Sebastian Hack, Christian Hammer, Jan Reineke

Saarland University

Static Program Analysis

Introduction

Winter Semester 2014

Slides based on:

- R. Wilhelm, B. Wachter: Abstract Interpretation with Applications to Timing Validation. CAV 2008: 22-36
- Helmut Seidl’s slides
A Short History of Static Program Analysis

- Early high-level programming languages were implemented on very small and very slow machines.
- Compilers needed to generate executables that were extremely efficient in space and time.
- Compiler writers invented efficiency-increasing program transformations, wrongly called optimizing transformations.
- Transformations must not change the semantics of programs.
- Enabling conditions guaranteed semantics preservation.
- Enabling conditions were checked by static analysis of programs.
Theoretical Foundations of Static Program Analysis

- Theoretical foundations for the solution of recursive equations: Kleene (30s), Tarski (1955)

- Gary Kildall (1972) clarified the lattice-theoretic foundation of data-flow analysis.

- Patrick Cousot (1974) established the relation to the programming-language semantics.
Static Program Analysis as a Verification Method

• Automatic method to derive invariants about program behavior, answers questions about program behavior:
 – will index always be within bounds at program point p?
 – will memory access at p always hit the cache?

• answers of sound static analysis are correct, but approximate: don’t know is a valid answer!

• analyses proved correct wrt. language semantics,
1 Introduction

a simple imperative programming language with:

- variables // registers
- $R = e$; // assignments
- $R = M[e]$; // loads
- $M[e_1] = e_2$; // stores
- if $(e) \ s_1$ else s_2 // conditional branching
- goto L; // no loops

An intermediate language into which (almost) everything can be translated. In particular, no procedures. So, only intra-procedural analyses!
2 Example — Rules-of-Sign Analysis

Problem: Determine at each program point the sign of the values of all variables of numeric type.

Example program:

1: x = 0;
2: y = 1;
3: while (y > 0) do
4: y = y + x;
5: x = x + (-1);
Program representation as *control-flow graphs*
We need the following ingredients:

- a set of information elements, each a set of possible signs,
- a partial order, “⊆”, on these elements, specifying the ”relative strength” of two information elements,
- these together form the abstract domain, a lattice,
- functions describing how signs of variables change by the execution of a statement, abstract edge effects,
- these need an abstract arithmetic, an arithmetic on signs.
We construct the abstract domain for single variables starting with the lattice \(\text{Signs} = 2\{-,0,+,\} \) with the relation “\(\subseteq \)” =“\(\subseteq \)”.
The analysis should ”bind” program variables to elements in $Signs$.

So, the abstract domain is $\mathbb{D} = (Vars \rightarrow Signs)_\bot$, a Sign-environment.

$\bot \in \mathbb{D}$ is the function mapping all arguments to $\{\}$.

The partial order on \mathbb{D} is $D_1 \sqsubseteq D_2$ iff

$D_1 = \bot$ or $D_1 x \subseteq D_2 x$ ($x \in Vars$)

Intuition?
The analysis should ”bind” program variables to elements in $Signs$.
So, the abstract domain is $\mathbb{D} = (Vars \rightarrow Signs)\perp$. a Sign-environment.
$\perp \in \mathbb{D}$ is the function mapping all arguments to $\{\}$.

The partial order on \mathbb{D} is $D_1 \subseteq D_2$ iff

$D_1 = \perp$ or

$D_1 x \subseteq D_2 x$ $(x \in Vars)$

Intuition?

D_1 is at least as precise as D_2 since D_2 admits at least as many signs as D_1
How did we analyze the program?

In particular, how did we walk the lattice for \(y \) at program point 5?
How is a solution found?
Iterating until a fixed-point is reached

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
x = 0
\]

\[
y = 1
\]

\[
true(y > 0)
\]

\[
false(y > 0)
\]

\[
y = y + x
\]

\[
x = x + (-1)
\]
Idea:

- We want to determine the sign of the values of expressions.
Idea:

- We want to determine the sign of the values of expressions.
- For some sub-expressions, the analysis may yield \{+, -, 0\}, which means, it couldn’t find out.
Idea:

- We want to determine the signs of the values of expressions.
- For some sub-expressions, the analysis may yield \{+, -, 0\}, which means, it couldn’t find out.
- We replace the concrete operators \(\Box\) working on values by abstract operators \(\Box\#\) working on signs:
Idea:

- We want to determine the signs of the values of expressions.
- For some sub-expressions, the analysis may yield \{+, −, 0\}, which means, it couldn’t find out.
- We replace the concrete operators \(\square\) working on values by abstract operators \(\square^\#\) working on signs:
- The abstract operators allow to define an abstract evaluation of expressions:

\[
[e]^\# : (\text{Vars} \rightarrow \text{Signs}) \rightarrow \text{Signs}
\]
Determining the sign of expressions in a Sign-environment works as follows:

\[
[c] \# D = \begin{cases}
{+} & \text{if } c > 0 \\
{-} & \text{if } c < 0 \\
{0} & \text{if } c = 0
\end{cases}
\]

\[
[v] \# = D(v)
\]

\[
[e_1 \square e_2] \# D = [e_1] \# D \square \# [e_2] \# D
\]

\[
[\square e] \# D = \square \# [e] \# D
\]
Abstract operators working on signs (Addition)

<table>
<thead>
<tr>
<th>+#</th>
<th>{0}</th>
<th>{+}</th>
<th>{-}</th>
<th>{-, 0}</th>
<th>{-, +}</th>
<th>{0, +}</th>
<th>{-, 0, +}</th>
</tr>
</thead>
<tbody>
<tr>
<td>{0}</td>
<td>{0}</td>
<td>{+}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{+}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{-}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{-, 0}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{-, +}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{0, +}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{-, 0, +}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abstract operators working on signs (Multiplication)

<table>
<thead>
<tr>
<th>$\times #$</th>
<th>${0}$</th>
<th>${+}$</th>
<th>${-}$</th>
<th>${-, 0}$</th>
<th>${-, +}$</th>
<th>${0, +}$</th>
<th>${-, 0, +}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${0}$</td>
<td>${0}$</td>
<td>${0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${+}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${-}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${-, 0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${-, +}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${0, +}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${-, 0, +}$</td>
<td>${0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract operators working on signs (unary minus)

<table>
<thead>
<tr>
<th>$\neg #$</th>
<th>${0}$</th>
<th>${+}$</th>
<th>${-}$</th>
<th>${-, 0}$</th>
<th>${-, +}$</th>
<th>${0, +}$</th>
<th>${-, 0, +}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${0}$</td>
<td>${-}$</td>
<td>${+}$</td>
<td>${+ 0}$</td>
<td>${-, +}$</td>
<td>${0, -}$</td>
<td>${-, 0, +}$</td>
<td></td>
</tr>
</tbody>
</table>
Working an example:

\[D = \{ x \mapsto \{+\}, y \mapsto \{+\} \} \]

\[= \{+\} +^\# \{+\} \]
\[= \{+\} \]

\[[x + (-y)]^\# D = [+^\# (\#[y]^\# D) \]
\[= \{+\} +^\# (\#\{+\}) \]
\[= \{+\} +^\# \{-\} \]
\[= \{+, -, 0\} \]
$[lab]^{\#}$ is the abstract edge effects associated with edge k.

It depends only on the label lab:

\[
\begin{align*}
[;]^{\#} D &= D \\
[\text{true (e)}]^{\#} D &= D \\
[\text{false (e)}]^{\#} D &= D \\
[x = e;]^{\#} D &= D \oplus \{x \mapsto [e]^{\#} D\} \\
[x = M[e];]^{\#} D &= D \oplus \{x \mapsto \{+, -, 0\}\} \\
[M[e_1] = e_2;]^{\#} D &= D
\end{align*}
\]

... whenever $D \neq \bot$

These edge effects can be composed to the effect of a path $\pi = k_1 \ldots k_r$:

\[
[\pi]^{\#} = [k_r]^{\#} \circ \ldots \circ [k_1]^{\#}
\]
Consider a program node v:

\[\rightarrow\] For every path π from program entry $start$ to v the analysis should determine for each program variable x the set of all signs that the values of x may have at v as a result of executing π.

\[\rightarrow\] Initially at program start, no information about signs is available.

\[\rightarrow\] The analysis computes a superset of the set of signs as safe information.

\[\implies\] For each node v, we need the set:

\[S[v] = \bigcup \{[[\pi]]^\sim \perp \mid \pi : start \rightarrow^* v}\]
Question:

How do we compute $S[u]$ for every program point u?
Question:

How can we compute $S[u]$ for every program point u?

Collect all constraints on the values of $S[u]$ into a system of constraints:

$S[start] \supseteq \bot$

$S[v] \supseteq \lbrack k \rbrack^\# (S[u])$

$k = (u, _, v)$ edge

Why \supseteq?
Wanted:

- a least solution *(why least?)*
- an algorithm that computes this solution

Example:
\[S[0] \supseteq \bot \]
\[S[1] \supseteq S[0] + \{ x \mapsto \{0\} \} \]
\[S[2] \supseteq S[1] + \{ y \mapsto \{+\} \} \]