
_____________________________________________________________________________________

Solution to the Affine Scheduling Problem
_____________________________________________________________________________________
Affine scheduling is way in which the set of operations and the dependence graph are described as the set of 
linear inequalities. This works if the number of operations is small but in practice the size of Ω is equal to the 
total operation count of the program. So the paper present how to take in to account the special form of usual 
dependence graphs in order to compress resulting inequalities into set of inequalities whose size does no longer 
depend on the program complexity and then solved by efficient algorithm.

First is to decide whether a schedule exists that means that if a GDG is consistent i.e. there is no vertex with 
infinite incoming path.

The first method is called Vertex method 

1. Compute the generating system for all polyhedral D
s
 , S € V and Re , e in the set of edges.

2. Write the equations in the form <x,y>€ Re ⇒ θ(δ(e),y)>= θ( σ(e),x)+1 at all vertices of Re and also write 
instances of θ(S,x)>=0 at all vertices od Ds.

3. Solve the resulting finite system of linear in equalities by any standard algorithm.

But also selecting a good schedule is problem as it not possible to enumerate all casual schedules, one of the 
process is by inspection which is quite wasteful , other in which one picks the performance factor and tries to 
optimize over the solution space. This can be done by PIP software as per details provided in the paper.

Moreover if the schedules lack details such as orderings of the domain or Farkars multipliers , more definite 
results are needed so we come to the Minimum Latency Schedule. This is the special case where all iteration 
domains are bounded, so one can define the maximum latency of the all schedules and then tries to find the 
minimum latency schedule. But this method has defect if the there are several structure parameters, and then 
solution will depend upon their orderings.

Other is Boundary delay schedules, i.e. for all edges of the DGD lies between 1 and a positive integer δ. But here 
minimum schedule is not unique and also there exist GDG for which bounded delay does not exist.

So to sort out these problem , paper presents the Dual method, i.e. by finding the best affine schedule and the 
ordering on schedules is point wise ordering.

θ
1
 < θ

2 
≡ ∀ u € Ω : θ

1
(u)<= θ

2
(u)

and if θ
1, 
θ

2 
satisfy the causality condition then θ

3
(u)=min(θ

1
(u) ,θ

2
(u)). Since affine functions are concave and 

the min operator converse concativity, θ is concave; it will be called best concave schedule.

The method is quite fast, and no enumeration is needed, and also is not limited to the uniform dependencies but 
also solves the problems with unbounded domains.

_____________________________________________________________________________________

Questions

1. How structure parameter of graph is computed?

2. T=Card Ω. What is Card?

3. Convex , concave schedules and sub-optimal schedules?



Some Efficient Solutions to the Affine Scheduling Problem. I. One-Dimensional Time 
 
The basic problem of parallel programming can be expressed in the following terms. 
We are given a set of operations with a dependence relation on them to indicate the 
order of some operations. To construct a parallel program we have to select a 
partial order which satisfies the relation. In general we are not interested in one 
particular dependence graph but in a possible infinite family of similar graphs - 
each specified by one or more integer parameters. A parallel program is described 
as a scheduling function from the set of operations to the set of numbers. The 
difficulty is that this problem is NP-complete. Therefore we restrict the possible 
solutions to affine functions. We want to create a scheduling function with minimal 
latency. 
 
The first point is to decide whether a schedule exists which means there is no 
vertex u with an infinite incoming path. This would be that u is executed after 
infinite operations. The next point is that a system of uniform recurrence 
equations which is consistent is decidable while the problem is not decidable for a 
nonuniform graph from either an infinite family or with one infinite domain. With 
this in mind we can only try to approximate the best schedule with techniques 
described in the following.  
 
To compute a schedule we start first with a prototype schedule which describes how 
the scheduling function should look like. Then we extract inequalities from the 
dependence graph and try to solve them. We can solve this by any standard 
algorithm. The problem is that the number of vertices we have to use for a 
hypercube in p-space can be 2^p while the describing inequalities may only be 2*p. 
To solve this problem we use an other method. We use Farkas Lemma to extract an 
affine form from a nonempty polyhedron. With all these equations we use a kind of 
Gauss-Jordan elimination to reduce the number of unknown variables. 
 
The next problem is to select a good schedule from these (in)equations. We can try 
to extract a minimum latency schedule - as discussed before or we can go for a 
bounded delay which bounds the maximum delay from two statements in a dependence by 
a constant. This is useful to get good cache hits within the application. An other 
approach is the dual method where we extract two schedules and calculate our new 
schedule as the minimum of both (point wise). This is also an acceptable schedule. 
 
The advantage of this method is that it doesn't need an enumeration and it's not 
limited to uniform dependencies. Ultimately, the solution is found by solving a 
parametric integer program of relatively small size which can already be done 
efficiently. 
 
Open questions: 
1) What does the Farkas Lemma say? 
2) Why is the Farkas Lemma useful? 
3) How to generate a generating system for a polyhedra? 
4) Is this used in practice?



Summary of “Some efficient solutions to the affine scheduling 
problem One-dimensional Time” 
January 7, 2013

1 Summary 
The paper mainly solve the problem of finding closed form schedules as affine or piecewise affine functions of 
the iteration vector. The newly developed method constructs affine schedules without enumeration fast. An 
efficient algorithm is presented reducing the scheduling problem to a parametric linear program of small size, 
which can be readily solved by an efficient algorithm. 

In this paper, we define the Generalized Dependence Graph (GDG) of programs, and schedules of a GDG. In 
order to compute affine schedules, we develop vertex method and we have the farkas algorithm. It is not 
possible to enumerate all causal schedules, so we have to device some criterion and select the best one. We 
can have minimum latency schedules which requests us to define a total latency: the maximum value of all 
schedules, and we try to find a minimum latency schedule. Meanwhile, we can use bounded delay schedule, 
which is more constrained than minimum latency schedules. However, the minimum delay schedule is no 
unique. Uniform recurrences has the constant delay, hence we don’t need Farkas Lemma for the expression of 
the causality condition. 

The main advantage is that no limit to uniform dependences. But a DFG has many uniform dependences. We 
use some devices to eliminate some Farkas multipliers which make unknowns only in positive or negative 
occurrences. The solution is computed by solving a small size parametric integer program. We use PIP software 
to do this. In example 3.4, the upper limits of the domain can be removed without changing the result. We try for 
a bounded delay schedule or a best concave schedule. For concave schedule, the result has minimum latency. 
When DFG is uniform, the latency of the best concave schedule is asymptotically optimal. The method has two 
weakness. Due to some programs with non-concave free schedule, we cannot find all piecewise affine 
schedules. Importantly, there are some GDG without affine schedule which is given as the example in Fig.9. In 
this case, we can verify the example is unfeasible. We know an affine schedule has a latency which is linear in 
the structure parameters. 

Hence, this example program has no parallelism, and has the quadratic running time n2/2. 

2 Questions 


