
Polyhedral Expression Propagation
Johannes Doerfert

Saarland Informatics Campus

Saarland University, Germany

doerfert@cs.uni-saarland.de

Shrey Sharma

Saarland Informatics Campus

Saarland University, Germany

sharma@cs.uni-saarland.de

Sebastian Hack

Saarland Informatics Campus

Saarland University, Germany

hack@cs.uni-saarland.de

Abstract
Polyhedral techniques have proven to be powerful for vari-

ous optimizations, from automatic parallelization to acceler-

ator programming. At their core, these techniques compute

accurate dependences among statement instances in order to

apply complex program transformations. Such transforma-

tions comprise memory layout or program order modifica-

tions by optimizing memory access functions or scheduling

functions. However, these approaches treat statements as

opaque entities and do not consider changing the structure of

the contained expressions or the memory accesses involved.

In this paper we present a technique that statically prop-

agates expressions in order to avoid communicating their

result via memory. While orthogonal to other polyhedral op-

timizations, this transformation can be used to enable them.

Applied separately, expression propagation can increase par-

allelism, eliminate temporary arrays, create independent

computations and improve cache utilization. It is especially

useful for streaming codes that involve temporary arrays

and scalar variables.

Formultiple image processing pipelineswe achieve portable

speedups of up to 21.3× as well as a significant memory re-

duction compared to a naive parallel implementation. In 6

out of 7 cases, expression propagation outperforms a state-

of-the-art polyhedral optimization especially designed for

this kind of programs by a factor of up to 2.03×.

CCS Concepts • Software and its engineering→Com-
pilers;

Keywords polyhedral model, scalar removal, dependence

removal, temporary memory elimination, recurrences

ACM Reference Format:
Johannes Doerfert, Shrey Sharma, and Sebastian Hack. 2018. Poly-

hedral Expression Propagation. In Proceedings of 27th International
Conference on Compiler Construction (CC’18). ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3178372.3179529

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

CC’18, February 24–25, 2018, Vienna, Austria
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5644-2/18/02. . . $15.00

https://doi.org/10.1145/3178372.3179529

1 Introduction
Polyhedral-model-based analysis [11, 18, 58] and optimiza-

tion techniques [4, 19] have been used for program opti-

mization for decades. Their goal is to find a schedule of

the statements of a loop that exhibits better locality [9, 20]

and that allows to distribute the execution across different

units such as vector lanes [33, 50], CPU cores [8, 21] or ac-

celerators [2, 24, 41, 49, 54]. In addition to such schedule

optimizations, polyhedral techniques have been successfully

used to transform the memory layout either to eliminate

false dependences [1, 17, 37] or to minimize the memory

usage [6, 13, 35, 36, 55].

While all these approaches perform sophisticated changes

to the execution order and the data layout, the structure of

the program’s expressions is generally not altered. Conse-

quently, intermediate computations that are communicated

via scalar variables or array cells to their users will be com-

puted and communicated in the same way in the optimized

program. However, distributing larger computations into

various intermediate steps can limit the utilization of mod-

ern hardware features such as prefetchers and out-of-order

execution. Additionally, the communication necessary for

intermediate results can decrease the cache utilization and

impose additional dependences that constrain scheduling.

for i = 0 to N do

s = in[i] / 1.5; // S0

if (i == 0)

tmp[i] = (2 * in[i] + in[i+1]) / s; // S1

else if (i == N)

tmp[i] = (in[i-1] + 2 * in[i]) / s; // S2

else

tmp[i] = (in[i-1] + in[i] + in[i+1]) / s; // S3

fi fi

done

for i = 1 to N-1 do

out[i] = (tmp[i-1] + tmp[i] + tmp[i+1]); // S4

done

Figure 1.Motivating example featuring a non-perfect loop

nest, an input array in, an output array out, a temporary

(non live-out) array tmp and a temporary scalar variable s.

The motivating example in Figure 1 features four statements

(S0 to S3) that perform very simple computations to gener-

ate intermediate results before the final output is computed

in statement S4. The overhead of a temporary array, the

optimization loss due to the loop-carried write-after-write

https://doi.org/10.1145/3178372.3179529
https://doi.org/10.1145/3178372.3179529

CC’18, February 24–25, 2018, Vienna, Austria Johannes Doerfert, Shrey Sharma, and Sebastian Hack

dependences caused by the scalar variable s and the nominal

computation per statement can all cause severe performance

degradation on a modern processing unit. While compiler op-

timizations [40, 51] and hardware features [48] can remedy

some of the problems for certain programs, they will gen-

erally fail in the presence of multi-dimensional arrays [25]

accessed in a sequence of non-perfect loop nests.

In this work we propose a polyhedral-model-based tech-

nique that statically propagates (intermediate) expressions

to their users as an alternative to the communication of their

result. If the communication was performed via non live-out

memory, expression propagation can eliminate the need for

the original computation and consequently the temporary

memory used. Applied to the example in Figure 1 our tech-

nique will produce the code shown in Figure 2. As long as

the resulting computation, here the one remaining loop body,

stays within hardware specific bounds, e.g., all accesses can

be prefetched, expression propagation can significantly im-

prove performance and simultaneously decrease the memory

requirement of an application.

out [1] = (2 * in[0] + in[1]) / (in [0]/1.5)

+ (in[0] + in[1] + in[2]) / (in [1]/1.5)

+ (in[1] + in[2] + in[3]) / (in [2]/1.5);

for i = 2 to N-2 do

out[i] = (in[i-2]+in[i-1]+in[i])/(in[i -1]/1.5)

+ (in[i-1]+in[i]+in[i+1])/(in[i]/1.5)

+ (in[i]+in[i+1]+in[i+2])/(in[i+1]/1.5);

done

out[N-1] = (in[N-3]+in[N-2]+in[N -1])/(in[N -2]/1.5)

+ (in[N-2]+in[N-1]+in[N])/(in[N -1]/1.5)

+ (in[N -1]+2* in[N])/(in[N]/1.5);

Figure 2. Optimized version of the code in Figure 1. The

scalar variable s and the temporary array tmp have been re-

moved after the defining expressions have been propagated.

The remainder of this paper is organized as follows. In Sec-

tion 2 we present necessary background information on all

utilized techniques. Afterwards we present the four core

contributions of this paper:

1. A formal criterion for sound expression propagation

is given in Section 3 together with instructions on

how to identify propagation opportunities as well as a

complexity analysis for maximal propagation.

2. In Section 4 we discuss the practical application of

expression propagation including different heuristics

and a practical propagation algorithm.

3. Implementation details to maximize the performance

gain of propagation are presented in Section 5.

4. An elaborate evaluation on seven different image pro-

cessing pipelines is provided in Section 6. We show

the portability of our approach using different archi-

tectures and measure the potential of our technique.

In Section 7 we will put our work into context and finish

with a conclusion in Section 8.

2 Background
This section provides background on our program represen-

tation and the relevant aspects of the polyhedral model.

2.1 Input Language
We use a simple polyhedral input language as defined in

Figure 3. It is similar to the ones used for other polyhedral

approaches [14, 18] and consists of accesses, two kinds of

expressions, and statements. Accesses ⟨acc⟩ can be scalar
accesses or (multi-dimensional [25]) array accesses. Expres-

sions are separated into affine expressions ⟨aexp⟩ and ar-

bitrary expressions ⟨rexp⟩. Affine expressions are constant

integers, parameters, loop induction variables ⟨iv⟩, additive
and logical binary operations of affine expressions or a mul-

tiplicative binary operation where one operand is a constant.

Regular expressions extend affine expressions with read ac-

cesses and arbitrary arithmetic or logical operations known

from languages like C, except the assignment operator (=).

Parameters are unknown but constant values that are defined

outside the code region, e.g. function parameters. Statements

⟨stmt⟩ can be loops, conditionals or assignments. The body

of the loop is executed until the induction variable, which

is incremented by one, surpasses the affine upper bound.

Thus both bounds are inclusive. Note that each assignment

statement is identified by the single write access it contains.

⟨acc⟩ ::= ⟨ident⟩
(
[⟨aexp⟩]

)
*

⟨aexp⟩ ::= ⟨cnst⟩ | ⟨param⟩ | (⟨aexp⟩) | ⟨aexp⟩ (∗|/) ⟨cnst⟩
| ⟨cnst⟩ ∗ ⟨aexp⟩ | ⟨iv⟩ | ⟨aexp⟩ (+|−|<=|==) ⟨aexp⟩

⟨rexp⟩ ::= ⟨acc⟩ | ⟨aexp⟩ | (⟨rexp⟩) | ⟨rexp⟩ ⊙ ⟨rexp⟩

⟨stmt⟩ ::= for ⟨iv⟩ = ⟨aexp⟩ to ⟨aexp⟩ do ⟨stmt⟩ done
| if ⟨aexp⟩ then ⟨stmt⟩ [else ⟨stmt⟩] fi
| ⟨acc⟩ = ⟨rexp⟩; | ⟨stmt⟩ ⟨stmt⟩ | ϵ

Figure 3. Input language grammar consisting of accesses,

affine expressions, arbitrary expressions and statements.

2.2 Polyhedral Model
The polyhedral model is a mathematical representation for

static control parts (SCoPs) [18, 23] that is based on an im-

plementation of Presburger arithmetic [52]. All programs

derived from our input language form valid SCoPs, thus can

be described and optimized in the model. The representa-

tion centers around the iteration instances of statements

and the dependences that exist between them [18, 42]. All

relevant parts of the polyhedral model are introduced in the

following:

Iteration Domain The iteration domain IS of a statement

S describes all dynamically executed instances in terms of

the values of the surrounding loop induction variables. Each

element of IS is an iteration vector i of the same dimensional-

ity as the loop depth of S. The iteration domain of statement

S4 in Figure 1 is for example: IS4 := {(i0) | 1 ≤ i0 ≤ N − 1}.

Polyhedral Expression Propagation CC’18, February 24–25, 2018, Vienna, Austria

Schedule The schedule θS of a statement S maps all itera-

tion instances of S to multidimensional timestamps which

are executed in lexicographic order [19, 20]. This instance-

wise lexicographic happens-before order is denoted as≪lex .

Instance-wise Dependences Dependence polyhedra [18,

29], or instance-wise dependences, relate dependent iteration
instances of two statements if there exists a read-after-write

(RAW), write-after-read (WAR) or write-after-write (WAW)
dependence between them. In contrast to other polyhedral

approaches we require dependences to identify which read

access of a statement is dependent on a write. Thus, de-

pendences have access instance granularity not statement

instance granularity [15]. We will denote dependences be-

tween a source access s and a target access t as s→t. Hence
w→r is a RAW dependence between a read r and a write w.
Similarly, r→∗ are all WAR dependences of a read r .

Notation To simplify the notationwe omit statement names

that can be inferred from the context. Instead, we use only

the iterations vector, e.g., i, j or l, to identify statement itera-

tions. We use r and w to refer to read and write accesses and

e for source expressions. Finally, we denote the evaluation
of an expression e in a specific iteration i as ⟦e ⟧ i.

3 Expression Propagation
The core of our approach is expression propagation, that is
the evaluation of an expression at the program point where

it is needed as an alternative to communicating the expres-

sion result through a scalar or memory location. To this end,

we introduce the notion of propagation dependences that re-
lates the original program point of the expression with one

where it is both needed and “recomputable”. Additionally,

we introduce propagation expressions which are the actual

expressions evaluated at the later program point instead of

the original expression defined in the program.

An example for expression propagation is given in Figure 4.

The propagation dependences shown in Figure 4c (left) are

equal to the RAW dependences from statement S to T, though
we omitted the iteration domain information. The propaga-

tion expressions (right) are derived from the original source

expression (i+1)*i in statement S. They have been adjusted

to compute the same value that would have been read in

statement T otherwise. After propagation (ref. Figure 4b),

the accesses in statement S might be obsolete if they are not

otherwise read. At the same time the expression in statement

T can be simplified to 4*j by common scalar optimizations.

Definition 3.1 (Propagation Dependence & Expression).
A propagation dependence w⇀r is a subset of a RAW depen-

dence w→r for which a propagation expression ⇀ew exists.

The propagation expression has to evaluate at the target

statement instance j to the same value that was written in

the dependent source statement instance i. Thus, if we denote

for i = 1 to 2*N do

A[i] = (i+1)*i; // S

done

for j = 1 to N do

B[j] = A[2*j] // T

- A[2*j-1];

done

(a) Simple input program.

for i = 1 to 2*N do

A[i] = (i+1)*i; // S

done

for j = 1 to N do

B[j] = (2*j+1)*2*j // T

- 2*j*(2*j-1);

done

(b) Program after propagation.

w⇀r0 B {(i, j) | i = 2 ∗ j }

w⇀r1 B {(i, j) | i = 2 ∗ j − 1 }

⇀ew 0 B (2*j+1)*2*j

⇀ew 1 B 2*j*(2*j-1)

(c) Propagation dependences w⇀r and expressions
⇀ew for the two

read accesses in Figure 4a. Note that we show propagation depen-

dences without domain information to improve readability.

Figure 4. Propagation example for the simple input program

in Figure 4a. The propagation dependences and expressions

are shown in Figure 4c. The result is given in Figure 4b.

the expression written by w as ew :

w⇀r ⊆ w→r (1)

∀(
i, j

)
∈w⇀r : ⟦ ew ⟧ i = ⟦⇀ew ⟧ j (2)

Propagation Expression Equivalence Expression propa-

gation preserves the semantics if the evaluation of the propa-

gation expression
⇀ew is equal to the value loaded by r for all

iterations in the range of the propagation dependence w⇀r :

∀(
i, j

)
∈ w⇀r : ⟦⇀ew ⟧ j = ⟦ r ⟧ j

To prove this property we apply the defining equation (2).

Afterwards we need to show that the value read in the target

statement instance is equal to the value written in the source

statement instance for iterations related by w⇀r :

∀(
i, j

)
∈ w⇀r : ⟦ ew ⟧ i = ⟦ r ⟧ j

Using the subset relation (1) and the definition of a RAW

dependence [18] we know that the value of ew in iteration i,
is in fact the value read by r in iteration j for (i, j) ∈ w⇀r .

Syntactic Read Replacement We now established that

the read access of a propagation dependence can be replaced

by the propagation expression for all iterations in the range

of the propagation dependence. In order to allow syntactic re-

placement of the access we additionally require the propaga-

tion dependence to be surjective with regards to the iteration

domain of the target statement, thus range (w⇀r) = Ir .
We always achieve surjective propagation dependences

by splitting the target statement in two parts as illustrated in

Figure 5. One part is completely reached by the dependence

and one is not reached at all. Our approach will perform this

splitting automatically, including the duplication of state-

ments, accesses and dependences as well as the restriction

of the iteration domains to their respective parts.

CC’18, February 24–25, 2018, Vienna, Austria Johannes Doerfert, Shrey Sharma, and Sebastian Hack

for i = 0 to N do

if (i/2)*2 == i then

A[i] = f (i);
fi

done

for j = 0 to N do

B[j] = A[j]; // T

done

(a) Propagation opportunity

for even elements of A.

for i = 0 to N do

if (i/2)*2 == i then

A[i] = f (i);
fi

done

for j = 0 to N do

if (j/2)*2 == j then

B[j] = f (j); // T

else

B[j] = A[j]; // T'

fi

done

(b) Propagation of A[i] to state-

ment T after split into T and T’.

Figure 5. Statement splitting and syntactic read replacement

for a non surjective propagation dependence.

3.1 Propagation Expressions
One task for expression propagation is to identify a valid

propagation expression for a given (subset of a) RAW depen-

dence. If a propagation expression was found the (part of the)

RAW dependence becomes the propagation dependence and

expression propagation can be applied. However, there are

indefinitely many different syntactic expressions. In order

to effectively identify propagation expressions we therefore

limit ourselves to the ones that can be constructed from the

original expression via induction variable adjustment. This

is usually a necessary step as their scope is limited and their

values change when the loop progresses.

Expression Rewriting To derive the propagation expres-

sions we traverse ew recursively and rewrite all induction

variables iv ∈ ew according to relation w→r . The goal is to
construct an expression

⇀iv that depend on the iteration vec-

tor of the target and that evaluates to the same value there

as iv evaluated to in the source for dependent iterations.

Without loss of generality we assume iv is the induction

variable of the k-th out of n loops surrounding the source

statement. The affine function that provides the value of iv
for an iteration i of the source statement is defined as

v(iv) B
{(
i, iv

)}
=
{(
(i1, . . . , in), iv

)}
=
{(
(i1, . . . , in), ik

)}
.

Since w→r is an affine relation between instances of the

statements surrounding w and r it can be written as{
(i, j) | f

(
(i, j)

)}
=
{(
(i1, . . . , in), j

)
| f

(
(i1, . . . , in), j

)}
where f is a Presburger formula that defines the constrains

under which the dependence exists. To obtain the function

v(⇀iv)we apply the dependence w→r to the domain ofv(iv):

v(⇀iv) =
{(
w→r

(
i
)
, iv

)
| f (i, j)

}
=
{(
j, iv

)
| f ′

(
j, iv

)}
(3)

The Presburger formula f ′ relates instances of the target

statement j to the value of iv = ik of the source statement.

Using common polyhedral code generation techniques [26]

we can generate the expression
⇀iv from v(⇀iv) which can

then be evaluated in the target statement.

Algorithm 1 Expression rewrite algorithm

1: procedure rewrite(e : ⟨rexp⟩, w→r)
2: switch e do
3: case c : ⟨constant⟩: return c

4: case p : ⟨param⟩: return p

5: case iv: ⟨iv⟩: return ⇀iv see equation (3)
6: case l ⊙ r : ⟨rexp⟩ × ⟨rexp⟩: recurses for ⟨aexp⟩
7: return rewrite

(
l,w→r

)
⊙ rewrite

(
r,w→r)

8: case A[e1][...][en] : ⟨acc⟩:
9: fk ← rewrite

(
ek , w→r

)
1 ≤ k ≤ n

10: return A[f1][...][fn]

11: end switch

To derive the complete propagation expressions
⇀ew we

use the rewrite procedure presented in Algorithm 1 on

the original expression ew and the RAW dependence w→r .
Note that rewriting with the RAW dependence w→r will
generate a correct but potentially not minimal propagation

expression. Instead, our implementation uses the propaga-

tion dependences w⇀r ∈ w→r defined below.

3.2 Propagation Dependences
Depending on the propagation expressions and the program,

any subset of a RAW dependence, including the empty one,

can be a maximal propagation dependence. While propaga-

tion expressions are sensitive to induction variables in the

original expression, propagation dependences are sensitive

to contained read accesses. The value read by an access can

change if there are intermediate writes between the source

and target iteration of the propagation dependence.

To identify conditions under which a read access will yield

the same result in a different statement instancewe perform a

reload test. The resulting conditions restrict the propagation

dependence to a subset of the RAW dependences.

Reload Test The reload test determines the subset of the

RAW dependence w→r that is a valid propagation depen-

dence w⇀r . For this subset each rewritten read access
⇀rew

will result in the same value in the target as the original read

rew contained in the written expression ew does in the source:

∀rew ∈ ew : ∀(i, j) ∈ w⇀r : ⟦rew⟧i = ⟦⇀rew ⟧j
This equation holds if there are no intermediate writes to the

read location which are located between the original access

in iteration i and the potential reload in iteration j.
In order to determine the intermediate writes we first

compute a mapping from instances of potential intermediate
writes to target statement instances they might precede. This

mapping, PIW (rew), is computed with regards to the RAW

Polyhedral Expression Propagation CC’18, February 24–25, 2018, Vienna, Austria

UNSAT = c1 ⊕ ... ⊕ cn ;

c1 = 0; ...; cn = 0;

SAT = !UNSAT;

(a) Encoding of the conjunction c1 ∧ . . . ∧ cn .
UNSAT can only be propagated if all disjunc-

tions have been replaced. If that is the case, the

formula is satisfiable, otherwise it is not.

ci = l1 ⊕ . . . ⊕ lk ;

if (witi == 1)

False[γ (l1)] = 0; l1 = 0;

...

else if (witi == k)

False[γ (lk)] = 0; lk = 0;

(b) Encoding for a disjunction ci=l1 ∨ . . . ∨ lk
that can only be propagated if the (negated) literal

at position witi does not access the False array.

x+ = 1; x− = 1;

if (Ax)

x− = False[γ (x−)];
else

x+ = False[γ (x+)];

(c) Encoding for a literal x in positive

(x+ B x) and negative (x− B ¬x) form.

The condition Ax is a parameter that

determines the assignment of x.

Figure 6. Encoding rules for a k-CNF-SAT formula as a program that allows maximal polyhedral expression propagation to

solve satisfiability. All variables except UNSAT are live-out. The γ (·) function is a constant valued, injective enumeration for

literals li which can be positive x+ or negative x− uses of a variable x, thus γ (·) is not present in the final program.

dependencew→r and all WAR dependences emanating from

rew denoted as rew→∗. PIW (rew) maps instances of writes,

here l, to the instances of
⇀rew in the target statement if the

write instance overwrites rew in the source statement, thus:

PIW (rew) B {(l, j) | ∀ i. (i, l) ∈ rew→∗ ∧ (i, j) ∈ w→r }.

An intermediate write exists if and only if the write, hence

the first component of PIW (rew), precedes the reload, thus
the second component. Using PIW (rew), the schedule θ and

the lexicographic ordering≪lex of instances we define the

set of overwritten reload access instances OR(rew) as follows:

OR(rew) B { j | ∀ l. (l, j) ∈ PIW (rew) ∧ θ
(
l
)
≪lex θ

(
j
)
}.

It is now possible to compute the propagation dependence

w⇀r from the RAW dependence w→r by eliminating all

iteration pairs that contain an overwritten reload:

w⇀r B {(i, j) ∈ w→r | ∀rew ∈ e : j < OR(rew)}.
Self-WARDependences In contrast to other polyhedral op-

timizations we have to include same iteration self-overwrites

such as A[i]=A[i]+1 in the set of WAR dependences. The

write of the propagation dependence is at the same time an

intermediate write for a contained read access, thus propaga-

tion is generally impossible. However, it is possible that prop-

agation allows to eliminate all propagated write instances if

the write itself is later overwritten, thus if it is not live-out.

3.3 Limitations & Extensions
While propagation dependences (ref. Equation 1) and expres-

sions (ref. Equation 2) in Definition 3.1 are kept general, we

limit their identification in two main regards:

1. Propagation expressions will read exactly the same

memory locations as the original source expression.

We especially do not introduce new accesses to com-

municate overwritten values.

2. Propagation dependences are determined using the

given schedule which is not altered during the process.

Both limitations can hinder propagation as illustrated in

Figure 7. However, for streaming codes that do not reuse

temporary memory locations but merely store intermediate

results once, these limitations will not prohibit propagation.

tmp[0] = 1; tmp[1] = 1;

for i = 2 to N do

tmp[i] = tmp[i-1]

+ tmp[i-2];

done

out = tmp[N];

(a) Naive Fibonacci computation

that requires two new scalar vari-

ables to hold intermediate results in

order to allow propagation and elim-

ination of the temporary array tmp.

for i = 0 to N do

tmp[i] = A[i];

done

for j = 0 to N do

A[j] = 0; // S

B[j] = tmp[j]; // T

done

(b) Propagation prohibiting

overwrite in statement S that
could be avoided by an inter-

change of statement S and T.

Figure 7. Examples illustrating the limitations of the propa-

gation expression and dependence construction as described

in Section 3.1 and Section 3.2.

3.4 Complexity Analysis
Maximal expression propagation can be used as a solver for

k-CNF-SAT formulae, thus maximal expression propagation

is NP-hard. The polynomial encoding for a CNF formula into

a program in our input language is sketched in Figure 6. The

outer conjunction is translated to an (arbitrary) operation

referencing the results of all disjunctive clauses c1, . . . , cn
as illustrated in Figure 6a. The expression result is stored in

the only non live-out variable named UNSAT. Afterwards all
clause results are overwritten. Consequently, propagation

of UNSAT is possible if and only if prior propagation hap-

pened for all c1, . . . , cn . Each clause result ci is defined as

an (arbitrary) operation on the contained (negated) literals

l1, . . . , lk as shown in Figure 6b. Propagation of a clause

result is only possible if the use of the witness literal lwiti
was replaced by its definition and that definition does not

access the False array at position γ(lwiti). Note that witi
is a parameter and γ(·) a constant valued, injective enumer-

ation function for literals that is not present in the code but

used only for the construction. We define a literal li as x
+

if it is a positive use of x and as x− if it is a negated use. In

Figure 6c the positive and negative occurrences of a literal x
are encoded as a constant value and an access to the False
array depending on the parameter Ax which determines the

assignment of x. Both literal forms can be propagated to the

CC’18, February 24–25, 2018, Vienna, Austria Johannes Doerfert, Shrey Sharma, and Sebastian Hack

definition of a clause but only the form that was assigned a

constant can justify the propagation of the clause.

Maximal expression propagation will explore all possible

assignment combinations by splitting statements based on

the values of the parameters Ax and witi . Each fulfilling

variable assignment is determined by the parameter values

of Ax in the iteration domains of the statement splits in which

UNSAT was made obsolete after propagation. To this end, we

assume the propagation algorithm will record all iteration

domains for which the non live-out variable UNSAT can be

eliminated and thereby also record all fulfilling assignments.

Note that the encoding has to happen first for all literals

(Figure 6c), then for all disjunctions (Figure 6b) and then for

the conjunction (Figure 6a).

4 Heuristics
While expression propagation, as presented in Section 3, will

never increase the required memory or introduce new sched-

uling constraints, it can easily decrease performance. An

increased cache miss rate and additional computation are

the most common causes, but statement splitting can also

result in complex loop structures that are hard to execute

efficiently. In order to determine if propagation is benefi-

cial we devised several heuristics to guide our propagation

algorithm that are explained in the following.

4.1 Non Live-Out Memory Heuristic
A main source of optimization potential for expression prop-

agation stems from the elimination of all RAW dependences

for non live-out, e.g., temporary or overwritten, memory. If

all RAW dependences of such locations have been eliminated

the original computation as well as the write accesses be-

come obsolete. Elimination of write accesses can lead to less

WAR and WAW dependences, decrease the overall memory

requirement and the cache contention. While propagation

via live-out memory is not harder to do, there is generally

less performance to gain.

4.2 Cache Miss Heuristic
The goal of the cache miss heuristic is to limit the number of

required cache lines per iteration. In order to approximate

the number of required cache lines we will assume that each

access is located in the middle of a cache line as illustrated

in Figure 8. Consequently, we can assume that accesses to

close-by memory locations will cause cache hits. For the

example shown in Figure 8, all accesses between A[i-3]
and A[i+3] will be assumed to cause cache hits after A[i]
was accessed. The heuristic will iterate over all memory

accesses contained in the target statement and those that

would be after propagation. Note that the new accesses have

to be adjusted according to the propagation dependence

and that the accesses replaced by propagation should not be

considered. The number of cache lines needed per iteration

is equal to the number of accesses that do not hit a line that is

assumed to be already in the cache. If an access is considered

a cache miss the locations surrounding the accessed one will

be assumed to be cached for all accesses to come.

The number of allowed cache misses per iteration is hard-

ware dependent and determined for each architecture using

measurements similar to the ones shown in Section 6.1.

cache line size

A[i-3] A[i] A[i+3]

Figure 8.Memory locations that are assumed to be cached

(in gray) after A[i] (dark gray, center) was accessed. In the

picture the cache line size is 8 times the element size of A.

4.3 Code Complexity Heuristic
A key property of our propagation scheme is the ability to

propagate to a part of a statement. Syntactic read replace-

ment requires this part to be split off as described in Section 3.

This statement splitting can grow the number of statements,

and thereby dependences, exponentially. Additionally, splits

can severely increase the complexity of the generated code.

In particular, it might cause loops to be duplicated with a

single specialized statement instance in-between. Such loops

are less often vectorized, due to a smaller trip-count, and can

increase the synchronization overhead if they are separately

parallelized. To limit code complexity we restrict single in-

stance specialization in the following way: Instances are only

specialized for a single iteration if the fixed dimension is not

in-between two non-fixed, thus loop dimensions.

4.4 Propagation Algorithm
Expression propagation was introduced as an optimization

performed per RAW, or propagation, dependence. However,

if it is guided by heuristics, some outgoing RAWdependences

of a non live-out location might get propagated while others

might be considered not beneficial. Since the elimination

of non live-out memory is a major performance factor we

want to avoid such partial propagations. To this end, we

applied propagation, as well as the heuristics, not to a single

dependence but to the set of all RAW dependences emanat-

ing from a non live-out array. Propagation is therefore only

performed if it is possible and deemed beneficial for all de-
pendences of this location. Consequently, if a non live-out

array is propagated, all writes to the location can be removed.

Our algorithm tries to propagate each array only once.

The order in which arrays are visited is described now.

Propagation Order The order in which expressions are

propagated is important due to the effects on the heuristic

results as well as for legality. In Figure 9, both effects are

illustrated. For our implementation we chose to propagate

the temporary location first that will minimize the number

of different arrays accessed in the target statements. If there

are multiple locations, the one with the least amount of RAW

Polyhedral Expression Propagation CC’18, February 24–25, 2018, Vienna, Austria

dependences is chosen. If there is still no unique location,

we pick the one with less: source statements, read accesses,

dimensions and then number of incoming RAWdependences.

The final tie breaker is the syntactic ordering in the source.

s0 = A[i];

s1 = s0 + B[i];

A[i] = ...;

C[i] = s1;

(a) Propagation of one scalar,

s0 or s1, prohibits propaga-
tion of the other one.

t0 = A[i] + C[i];

t1 = B[i] + D[i];

Out[i] = t0 + t1;

(b) Propagation of one temporary

location, t0 or t1, prevents benefi-
cial propagation for the other one

if only 4 cache misses are allowed.

Figure 9. Examples illustrating the impact of propagation

order on propagation legality (9a) and benefit heuristics (9b).

5 Implementation Details
Expression propagation is implemented in LLVM’s [34] poly-

hedral optimizer Polly [23]. To maximize performance we

augmented both as described below.

5.1 Live-Out Access Analysis
We implemented a simple, intra-procedural live-out access

analysis to identify non live-out locations. The analysis can

deal with scalars, stack locations, internal globals and heap

locations for which the deallocation is in the current function

and immediately post-dominating the analyzed region.

5.2 Loop Parallelization
Polly is capable of parallelizing loops using OpenMP [7]. By

default, the outermost parallel loop is chosen even if the loop

trip count prevents full utilization of the machine. To avoid

undersubscription we will not parallelize outermost loops if

there is a more suitable one nested inside. In contrast to the

default setting we also parallelize innermost loops as well as

loops with non-affine write accesses. The latter is justified

by the annotations present in the benchmark sources.

5.3 Scheduling and Tiling
Polly does perform polyhedral scheduling [9] and tiling [23].

However, by default it will not perform smart loop fusion [8],

choose suitable tile sizes [3, 27, 59] or do a combination

thereof [40]. In our experiments we noticed performance re-

gressions when tiling with a fixed tile size. Additionally, the

default scheduling algorithm did not perform well after state-

ments were split. Consequently, we disabled loop tiling alto-

gether and modified the scheduling objective. While Polly

tries to create independent loop nests for each statement

(split), we merge all write accesses to the same array into

one loop nest. This scheduling choice is similar to the naive

inputs. However, our scheduling and tiling choices are far

from optimal and need to be revisited. The evaluation in

Section 6.3 shows that they perform better than the defaults.

5.4 Higher-Order Recurrences
Recurrences are scalar variables that communicate values

from one iteration to the next [30]. We augmented code

generation in order to generate recurrences for consecutive

accesses that have been replaced by propagation expressions.

While remaining consecutive read accesses can also be com-

municated this way, it is often better to keep them. Such

accesses will cause low-level cache hits while recurrences

will inevitably increase register pressure. Higher-Order re-

currences, i.e., recurrences that communicate values based

on other recurrences, are especially useful to avoid recom-

putation. An example is shown in Figure 10. Since the LLVM

loop vectorizer is limited to single-level recurrences we had

to extend it to handle higher-Order recurrences as well.

for i = 0 to N do

tmp[i] = f (i);
done

for j = 1 to N-1 do

Out[j] = tmp[j-1]

+ tmp[j] + tmp[j+1];

done

(a) Consecutive accesses that can
be eliminated by propagation.

t0 = f (0); t1 = f (1);
for j = 1 to N-1 do

t2 = f (2);
Out[j] = t0 + t1 + t2;

t0 = t1;

t1 = t2;

done

(b) Recurrences used to commu-

nicate intermediate values.

Figure 10. Higher-order recurrences reduce computation

overhead after expression propagation. Naive code gener-

ation would triple the number of instances of f , but recur-
rences allow propagation with only one evaluation of f .

5.5 Language Extensions
Our input language is restricted to single-write statements

to simplify the implementation and to allow fine-grained

scheduling. Such statements can be created from multi-write

statements by a single reverse traversal that splits the state-

ment after each contained write access. The reverse order

is important as each split can induce new scalar “writes” in

the preceding part that communicate values via fresh tem-

poraries to the split-off remainder.

Polly offers approximations for non-affine access functions

and control regions [38]. While enabled, we do not propagate

into or out of such accesses or regions.

Aliasing, integer overflows and other problems that arise

in real programs are already handled by Polly [14].

6 Evaluation
The evaluation compares the following optimization schemes

and is performed for the 7 benchmarks listed in Table 1. These

benchmarks have also been used to evaluate the PolyMage

tool and are available online [45].

• (vanilla
1
) Polly [23], the polyhedral optimizer available

for LLVM [34] that is also the basis for our approach,

1
Modifications were necessary to represent, and optimize the benchmarks.

CC’18, February 24–25, 2018, Vienna, Austria Johannes Doerfert, Shrey Sharma, and Sebastian Hack

Table 1. Benchmark details [40] including the number of arrays, loops, statements and accesses for the Naive (N), Polly (P),

PolyMage (PM) and Expression Propagation (EP) version. The lines of code (LOC) are measured after code formatting.

Benchmark # Arrays # Loops # Statements # Accesses
Name LOC N/P PM EP N P PM EP N P PM EP N P PM EP

(1) unsharp mask 96 5 2 2 12 12 14 3 4 4 4 1 20 21 20 28

(2) harris 153 12 2 2 22 22 8 2 11 11 3 1 65 61 159 26

(3) bilateral grid 502 7 5 4 25 25 29 18 8 7 8 6 90 39 90 57

(4) camera pipe 1114 30 6 5 67 67 84 4 41 35 41 13 288 146 276 675

(5) pyramid blending 1501 43 11 14 123 123 184 31 58 52 58 23 272 268 272 967

(6) interpolate 1801 39 27 19 186 186 292 71 182 182 182 53 294 294 294 299

(7) local laplacian 7018 69 44 37 461 461 687 168 814 626 537 441 1533 1212 1070 3846

• optimized code versions generated by PolyMage [40],

the state-of-the-art polyhedral optimization tool for

concatenated stencil computations, and Halide [44],

• our Polly fork that was modified as described in Sec-

tion 5 but without expression propagation, and

• our Polly fork with automatic expression propagation

as explained in Section 4.4, and guided by the heuristics

presented in Section 4.1– 4.3.

To showcase both scalability (4 − 20 threads) as well as

portability with regards to the cache size, ISA, and execution

model (in-order vs. out-of-order) we performed tests on 4

different CPU architectures presented in Table 2.

For the Polly based approaches as well as PolyMage we

used the same LLVM/clang version (close to v4.0.1)
2
. We

choose this setup to compare the effects caused by the spe-

cific optimizations rather than artifacts that arise due to dif-

ferent vectorization or register allocation schemes employed

by the compilers. Additionally, we present PolyMage results

compiled with gcc (v7.2.0) and icc (v18.0.1 20171018) on the

Xeon E3-1225v3 architecture in Table 4. LLVM/clang and gcc

are invoked with “-fopenmp -ffast-math -march=native -O3”,

icc with “-qopenmp -fp-model fast=1 -ftz -xhost -O3”.

Our Polly fork, expression propagation code and eval-

uation scripts are available online at https://github.com/
cdl-saarland/PolyhedralExpressionPropagation.

Table 2. Architecture details including the CPU name, num-

ber of threads (#T), vector size in bits (Vec), first (L1) and last

level cache size (LLC) as well as the execution model (Exec).

CPU #T Vec L1 LLC Exec

Cortex A53 1×4 128 16 KiB 0.5MiB In Order

Cortex A57 1×4 128 24 KiB 2MiB OoO

Xeon E3-1225v3 1×4 256 128 KiB 8MiB OoO

Core i9-7900X 2×10 512 320 KiB 13MiB OoO

6.1 Evaluation of the Heuristics
Before we compare the performance across the optimiza-

tion approaches we discuss the impact of our heuristics.

2
Our LLVM/clang is a slightly modified version based on git commit:

1aa4ba7ed969272250c7647ff14305f5b2f32c26 (ref. Section 5.4).

Figure 11 shows the effects of different cache miss limits

(ref. Section 4.2) for two target architectures. While the two

smallest benchmarks (1) and (2), see numbers on the right of

the plot, will yield the best performance after propagation

of all temporary arrays, the others show different behaviour.

Especially number (3) and (5) are interesting as they are

not restricted by the code complexity heuristic (ref. Sec-

tion 4.3). Instead, the performance improves or regresses

if an increased cache miss limit allows more propagations.

Depending on the architecture, the performance can regress

compared to the baseline. This happens if more resources,

e.g., registers, issuing ports or prefetcher streams, are used

than available. Later improvements are possible since ar-

ray elimination generally decreases the runtime while the

resource contention does not necessarily increase.

0 16 32 48

8

16

32

64

128

256

2

1

4

3

6

5

Cache Miss Limit

R
u
n
t
i
m
e
i
n
m
s

Xeon E3-1225v3

0 16 32 48

40

80

160

320

640

1,2,4

6

3

5

Cache Miss Limit

A57

Figure 11. Effect of cache miss limits (Section 4.2) on the

runtime for the Intel Xeon E3-1225v3 and ARM Cortex A57.

Propagation without the code complexity heuristic (ref.

Section 4.3) has a similar negative effect as a very large cache

miss limit. However, mainly benchmarks (6) and (7) are af-

fected. Without the complexity restriction, the performance

of interpolate (6) varies on Xeon from a speedup of up to

3.6× to a slowdown of up to 17.8×. This shows that the im-

pact of expression propagation can vary significantly even

for a fixed benchmark and architecture. Consequently, the

heuristics, including the propagation order (ref. Section 4.4),

have to be chosen carefully and tuned to the architecture to

prevent regressions. At the same time it is crucial to account

for other factors, e.g., tiling and scheduling (ref. Section 5.3)

or the use of recurrences (ref. Section 5.4), since they have a

non-trivial impact on the profitability of a propagation.

https://github.com/cdl-saarland/PolyhedralExpressionPropagation
https://github.com/cdl-saarland/PolyhedralExpressionPropagation

Polyhedral Expression Propagation CC’18, February 24–25, 2018, Vienna, Austria

0 10 20 30 40

10

100

Arrays

R
u
n
t
i
m
e
i
n
m
s

1 10 100

Statements

100 1,000

Accesses

1,000 10,000

Instructions

unsharp mask harris bilateral grid camera pipe pyramid blending interpolate

Figure 12. Correlation between runtime and the number of arrays, statements, accesses, and instructions for the Xeon

E3-1225v3 architecture. A positive regression line slope indicates that minimizing the number generally improves performance.

However, note that the absolute value of the slope is highly dependent on the scaling and the shown range.

In addition to the heuristics discussed so far, we exper-

imented with other strategies including the approximated

number of required registers or the number of accesses. We

also altered the propagation orders based on these and similar

factors. While we did observe up to 20% better performance,

the overall results were always inconclusive as illustrated

in Figure 12. The four plots show measurements taken after

expression propagation of randomly chosen combinations

of temporary arrays up to a combination size of 31. For each

size we generated up to 31 unique sets of temporary arrays

that correspond to the data points in the plot. The reported

runtime is the median observed in 31 runs for one combi-

nation. The regression lines in the first two graphs indicate

that propagation and the consequent array and statement

elimination has a positive impact on the runtime. The only

exception is interpolate (6) for which propagation can easily

cause too many statement splits. If it does not, the number

of statements is minimized and propagation is beneficial (ref.

second graph). The two graphs on the right show that nei-

ther the number of accesses nor the number of instructions

have a clear impact on the runtime. Three of the benchmarks

show speedups while the number of accesses increases and

the same holds true for two benchmarks with regards to the

number of instructions. In Table 3 we provide the perfor-

mance results of the naive, the heuristic guided as well as

the best and worst observed version in this experiment.

Table 3. Performance results (in ms) including the limits

observed in the randompropagation tests shown in Figure 12.

Version \ Bench. (1) (2) (3) (4) (5) (6)

Naive 47.8 82.1 24.5 40.4 114.0 72.1

Expression Prop. 8.5 7.2 16.3 10.5 53.7 26.5

rnd. prop. best 8.5 7.2 16.3 8.4 55.2 33.2

rnd. prop. worst 59.0 98.6 25.7 149.4 138.6 1285

We believe that a good performance model for expression

propagation is a challenging task and a research topic on

its own. To this end, we choose the simple, conservative

combination of heuristics explained in Section 4.1–4.3 to

demonstrate the potential of expression propagation. In order

to maximize performance it is crucial to use a more elaborate

cost model and to revisit the scheduling and tiling choices.

6.2 Memory Requirement and Code Complexity
Expression propagation is not only a performance optimiza-

tion but also capable of eliminating temporary arrays and

thereby reducing the memory requirements of an applica-

tion. Table 1 lists the number of parametric sized arrays

remaining after the optimizations, together with other static

properties of the optimized program. Both PolyMage and ex-

pression propagation decrease the number of arrays for each

benchmark. However, expression propagation completely

eliminates temporary arrays while PolyMage often replaces

them with smaller, constant-sizes, ones that hold the inter-

mediate results for one tile at a time.

As noted earlier, two of the benchmarks perform best if all

temporary arrays have been removed. While this is certainly

not true for the three largest benchmarks, it already does not

hold for the rather small bilateral grid (3) implementation.

This benchmark performs best if two of the three affine

arrays are eliminated and one is kept. This trade-off is not

the only problem when minimal memory usage is the only

propagation goal. In our experiments there was a significant

increase in the number of accesses (per statement). While

the cache miss heuristic does indirectly limit this number,

we already observe a notable growth that causes an even

bigger increase in the number of dependences. Consequently,

propagation purely guided by memory elimination does not

scale above the size and complexity of programs like pyramid

blending (5) or interpolate (6).

6.3 Automatic Expression Propagation
Figure 13 shows the performance of all five optimizations

on the different platforms. The graphs are normalized to the

results of a naive parallel implementation which is also the

input for the Polly-based optimization schemes
3
. Measure-

ments were taken 51 times and the median result is reported.

The PolyMage version [45] was optimized for a processor

similar to the Xeon E3-1225v3 and it was not specialized for

the other architectures. However, it is important to note that

Polly does not employ target dependent tile sizes and tiling

is disabled for our forked Polly and expression propagation.

3
OpenMP pragmas are stripped from the inputs of Polly-based schemes.

CC’18, February 24–25, 2018, Vienna, Austria Johannes Doerfert, Shrey Sharma, and Sebastian Hack

21.3 17.3

1

2

4

6

8

S
p
e
e
d
u
p
o
v
e
r
N
a
i
v
e

Core i9-7900X

1

2

4

6
11.2 13.7 7.0 Xeon E3-1225v3

(1) (2) (3) (4) (5) (6) (7)

1

2

3

4
Cortex A57

(1) (2) (3) (4) (5) (6) (7)

1

2

4

8.4 7.4 5.5 Cortex A53

Expression Propagation PolyMage Forked Polly Vanilla Polly Halide

Figure 13. Performance of different schemes (ref. Section 6) normalized to a naive parallel version. The Vanilla Polly bar is

missing for benchmark (7) due to a code generation issue. The bars for Cortex A53 are missing due to insufficient main memory.

For Halide only the results of available benchmarks (https://github.com/halide/Halide/tree/release_2017_05_03/apps) are reported.

Our Polly fork (ref. Section 5) outperforms the vanilla

version except for one benchmark ((3) on A53) which benefits

from tiling. At the same time there is only one case ((7) on

A57) where it performs better than expression propagation.

PolyMage [40] is faster in 7 cases and consistently better

for local laplacian (7). Expression propagation generates the

faster version in 18 cases and is, except for local laplacian on

A57, consistently faster than the naive implementation. The

highest speedups are achieved for the rather simple harris

benchmark (2). Though, depending on the system, either

the tiled PolyMage code with two constant sized temporary

arrays or our fully propagated version performs best.

Halide [43] results are available for the benchmarks con-

tained in the 2017/05/03 release
4
. While the performance for

camera pipe (4) is consistently the best, our approach comes

close on the Core i9 architecture. The performance of the

remaining benchmarks is comparable to expression propaga-

tion and it depends on the platform which one performs best.

However, it is important to consider that Halide and Poly-

Mage perform more complex optimizations, including tiling

and (non-trivial) scheduling which have not been explored

in this work. Note that all expression propagation speedups

are only due to the elimination of temporary arrays. There is

especially no increase in parallelism, e.g., due to propagated

scalars, in these benchmarks.

Real World Application Expression propagation is often

limited by the live-out information available. In real world

code only scalars are easy to spot non live-out values. Nev-

ertheless, propagation of scalars is important to eliminate

false dependences and increase scheduling freedom. In the

SPEC2000/2006 benchmark suites our technique eliminates

63%/60% of all scalar read accesses in loop nests analyzable

by our Polly fork.

4
Online: https://github.com/halide/Halide/tree/release_2017_05_03/apps

7 Related Work
Iteration domain splitting is performed by multiple polyhe-

dral optimization approaches [22, 38]. However, we do it to

perform syntactic read replacement (ref. Section 3) and did

not further investigate the effects on scheduling.

Predictive commoning [30] is an optimization that em-

ploys higher-order recurrences to avoid recomputation of

expressions in loops (ref. Section 5.4). Our polyhedral ver-

sion is especially powerful as it is only applied to propagated

accesses, thus large expressions.

The elimination of memory writes to non live-out loca-

tions is a form of dead assignment elimination that has been

investigated for both scalars [32] and arrays [53]. In contrast

to such elaborate approaches we do not iterate the detection

of dead assignments in order to identify transitively dead

ones. While this might become necessary for more complex

programs it was not needed for our evaluation.

Dependence elimination is an important research topic in

the context of polyhedral optimization. Various techniques

are concerned with the removal of false dependences (WAR

and WAW) in order to enable optimizations that were oth-

erwise prohibited [1, 10, 37]. While expression propagation

explicitly removes true (RAW) dependences, it implicitly

eliminates false dependences as well. However, only if they

are caused by non live-out locations that can be propagated.

An example that is similar to the uses cases of other ap-

proaches was already provided in Figure 1.

Programs in dynamic single assignment form (DSA) [17,

31] write every memory location at most once and are con-

sequently free of false dependences. In contrast to other

propagation techniques [28, 39, 43, 51], we do not require

the program to be in DSA form. Instead we construct prop-

agation dependences with regards to possible intermediate

writes as described in Section 3.2. Nevertheless, expression

https://github.com/halide/Halide/tree/release_2017_05_03/apps
https://github.com/halide/Halide/tree/release_2017_05_03/apps

Polyhedral Expression Propagation CC’18, February 24–25, 2018, Vienna, Austria

Table 4. Raw performance results for the Xeon E3-1225v3. The best performer is highlighted in bold. The Vanilla Polly

result is missing for benchmark (7) due to a code generation issue. For Halide only the results of available benchmarks

(https://github.com/halide/Halide/tree/release_2017_05_03/apps) are reported. Note that PolyMage is listed as (PM).

Name Naive Vanilla Polly Forked Polly Expr. Prop. PM clang PM gcc PM icc Halide

(1) unsharp mask 47.79ms 57.55ms 47.55ms 8.53ms 9.11ms 9.01ms 9.00ms n/a

(2) harris 82.12ms 96.82ms 82.23ms 7.29ms 5.99ms 6.59ms 9.61ms n/a

(3) bilateral grid 24.53ms 25.55ms 24.00ms 16.29ms 23.21ms 28.52ms 26.20ms 15.25ms
(4) camera pipe 40.40ms 47.38ms 35.13ms 10.46ms 14.09ms 13.95ms 11.68ms 5.76ms
(5) pyramid blending 113.97ms 145.554ms 114.19ms 53.73ms 47.76ms 45.94ms 41.40ms n/a

(6) interpolate 72.14ms 78.83ms 70.77ms 26.51ms 56.62ms 40.99ms 41.08ms 36.64ms

(7) local laplacian 140.46ms n/a 270.30ms 111.62ms 97.11ms 86.29ms 82.39ms 96.71ms

propagation is generally more effective in the absence of

false dependences as illustrated by Figure 7b in Section 3.3.

Transformation into DSA form will increase the mem-

ory requirement of a program. To alleviate this increase,

memory optimization techniques [6, 12, 13, 35, 55] are used

after the DSA based optimizations. These techniques per-

form scheduling on the memory access functions in order

to reuse memory locations for different intermediate results.

In contrast, expression propagation never changes the ac-

cessed memory but the “time and place” where intermediate

results are computed, thereby eliminating the need for stor-

age locations altogether. To this end, expression propagation

can be used as a pre-processing step to reduce the number

of stored intermediate results while keeping the computa-

tions manageable for the target hardware. Additionally, it is

interesting to look into the combination of memory schedul-

ing techniques and expression propagation to overcome the

limitation illustrated by Figure 7a in Section 3.3.

PolyMage [40] and Halide [39] perform, among other

things, a limited form of expression propagation. However, in

contrast to our technique, both will need to fuse the producer

and consumer loop, which contain the definition and respec-

tively the single user of a temporary value, in the process.

Additionally, PolyMage did require both access functions to

be equal. If it is possible to generate a schedule to equalize

the access functions, loop fusion is applied and expression

propagation is reduced to a redundant load optimization lim-

ited to a single loop iteration. Alternative techniques [16, 43]

perform similar redundant load optimizations across differ-

ent iterations of a single loop. The Julia language [5] offers

syntax to force loop fusion but relies on the compiler backend

to perform redundant load optimizations afterwards.

For non-surjective propagation dependences statement

splitting was already introduced [51, 57].

Existing techniques that propagate array locations are lim-

ited to DAG pipelines [28, 39, 44] and they do not employ

a similarly precise dependence analysis. Others handle spe-

cial expressions e.g., constants [46, 47, 56] or single array

reads [51, 57]. In the case of constants or array reads in DSA

form programs [28, 39, 44, 51], propagation dependences are

trivially equal to the RAW dependences. An alternative ap-

proach to detect unsound propagations is to compare initial

and resulting flow dependences [57].

8 Conclusion
In this work we present a propagation technique for arbi-

trary expressions that are communicated via affine-indexed,

multi-dimensional arrays in a sequence of non-perfect loop

nests. In principle, expression propagation allows for remov-

ing temporary arrays, reduce the pressure on the memory

system, and create additional parallelism.

We define expression propagation formally and show that

maximal expression propagation is NP-hard. Therefore, we

present a set of heuristics to guide the propagation.

Our experimental evaluation on a set of image processing

pipelines and four different architectures show that expres-

sion propagation can significantly outperform existing poly-

hedral techniques but is sensitive to various parameters that

guide its application. Consequently, we need further research

on an appropriate performance model to apply expression

propagation dependably.

Acknowledgments
We would like to thank Ravi Teja Mullapudi, Vinay Vasista

and Uday Bondhugula for their publicly available PolyMage

benchmarks [45]. We also appreciate the feedback we got

from Uday Bondhugula, Abhinav Jangda and our reviewers.

References
[1] Riyadh Baghdadi, Albert Cohen, Sven Verdoolaege, and Konrad Tri-

funović. 2013. Improved Loop Tiling Based on the Removal of Spurious

False Dependences. ACM Trans. Archit. Code Optim. (2013).
[2] Soufiane Baghdadi, Armin Größlinger, and Albert Cohen. 2010. Putting

Automatic Polyhedral Compilation for GPGPU to Work (CPC’10).
[3] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. 2012.

Tiling Stencil Computations to Maximize Parallelism (ICS’12).
[4] Cédric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, and

Olivier Temam. 2003. Putting polyhedral loop transformations to work.

In Languages and Compilers for Parallel Computing.
[5] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. 2012.

Julia: A fast dynamic language for technical computing. arXiv (2012).

[6] Somashekaracharya G. Bhaskaracharya, Uday Bondhugula, and Albert

Cohen. 2016. SMO: An Integrated Approach to Intra-array and Inter-

array Storage Optimization (POPL’16).

https://github.com/halide/Halide/tree/release_2017_05_03/apps

CC’18, February 24–25, 2018, Vienna, Austria Johannes Doerfert, Shrey Sharma, and Sebastian Hack

[7] OpenMP Architecture Review Boards. 2017. The OpenMP API specifi-

cation for parallel programming. http://www.openmp.org/. (2017).
[8] Uday Bondhugula, Oktay Gunluk, Sanjeeb Dash, and Lakshmi-

narayanan Renganarayanan. 2010. A Model for Fusion and Code

Motion in an Automatic Parallelizing Compiler (PACT’10).
[9] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayap-

pan. 2008. A Practical Automatic Polyhedral Parallelizer and Locality

Optimizer (PLDI’08).
[10] Pierre-Yves Calland, Alain Darte, Yves Robert, and Frédéric Vivien.

1997. Plugging anti and output dependence removal techniques into

loop parallelization algorithm. Parallel Comput. (1997).
[11] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery of

Linear Restraints Among Variables of a Program (POPL’78).
[12] Alain Darte, Alexandre Isoard, and Tomofumi Yuki. 2016. Extended

Lattice-based Memory Allocation (CC’16).
[13] Alain Darte, Robert Schreiber, and Gilles Villard. 2005. Lattice-Based

Memory Allocation. IEEE Trans. Comput. (2005).
[14] Johannes Doerfert, Tobias Grosser, and Sebastian Hack. 2017. Opti-

mistic Loop Optimization (CGO’17).
[15] Johannes Doerfert, Kevin Streit, Sebastian Hack, and Zino Benaissa.

2015. Polly’s Polyhedral Scheduling in the Presence of Reductions

(IMPACT’15).
[16] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. 1993. A prac-

tical data flow framework for array reference analysis and its use in

optimizations. ACM Sigplan Notices (1993).
[17] P. Feautrier. 1988. Array Expansion (ICS’88).
[18] Paul Feautrier. 1991. Dataflow analysis of array and scalar references.

Int. J. of Parallel Programming (1991).

[19] Paul Feautrier. 1992. Some Efficient Solutions to the Affine Scheduling

Problem: I. One-dimensional Time. Int. J. Parallel Program. (1992).
[20] P. Feautrier. 1992. Some efficient solutions to the affine scheduling

problem. Part II. Multidimensional time. Int. J. Parallel Program. (1992).
[21] Paul Feautrier and Christian Lengauer. 2011. Polyhedron Model. In

Encyclopedia of Parallel Computing.
[22] Martin Griebl, Paul Feautrier, and Christian Lengauer. 2000. Index Set

Splitting. Int. J. Parallel Program. (2000).
[23] Tobias Grosser, Armin Größlinger, and Christian Lengauer. 2012. Polly

– Performing polyhedral optimizations on a low-level intermediate

representation. Parallel Processing Letters (2012).
[24] T. Grosser and T. Hoefler. 2016. Polly-ACC: Transparent compilation

to heterogeneous hardware (ICS’16).
[25] Tobias Grosser, J. Ramanujam, Louis-Noel Pouchet, P. Sadayappan,

and Sebastian Pop. 2015. Optimistic Delinearization of Parametrically

Sized Arrays (ICS’15).
[26] Tobias Grosser, Sven Verdoolaege, and Albert Cohen. 2015. Polyhe-

dral AST Generation Is More Than Scanning Polyhedra. ACM Trans.
Program. Lang. Syst. (2015).

[27] Julian Hammer, Jan Eitzinger, Georg Hager, and Gerhard Wellein. 2017.

Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels.

Computing Research Repository (CoRR) (2017).
[28] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-

Kelley, Noy Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and

Pat Hanrahan. 2014. Darkroom: compiling high-level image processing

code into hardware pipelines. ACM Trans. Graph. (2014).
[29] F. Irigoin and R. Triolet. 1987. Computing dependence direction vectors

and dependence cones with linear systems. Tech. Rep.
[30] Kevin O’Brien. 1990. Predictive Commoning: A method of optimizing

loops containing references to consecutive array elements. Technical
Report. IBM Thomas J. Watson Research Center.

[31] Bart Kienhuis. 2000. MatParser: An array dataflow analysis compiler.
[32] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. 1994. Partial Dead

Code Elimination (PLDI’94).
[33] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noël

Pouchet, and P. Sadayappan. 2013. When Polyhedral Transformations

Meet SIMD Code Generation (PLDI’13).
[34] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation (CGO’04).
[35] Vincent Lefebvre and Paul Feautrier. 1997. Optimizing Storage Size

for Static Control Programs in Automatic Parallelizers (Euro-Par’97).
[36] Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam. 1993.

Array-data FlowAnalysis and Its Use in Array Privatization (POPL’93).
[37] Sanyam Mehta and Pen-Chung Yew. 2016. Variable Liberalization.

TACO (2016).

[38] Simon Moll, Johannes Doerfert, and Sebastian Hack. 2016. Input Space

Splitting for OpenCL (CC’16).
[39] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-

Kelley, and Kayvon Fatahalian. 2016. Automatically Scheduling Halide

Image Processing Pipelines. ACM Trans. Graph. (2016).
[40] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. Poly-

Mage: Automatic Optimization for Image Processing Pipelines (ASP-
LOS’15).

[41] Louis-Noel Pouchet, Peng Zhang, P. Sadayappan, and Jason Cong.

2013. Polyhedral-based Data Reuse Optimization for Configurable

Computing (FPGA’13).
[42] William Pugh and David Wonnacott. 1993. An Exact Method for

Analysis of Value-based Array Data Dependences (LCPC’93).
[43] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy,

Saman Amarasinghe, and Frédo Durand. 2012. Decoupling Algorithms

from Schedules for Easy Optimization of Image Processing Pipelines.

ACM Trans. Graph. (2012).
[44] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-

guage and Compiler for Optimizing Parallelism, Locality, and Recom-

putation in Image Processing Pipelines (PLDI ’13).
[45] Uday Bondhugula Ravi Teja Mullapudi, Vinay Vasista. 2017. PolyMage

benchmarks. http://mcl.csa.iisc.ac.in/polymage.html. (2017).
[46] Silvius Rus, Guobin He, and Lawrence Rauchwerger. 2005. Scalable

Array SSA and Array Data Flow Analysis (LCPC’05).
[47] Vivek Sarkar and Kathleen Knobe. 1998. Enabling Sparse Constant

Propagation of Array Elements via Array SSA Form (SAS’98).
[48] Tingting Sha, M. M. K. Martin, and A. Roth. 2005. Scalable store-load

forwarding via store queue index prediction (MICRO’05).
[49] Jun Shirako, Akihiro Hayashi, and Vivek Sarkar. 2017. Optimized

Two-level Parallelization for GPU Accelerators Using the Polyhedral

Model (CC’17).
[50] Konrad Trifunović, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira

Rosen. 2009. Polyhedral-Model Guided Loop-Nest Auto-Vectorization

(PACT’09).
[51] Peter Vanbroekhoven, Gerda Janssens, Maurice Bruynooghe, Henk

Corporaal, and Francky Catthoor. 2003. Advanced Copy Propagation

for Arrays (LCTES’03).
[52] Sven Verdoolaege. 2010. isl: An Integer Set Library for the Polyhedral

Model (ICMS ’10).
[53] Sven Verdoolaege. 2015. PENCIL support in pet and PPCG. Tech. Rep.
[54] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Igna-

cio Gómez, Christian Tenllado, and Francky Catthoor. 2013. Polyhedral

parallel code generation for CUDA. TACO (2013).

[55] DoranWilde and Sanjay V. Rajopadhye. 1996. Memory Reuse Analysis

in the Polyhedral Model (Euro-Par’96).
[56] DavidWonnacott. 1999. Constant Propagation Through Array Variables.
[57] David Wonnacott. 2000. Extending Scalar Optimizations for Arrays

(LCPC’00).
[58] Tomofumi Yuki, Paul Feautrier, Sanjay Rajopadhye, and Vijay Saraswat.

2013. Array Dataflow Analysis for Polyhedral X10 Programs (PPoPP).
[59] Tomofumi Yuki, Lakshminarayanan Renganarayanan, Sanjay Rajopad-

hye, Charles Anderson, Alexandre E Eichenberger, and Kevin O’Brien.

2010. Automatic creation of tile size selection models (CGO’10).

http://www.openmp.org/
http://mcl.csa.iisc.ac.in/polymage.html

	Abstract
	1 Introduction
	2 Background
	2.1 Input Language
	2.2 Polyhedral Model

	3 Expression Propagation
	3.1 Propagation Expressions
	3.2 Propagation Dependences
	3.3 Limitations & Extensions
	3.4 Complexity Analysis

	4 Heuristics
	4.1 Non Live-Out Memory Heuristic
	4.2 Cache Miss Heuristic
	4.3 Code Complexity Heuristic
	4.4 Propagation Algorithm

	5 Implementation Details
	5.1 Live-Out Access Analysis
	5.2 Loop Parallelization
	5.3 Scheduling and Tiling
	5.4 Higher-Order Recurrences
	5.5 Language Extensions

	6 Evaluation
	6.1 Evaluation of the Heuristics
	6.2 Memory Requirement and Code Complexity
	6.3 Automatic Expression Propagation

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

