentioned, which seems to be some
sort, of speculative dynamic programming. Despite the approaches discussed so far, this system
also allows for improvements beyond parallelization per se.

The systen is region based where regions are bounded by a distinct entrance point and a single
exit point which is dominated by it. Irregular behavior such as system calls and file operations
are not covered and thus needs to reside outside of those regions. For each region there is a
normal track and a fast track (the optimized version of the normal track). When reaching the
entry point, the current thread forks the fast track to a separate process. In the bad case,
speculation fails or is slower then the normal track. Then, the fast track is aborted/canceled
and the normal execution proceeds. In the optimistic case, the fast track finishes earlier and
can proceed with the execution of the program, including the starting of subsequent dual-track
executions which might gain true parallelism. The normal track verifies memory effects logged
by both tracks and hands the program control over to its fast track. This is said to be done by
message-passing, but no concrete information about implementation details (such as protocols)
is given.

As theoretical as the description of the system itself is the first part of the performance analysis.
While the formulas and mutual relations between the different attributes of the system seem
to be plausible (at a first glance) — but nevertheless also quite artificial given the abstraction
level — the results gained from that (despite some theoretical bounds) seem to be not that
expressive.

In addition to that, there follows an experimental analysis of the system whose real implemen-
tation even in this context is only roughly given. The results are — as one would expect, given
the single fairly artificial benchmark program — equally informative.

Open Questions

e Has anyone in the meantime evaluated that in real world applications? For example in
combination with the memoization technique mentioned in the introduction?



Fast Track Summary

The authors introduce Fast Track, a system which enables programmers to make
use of arbitrary unsafe optimizations. The basic idea is the same as for BOP: Exe-
cute the unsafe (for BOP: speculative) version in parallel to the normal version. Once
the normal version has finished, use its result to check whether the optimized version
computed the same, correct value. If the "optimized" version didn’t finish so far, or if
the results don’t match, its process is killed. A speedup is achieved by letting the pro-
cess which run the optimized version execute the next section of the program. As with
BOP, Unix processes are used for parallel execution, and the operating systems page
fault handler is used to check which data is actually modified. This is done by initially
removing the write permissions for all pages. Whereas in BOP, an overlap in modified
pages would be a conflict, it’s actually required for Fast Track. Furthermore, checking
code has to be inserted, as pages being modified doesn’t implies that the modifications
are the same. Unlike BOP, Fast Track cannot handle stack data, which is a) startling
when keeping correctness in mind and b) surprising, considering that C. Ding and K.
Kelsey worked on both projects.

The authors spend some time to talk about how their system deals with resource
constraints: Memory overhead is deemed negligible. For processors, they consider to
different schemes of running the two tracks: In one they only start the tracks when
there is a free processor for each of them. In this case, unnecessary waiting times are
added. In the second scheme they execute the normal track as soon as possible, and the
fast track when another processor becomes available.

To analyze the possible speedup, they give a mathematical formula describing the
execution time. In their formula, 4 main parameters appear: speed of the fast track,
its success rate, the overhead added by the system and the percentage of the program
which is actually executed in the fast track. They use a simulation (based on their
formula) and conclude that the actual speedup is highly dependant on the parameters.
They claim that those parameters can be monitored at run time, which could be used to
control the system, especially the depth of concurrently running sections.

Open questions:

e How could they perform their synthetic test when their system doesn’t support
stack data so far?

e Is their formula applicable at all when one doesn’t consider equally sized loop
bodies, but more irregular programs?



Summary T3

This week’s paper is about "Fast Track", an approach to implement possibly unsafe optimizations
without falsifying the result. The idea is to split the program into 2 parts: a so called "fast track" and
the "normal track". The fast track executes the aggressively optimized code and every time a new
possibly unsafe section is launched, it spawns the safe version as a seperate process which is used to
validate the result of the fast track.

The fast track does not wait for the normal track to finish before continuing. This means that later
sections could use wrong results from previous sections before the normal track finishes the earlier
section and validates the fast track result. In such a case the fast track is simply aborted and
abandoned and the corresponding normal track becomes the new fast track. This guarantees that
always the right result is used.

To not flood the system with new processes till infinity, the fast track depth - meaning how many
normal tracks may run in parallel to the fast track - can be limited.

If the fast-track encounters irreversible effects like exit points or I/0, it stalls until the normal track
performs this operation.

Another guarantee that they give is, that the fast-track may only allocate a certain amount of
memory. If this limit is exceeded, the process is aborted. This ensures that an application does not
have a sudden n-fold which might be a problem on certain systems.

Open questions:

Is there some kind of commit order for the normal tracks when it comes to I/O effects? The fast-track
may not execute those but has to wait for the normal-track to execute them. But what if a normal-
track B started with the input of fast-track A, this input is not yet verified by normal-track A, and B
wants to execute an I/0 effect. To ensure correct results, it would need to wait for normal-track A to
finish. Is this what they do?



Fast Track: Supporting Unsafe Optimizations with
Software Speculation

1 Summary

The paper proposes a parallelization system called Fast Track which will enable the programmer to
specify so called dual-track regions which will be speculatively parallelized. Fast Track will execute a
program sequentially at first, if it encounters a dual-track region it will spawn a new process which will
execute the region using some other arbitrary parallelization scheme.

The original process will execute the code in the region sequentially. When the parallel track reaches
the end of the dual-track region it will preserve all the memory it changed and will start executing the
code after the region. When the sequential track finishes it will first check if the parallel track has left
the region and Kkill it otherwise, in the other case the sequential track will compare the memory actions
of both tracks and if they differ kill the parallel track or quit otherwise.

If the parallel track at some point reaches an exit statement or an illegal operation (such as errors or
systemcalls) it will wait for the sequential track to either finish and kill the parallel track or to execute
a correct exit statement. The system allows nested dual-track regions, if any nested dual-track region is
encountered the code will not introduce another layer of concurrency.

2 Questions

e Where and how does the fast instance store its memory footprint when it reaches the end of a
dual-track region?



	 
	 
	 
	 
	 
	 
	Open questions:

	 
	 

