
Summary T5

This week we discuss a paper dealing with "Speculative Decoupled Software
Pipelining". It bases on last week's paper, but due to the fact that DSWP is
not mighty enough to parallelize many loops it expands this approach by
using speculation.
The problem that arises when certain loops are parallelized is that there
are dependence recurrences inhibiting a parallelization using DSWP. To solve
this problem thread-level speculation could be used to break special
dependences speculatively, but this would also enlarge the latency on the
critical path because of the necessary communication. SpecDSWP can avoid
this enlargement by keeping the organization pipelined.
In cases of misspeculation the approach provides a mechanism to recover the
program state. For this purpose threads create a kind of snapshot before
executing a new iteration. When misspeculation is detected every thread
restores its changes to memory and the registers and continues executing the
iteration sequentially.
In order to find the edges in the dependence graph the algorithm speculates
all highly predictable dependences provisionally. Then threads are allocated
to the remaining edges in the PDG using a partitioning heuristic. After that
it identifies all provisionally speculated edges that crosses the thread
border and at the same time points from a later thread to an earlier one in
the pipeline. The edges that are found this way are exactly the edges that
need to be speculated.
A likely use-case for SpecDSWP are biased branches. This means that one
branch of a condition is taken in most cases and the other branch only
rarely. In such a case the compiler can break the control dependence.
Technically this speculation is implemented as an unconditional branch
replacing the conditional one. To detect misspeculation a boolean flag is
set when the unlikely branch is taken and the rollback-mechanism re-executes
this branch sequentially.

Questions / Opinion:

1. I wonder how to implement a misspeculation detection or a value predictor
in hardware.

2. How can I imagine those heuristics they mentioned in relation to the
partitioning?



1 Summary

In this paper, the authors present a technique combining Decoupled Software
Pipelining with speculation. Speculative DSWP focuses on breaking dependence
recurrences by speculating dependence recurrences in loops, to allow performing
speculative DSWP on loops, where normal DSWP would not be possible.
DSWP partitions the loop body and distributes parts to cores. A core is then re-
sponsible for its partition in all iterations of the loop. DSWP constructs a PDG
and detects dependence recurrences by identifying strongly-connected compo-
nents. By speculatively ignoring specific dependences, the strongly-connected
components may be split into smaller ones.
SpecDSWP uses hardware versioned memory to rollback on misspeculation.
Misspeculation detection is realized in software. SpecDSWP features specu-
lating dependences, as long as an appropriate misspeculation detection can be
employed, and value prediction.
SpecDSWP furthermore speculates the execution of infrequently executed basic
blocks, which can break even more dependences.
The SpecDSWP compiler identifies frequent silent stores, and guards them by
first checking if the written value equals the current value. The store is only
performed, if the values differ. This allows further branch speculation.
The SpecDSWP benchmark uses a synchronization array as a low-latency queue
and a versioned memory system supporting 32 outstanding versions.

2 Questions

In the experimental results the authors compare their approach to single threaded
code. It would be important to know whether this code has already been op-
timized by DSWP. Especially for the gzip benchmark one cannot say whether
their approach caused a speedup compared to the normal DSWP variant.

1



Speculative Decoupled Software Pipelining

1 Summary

This is an optimization on the paper discussed last week. Authors add specula-
tion on DSWP. DSWP alone is not useful to parallelize programs with complex
loop structures. So, speculation is used to break loop carried dependence, and
extract additional parallel segments.

Speculation is made by assuming that some apparent dependences are vir-
tual. So compiler first builds the PDG for the loop. Then identifies which
dependence edges from PDG can be removed. Few heuristics are discussed to
carry out this. Biased branches in the loop body are speculated. These branches
are replaced by unconditional branches with a misspeculation detection scheme.
Similar heuristic is used for speculated infrequently executed basic blocks. An-
other speculation is silent stores. Some kind of analysis is performed on the
program to detect the stores that never happen or happen infrequently. All the
output dependence and anti-dependence edges are also removed from PDG.

Misspeculation recovery is done using the snapshot of the system stored
before starting the execution of particular iteration. Whenever a misspecu-
lation is detected, that particular thread waits for completion of all previous
threads. Then stored snapshot is recovered before starting the execution of
non-speculated version of misspeculated thread. After this step, speculative ex-
ecution can be started again. Versioned memory used in this scheme is similar
to transactional memory in that it can be committed in case of success or rolled
back safely in case of misspeculation. However, there are some differences also
like absence of conflict detection in versioned memory

Misspeculated iteration can be re-executed either on a single thread or mul-
tiple threads. But communication overhead involved might cancel out the gain
in case of multiple threads.

2 Questions

1. In addition to synchronization array, there is also need of storing snapshot
for each iteration. Isn’t this approach less memory efficient?

2. I do not understand the misspeculation detection scheme used for biased
branches.



Summary Speculative Decoupled Software
Pipelinging

The paper extends the previously discussed DSWP with speculation to increase
both its applicability and its effectiveness.

The authors start by comparing DOACROSS and DSWP parallelism; stating that
DSWP can perorm better as it tolerates variable latency in threads. They then show
an example that can be neither parallelized by DOACROSS nor by DSWP, but that
can be once one adds speculation. They argue that, as before, DSWP can perform
better, as dependece communication is not required on the critical path (as opposed to
DOACROSS). The actual DSWP part is quite similiar to the one we saw in the last pa-
per, including the synchronization array. There are however some differences/additions:
The start by computing strongly connected components of the PDG; thos build their
basic scheduling units, and they are distributed among a number of threads.

Speculation is used to shrinken the SCCs, in the hope of gaining better scalabil-
ity/performance. The system speculates to remove edges from the PDG; in a first step,
it only speculates on those that are "highly predictable"; it then identifies their sub-
set which is cross-thread and only speculates on those (removes them). Besides such
control flow speculation, they also speculate on values: They first profile the appli-
cation to find frequent silent stores; and then speculate on them keeping their value.
As speculation can fail, the system can detect such failures and to recover from them.
Missspeculation is detected by adding abort code to the branch which was predicted
not to be taken. For its handling, the authors introduce a commit thread. For each iter-
ation, it waits for all threads signaling it their status (exit, misspec, ok). If all threads
sent ok for an iteration, the corresponding memory state is commited to "real" memory.
If not, recovery is initiated. During recovery, after shutting down further speculative
execution, the memory state is reset to the last sane state, and all inter-thread messages
are discarded. Then, the code which caused the failure is reexecuted non-speculatively
- either sequentially by the commit thread, or by the worker threads, but with syn-
chronization between them. The memory rollback is a cheap operation, as the authors
added a so-called version memory, a hardware extension, which augments loads and
stores with a version number.

The authors evaluate their idea on simulated harware. In this case, it smells fishier
than usual, as they state that "the detail [. . . ] prevented whole program simulation".

Open Questions:
∙ Why is special handling required for callee-saved registers?

∙ How exactly does the polling of the statuses in the commit work and what is its
overhead?

1



Summary T5 

This week’s paper is an adaptation of an approach the last paper was based on. The parallelization 

approach is called “Decoupled Software Pipelining” (DSWP) but as it works non-speculatively it’s 

capabilities to parallelize everyday programs is very limited. The authors of this paper extend DSWP 

to work speculatively and introduce SpecDSWP. 

The basic concept of DSWP is not changed. Instead, the approach tackles the dependence edges. 

Obvious dependences are speculated and a heuristic tries to remove further dependence edges. This 

ensures that DSWP is able to parallelize code it was not able to parallelize before. But, to ensure 

correctness in case of misspeculation, the code must be able to rollback. 

Concerning loops, SpecDSWP saves each completed iteration as a state the system rolls back to in 

case a misspeculation was flagged. The rollback mechanism works the following way: the system 

must wait until the thread(s) executing the previous iteration finish. It then restores the old memory 

values and a non-speculative version of the iteration is executed. After that, speculation can 

continue. 

SpecDSWP also speculates about how often branches will be taken. In some cases this is able to 

resolve further dependence-edges, which in turn leads to more possible parallelizations. 

An important fact I forgot to mention is that SpecDSWP works on versioned memory. Versioned 

memory is a technique to store multiple versions of values at the same address. This means, that 

values are accessed with version-address tuples instead via only the address. Each thread manages a 

version number which is increased in each iteration. In case of a rollback, everything from the version 

number being rolled back to all the other dependent versions is discarded. 

 

Open questions: 

1.) In Figure 7, Thread 4 (7(b)) also consumes nodes. Why does it need to do that when Thread 3 

(7(c)) already does that? Wouldn’t that in fact yield erroneous code since Thread 4 might 

consume the nodes which were meant for Thread 3? 


	 
	 
	 
	 
	Open Questions:

	 

