The Omega Test

The Omega Test can determine whether a dependence exists between two array references and under what conditions. It uses integer programming to produce the results which is considered too expensive. But the Omega Test is competitive with approximate algorithms used in practice and could be used in production compilers.

To check if two array references have a dependence we first need to extract equalities and inequalities from the given program with respect to loop bounds. On top of that the Omega Test combines new methods for eliminating equality constraints with an extension of Fourier-Motzkin variable elimination. Apart from that there are other implementation details which give a speed improvement.

The first step is to normalize all constraints and scale all constraints which don't have integer coefficients. Then we start with the equality constraints by eliminating one after another. If an equality has a coefficient of 1/-1 we can directly solve the equality and substitute the result into all other constraints. If not we use a technique which introduces a new variable and shrinks the coefficients. By repeated application we get a unit coefficient and can eliminate that constraint. The next step is to handle inequality constraints. We first check for direct contradictions, tight inequalities and redundant inequalities and report failure, create an equality or eliminate those respectively. If we are done with that we try to disprove the existence of integer solutions by creating a new problem that contains all inequalities that do not involve a specific variable and all inequalities produced by combining each pair of upper bound and lower bound on this variable (see Fourier-Motzkin). The difference to Fourier-Motzkin is that we create a second new problem and if the integer points described by both new problems are the same there is an integer solution to the original problem. Otherwise we need to make a check on every lower bound in turn. When performing exact transformations we try to choose the variable that minimizes the number of constraints while for non-exact reductions we choose a variable with coefficients as close to zero as possible.

The actual implementation uses hash keys and constraint keys to allow faster search for redundant and opposing constraints. After normalization if we found no multi-variable constraints, we know the system must have solutions. The Omega Test simply decides if there is a solution to an integer programming problem but with some modifications it is possible to allow it to be used for simplification. The main point is to never perform Fourier-Motzkin variable elimination on protected variables and some other techniques.

Open question:
1) Is this used in modern compilers? If not, why?
immediately. (4) then Fourier Motzkin variable elimination is applied.

The Omega Test can handle nonlinear subscripts such as integer division and integer remainder operations and
Use of projection enables the calculation of dependence distance and direction vectors efficiently. Projection can
an also be used when compile-time analysis is not possible and can produce a predicate that allows run-time
determination of whether a particular dependence or dependence direction exists.

Performance wise even though the integer programming problems are NP-complete, omega test performs
reasonable for almost all the programs that are in practice. Normalizing the constraints and checking for
contradictory or redundant constraints require O(mn) time as hashing is used also subproblem generated from
Fourier Motzkin method takes time proportional to size of the subproblem.

Questions

1. why it is more easy to deal with the equality constraints?
2. Is it possible that Fourier Motzkin results in too many sub-problems that eventually degrade the performance?
3. Significance of protected variables when we already having solution in P?

Summary 3 of 4

The Omega Test: a fast and practical integer programming algorithm for dependence analysis
William Pugh describes in his work the Omega Test, a new integer programming approach for exact de-
pendencies testing. He states the runtime is competitive with approximate algorithms used in productive
compilers but additionally results, e.g., dependence direction, can be achieved by slight modifications and with
adequate overhead (at least for the benchmarks tested).

The basic idea is to test if an integer programming problem computed for each pair of array sub- scripts in a loop
nest has a (integer) solution. First, simple conditions for non-feasible equalities and contradictory inequalities are
tested before a Fourier-Motzkin approach is used to reduce the number of variables. In the basic framework only
a decision problem is given (namely if the subscripts are depen- dent or not), thus it is sufficient to find one
infeasible constraint. To lower the runtime in regular cases a lot of special cases (early exits) are implemented
which may provide an answer without eliminating all variables.

Additionally results (e.g., distance vectors) can be achieved by a modified version of the Omega Test. Two ways
are described, one which will yield the dependence direction and distance vector of two subscripts and one which
offers even more information on the dependency.

In the end the approach is compared to other approximate and exact techniques. Several of them utilizing integer
programming some even Fourier-Motzkin elimination but most of them state an addi-
tional overhead compared
to specialized or approximate polynomial solutions. A theoretical comparison is given to counter this statement for
the special cases other solutions provide exact results. Further-
more, an evaluation on different benchmarks,
which shows the analyses time compared to the copy time of the problem, is shown. The results should proof the
applicability in productive compilers.

While the usefulness of exact dependency results and additional information is clear, it remains unclear how the
Omega Test performs compared to other techniques and why copy time is an appropriate reference.

Open/Further Questions

- The described hashing technique and the purpose is quite a bit confusing, so how and why is hashing
 used?
- Why is the analyses time compared to copy time and why is loop bound/ subscript scanning so
 expensive?
- As stated, some non-linear constraints, e.g., max or min values, can be handled but questions might
 arise as:
 – How applicable is this to general purpose code?
 – What extensions could allow more general subscripts (quadratic solvers)?
– How could more expensive approaches be used in modern (high performance) machines to handle more cases with acceptable runtime?

• While polynomial complexity of the Omega Test is comparable to approximate algorithms (in special cases), why is neither runtime, nor precision (for non-exact results) is evaluated?

===

Summary 4 of 4

Omega Test is an integer programming algorithm which is used to do the analysis of array dependence like Does a dependence exist between two array references? and under what conditions? The algorithm presents the evidence that integer programming is no so expensive to be used for dependence analysis, which is competitive with approximate methods in practice and applicable in production compilers. Omega Test is the extension of Fourier-Motzkin variable elimination method which is NP-complete generally having exponential complexity in worst but polynomial in most situations.

The basic observation is that data dependency problems can be equivalent to deciding if there is an integer solution to a set of linear equalities and inequalities as integer programming. Omega Test combines new methods for eliminating equality constraints with an extension of Fourier-Motzkin variable elimination to integer programming. The rough idea is to reduce the problem into a simpler domain which has fewer variables. This simplification can be done by projecting 'n' variables to 'n-1' variables. At the same time, the solution of the simplified domain can imply to the solution to the original problem. The first step is to Normalize (and tightening) constraints which will scale the rational coefficients to produce integer coefficients. The method is to divide all the coefficients by the greatest common divisor of the coefficients. The final normalized constraint in one in which all the coefficients are integers and the greatest common divisor of the coefficients is 1. Afterwards, we start eliminating all the equality constraints to produce a problem in inequalities. Each equality elimination will eliminate one variable. If the variable's absolute value is 1, we just solve for this variable and substitute in system. Otherwise, we have to replace the equation with another constraints(see paper 2.2). In the third we deal with inequalities. The details is like following, if we can find the contradicting inequalities then it report no solution. Otherwise, we remove inequalities by tighter ones and remove redundant constraints, if problem has only a single variable then we report a solution else we continue eliminating one variable and recurse.

Implementation details of Omega test needs to represent the equalities and inequalities as vectors of coefficients which is only in integer formal. Performing Fourier-Motzkin elimination on an unbounded variable which has no lower bounds or upper bounds, simply deletes all the constraints involving it. We recursively delete the unbounded variables. Next, we normalize all the constraints and assign hash keys and constraint keys to them. hash keys and constraint keys can lead faster search for redundant and opposing constraints. Finally, we examine the variables to decide which variable to eliminate.

The time to eliminate one equality is $O(mn\log|C|)$ in worst-case, where C is the coefficient with the largest absolute value. Eliminating unbound variable takes $O(mnp)$ worst-case time, where p is the number of passes required to eliminate all the variables that become unbound. And normalizing the constraints and checking for directly contradictory or redundant constraints needs $O(mn)$ expected time. And producing the subproblems resulting from Fourier-Motzkin variable elimination takes time proportional to the size of the subproblems produced.

Questions

• How to handle symbolic constants by programming methods?

• what are the limitations and advantages?

• How does this Hash work for normalization exactly?

===