
Thread-Level Speculation with Kernel Support

Clemens Hammacher Kevin Streit Andreas Zeller Sebastian Hack

Computer Science Departement
Saarland University

Saarbrücken, Germany

lastname@cs.uni-saarland.de

Abstract

Runtime systems for speculative parallelization can be substan-
tially sped up by implementing them with kernel support. We de-
scribe a novel implementation of a thread-level speculation (TLS)
system using virtual memory to isolate speculative state, imple-
mented in a Linux kernel module. This design choice not only
maximizes performance, but also allows to guarantee soundness
in the presence of system calls, such as I/O. Its ability to maintain
speedups even on programs with frequent mis-speculation, signif-
icantly extends its usability, for instance in speculative paralleliza-
tion. We demonstrate the advantage of kernel-based TLS on a num-
ber of programs from the Cilk suite, where this approach is superior
to the state of the art in each single case (7.28× on average). All
systems described in this paper are made available as open source.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

Keywords Thread-level speculation, speculative parallelization,
shared memory, kernel module, virtual memory

1. Introduction

With the rise of multi-core processors in off-the-shelf hardware, the
need for parallel software has grown in order to utilize the avail-
able computation resources. Because parallelizing programs man-
ually is hard and error-prone, several techniques for automatic par-
allelization have been proposed in the past. Extracting parallelism
out of general-purpose programs is hard: Their control flow is usu-
ally input-dependent and the data structures used can typically not
be satisfactorily analyzed by static dependence analyses.

Therefore, an important line of research in automatic paral-
lelization relies on speculation. In speculative parallelization, the
compiler parallelizes code although it cannot prove the correctness
of this transformation statically. Instead, it relies on a runtime com-
ponent, the speculation system, to detect conflicts that would vio-
late the sequential semantics. This kind of optimistic parallelization
is often called thread-level speculation or TLS. Keeping the over-
head of the speculation system low is decisive for successful spec-
ulative parallelization. Doing so even in the presence of significant

mis-speculation gives the compiler the freedom to parallelize code
showing statically unpredictable memory access patterns.

Many approaches for speculative parallelization have been pro-
posed (see Section 2) using different techniques for separating
speculative state, tracking memory accesses and implementing roll-
backs. Some rely on special hardware extensions, others use code
instrumentation to buffer speculative memory updates until com-
mit. Also, an increasing number of approaches isolate speculative
tasks by forking operating system processes to execute speculative
work, and rely on the virtual memory system to efficiently coor-
dinate between speculative and non-speculative memory accesses.
This paper contributes to the state of the art of this kind of systems.

Since many proposed parallelization schemes rely on specula-
tion, multiple such TLS systems have been developed in order to
support the evaluation of individual parallelization approaches (see
also Section 2.2). They are mostly ad hoc implementations featur-
ing a specific parallelization scheme or targeting specific hardware
or applications, and are typically not described in detail. Because
of that as well as different hardware restrictions and usage patterns,
it is hard to compare them against each other or new approaches.
Also, typically they are not publicly available to be evaluated or
used by others.

This paper not only presents two TLS implementations—one
resembling the state-of-the-art and one being novel and more
efficient—, but also makes both of them publicly available as a

basis for further research1. The common parallelization scheme
which all the approaches use is based on fork-join based paral-
lelization: At one point in time, several parallel tasks are spawned
and execution continues once all of them finished. Streit et al. [30]
have shown that this simple scheme not only covers task paral-
lelism, but also DOALL and DO-ACROSS style loop parallelism.
With minor extensions also limited forms of DSWP [22] can be
included.

After an overview over related work in Section 2, this paper
makes the following contributions:

1. We present the design and implementation of two TLS systems
(Section 3). Both use the virtual memory system for conflict
detection. U-TLS is implemented in user space. K-TLS is, to
the best of our knowledge, the first TLS that is entirely imple-
mented in kernel space to enable more efficient memory access
tracking and commit.

2. Unlike all TLS systems before, K-TLS provides isolation not
only of memory effects but also in the possible presence of
system calls like I/O.

1 All software (STM, U-TLS and K-TLS) is available under the GPL license
at https://github.com/hammacher/k-tls

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

CC’16, March 17–18, 2016, Barcelona, Spain
ACM. 978-1-4503-4241-4/16/03...$15.00
http://dx.doi.org/10.1145/2892208.2892221

1

3. We evaluate the kernel-based implementation against two state-
of-the-art speculation systems: STM and U-TLS (Section 4).
First, we measure and compare the overhead of specific TLS
operations (spawning, memory tracking, validation and com-
mit). Second, we evaluate the overall system performance on
multiple automatically parallelized programs from the Cilk
suite of sample applications. Our evaluation demonstrates that
implementing a TLS in kernel space leads to significant im-
provement in all overheads we measure. For large tasks, it
can reach the performance of unprotected parallel execution
and shows good performance even in the presence of mis-
speculation.

2. State of the Art

The sheer number of STM and TLS approaches published in the
literature demonstrates the need of for speculation systems. This
chapter describes their state of the art. Since most recent auto-
matic parallelization approaches target compiled languages like C
or C++, we exclude approaches which are implemented in a man-
aged execution environment like the Java virtual machine. We also
do not give an overview of parallelization techniques, since this is
beyond the scope of this paper.

2.1 Software Transactional Memory

Even before the potential of thread-level speculation for automatic
parallelization was discovered in the late 1990s (e.g. [19, 29]), a
quite similar concept was introduced as transactional memory by
Herlihy and Moss in 1993 [11]. Two years later, Shavit and Touitou
described and implemented the first software-only implementation,
since then called STM [27]. It already featured word-level con-
flict detection. In 2006—after the rise of multi-core processors—
many new implementations have been proposed, introducing new
concepts of implementing STM like global timestamps and lazy
snapshotting [5, 24, 26, 34]. Even though designed as an alterna-
tive to lock-based parallel programming, STM can also be used to
implement TLS [17]. Since transactional memory in general does
not impose any ordering between transactions executing in paral-
lel, special care has to be taken by the generated code to ensure
correctness. In this work, we compare the performance of the TLS
systems we present against a state-of-the-art STM system called
TinySTM [7, 8].

2.2 Thread Level Speculation

As with transactional memory, TLS can either be implemented en-
tirely in software, or as a hardware extension. The first work de-
scribing speculative parallelization of loops with runtime checks
was the LRPD test by Rauchwerger and Padua [23]. Since the main
purpose of this work was removing dependences by privatization
and reduction recognition, any data dependence which was not stat-
ically detected as one of these would cause sequential re-execution.
Three years later—in 2002—the first true TLS implementation was
presented by Rundberg and Stenström, called S-TLS [25] and writ-
ten in pure assembly. It uses shadow memory to track read and
written memory regions and assign locks to them, and to hold the
updated values for a fixed number of parallel tasks. This scheme
was later improved by Cintra and Llanos [4] by significantly re-
ducing the memory overhead, improving the access structures and
eliminating the need for explicit locks. Years later, more advanced
implementations have been proposed for both write-back [31] and
write-through [18] designs. The latter, called SpLIP, is particularly
interesting because it updates memory in-place instead of buffering
speculative stores, thereby avoiding most of the overhead of spec-
ulative loads.

Since all these software-only approaches introduce significant
runtime overhead, other research made use of different hypothetical

hardware extensions in order to speed up management of specula-
tive data. Interestingly, implementing TLS in hardware was pro-
posed already long before multi-core processors became main-
stream, e.g. in the Hydra CMP [9] and others [28, 29]. In 2006,
Liu et al. published the POSH compiler [16], which aims to extract
speculative parallelism to be executed in a hardware TLS system
with simple spawn and commit instructions. One vehicle to im-
plement these instructions in hardware is via versioned memory:
Speculative tasks generate a new version of the memory, which can
later be committed, or can easily be discarded. This can be seen
as a restricted variant of hardware transactional memory which
provides encapsulation and atomicity, but does not check for mis-
speculation. Hence these checks need to be done explicitly in soft-
ware. If only control flow speculation is used (effectively ignor-
ing the memory effects of certain code paths during analysis), a
rollback is triggered whenever such a path is taken. This is imple-
mented for example in Spec-DSWP [33], a speculative extension
of Decoupled Software Pipelining (DSWP) [22].

Johnson et al. [13] provide performance measures of their par-
allelization approach on a simulated speculative multi-core proces-
sor. This hardware precisely detects true data dependences at no
cost and without limitations in the transaction size, so the reported
speedup can merely serve as upper bound on the speedup to be ex-
pected on real hardware. Hertzberg and Olukotun [12] also evaluate
on simulated hardware with full TLS support, but they describe the
expected hardware extensions in detail and take care to make rea-
sonable assumptions there.

A third category of TLS systems is neither pure software, nor
does it rely on special hardware. It utilizes the virtual memory sys-
tem to separate speculative from committed state and track memory
accesses for later validation. Since all modern processor architec-
tures handle virtual address translation efficiently in hardware, it
can be very efficient.

The first approach using unix processes to isolate speculative
state is behavior oriented programming (BOP) by Ding et al. [6].
By making the memory pages inaccessible in a speculatively forked
process and installing a custom page fault handler, all pages read
and written by a process can be recorded with only constant over-
head per accessed page. Conflicts are then checked at the granular-
ity of memory pages (4 kB), and written pages are mapped back to
the master process. Even though BOP is not tailored to fork-join
parallelization, it could probably be modified for this use-case also.
A similar approach by a subset of the authors uses the same tech-
nique for Fast Track [14], where optimistically optimized code is
executed in the main process, while the original code is executed
concurrently for validation.

Later, Berger et al. [1] describe a quite similar system used to
detect and prevent concurrency errors in multi-threaded programs.
By turning threads into processes, they achieve strong atomicity
and avoid deadlocks, and by committing changes sequentially, they
prevent any data races. Raman et al. [21] also use separate address
spaces to isolate speculative states, but still track memory accesses
explicitly and replay them in a central commit unit. Pyla et al.
[20] use process-separation to support speculation in the form of
different algorithms solving the same problem concurrently, and
only committing the first one to complete. Kim et al. [15] describe
a TLS based on memory page protection designed for clusters, with
a dedicated validator and commit process.

Even though many approaches make use of virtual address
translation in the context of TLS, none of them is publicly avail-
able. This paper presents two easy-to-use open source solutions for
virtual memory based TLS, one in user space only, and a more ef-
ficient variant utilizing a Linux kernel module.

2

3. TLS Implementations

A speculative runtime system for TLS can be implemented in many
different ways, implicating different restrictions on the execution
environment and inducing overhead at different points in time. This
chapter describes two implementations using virtual memory to
isolate speculative states. One of these implementations is novel
by using a kernel module for maximum performance and improved
soundness guarantees in the presence of I/O. Both implementations
execute speculative tasks in separate processes instead of threads.
Those are forked from the main process at spawn time, and dis-
carded on a rollback or after committing the memory changes back
to the main process.

The interface used by a developer or automatic parallelizer is
the same for all implementations: A task list is created, containing
the tasks to be executed in parallel. Each task consists of a pointer
to a function containing the user code, a pointer to memory con-
taining input values for this code, and a pointer to space for the
output values. The latter two pointers are passed to the function,
but only the second one may be written to. The order of the tasks
in the list determines their commit order, hence it should match the
sequential order of the tasks. The restriction to a list, implicating
the requirement to establish a linear commit order, is a mere tech-
nical one. The extension to a commit graph, allowing for parallel
commits is left for future work. The task list is passed to the spec-
ulation system for parallel execution. This invocation returns not
before all tasks have executed and committed successfully.

3.1 Virtual-Memory Based TLS in User Space (U-TLS)

Just like STM and most TLS systems, the U-TLS system works en-
tirely in user space. It communicates with the operating system us-
ing system calls that are not wrapped by standard libraries. There-
fore, it is usually not portable. A major benefit over STM is that
the executed code does not need to be instrumented; calling exter-
nal functions, e.g., from a pre-compiled library, is allowed within
transactions. The remainder of this section describes all the details
of the U-TLS implementation, whose pseudo-code implementation
is given in Algorithm 1.

3.1.1 Forking Speculative Tasks

In order to execute a task list in U-TLS, the developer or auto-
matic parallelizer invokes the UTLSRUN routine. Before forking
the actual processes to execute the user code, U-TLS allocates a
TLSContext (line 3) to hold the set of pages modified since the pro-
cess forked (ctx.modified pages). Also, for each task a TaskState
structure is allocated to hold information about its execution, like
the id of the process executing this task (state.pid), the read and
written pages (state.read pages and state.modified pages), a con-
dition variable to notify the parent of completion of the user code
(state.ready), and a flag to indicate whether the task actually ex-
ecuting the respective use code completely (state.finished). Since
some of this information is updated by the child, but read by the
parent, we allocate the TaskState structures in memory shared be-
tween the main process and its children. The parent also opens a
unidirectional communication channel (a pipe) per process (line 6)
to transfer back changed memory pages in the commit phase.

After this setup, the actual child processes are forked to execute
the RUNTASK routine (line 7), and then committed in order (lines 9
to 13, cp. Section 3.1.3). If this commit fails repeatedly for any
of the tasks, e.g. because the task was killed by a signal, then
the processes executing the remaining tasks are killed, and the
respective code is re-executed in the main process sequentially
(lines 14 to 18).

Table 1. The characteristics of the different speculative runtime
systems examined in this paper. STM and U-TLS resemble the
state of the art. K-TLS is novel by utilizing a Linux kernel module.
U-TLS and K-TLS are described in detail, and their respective
trade-offs are discussed.

p
u

re
u

se
r

sp
ac

e

in
st

ru
m

en
ta

ti
o

n

O
S

su
p

p
o

rt

ef
fi

ci
en

t
se

tu
p

ef
fi

ci
en

t
ex

ec
u

ti
o

n

ef
fi

ci
en

t
co

m
m

it

fi
n

e
g

ra
n

u
la

r

STM + + - + - - +

U-TLS + - 0 - + 0 -

K-TLS - - + - + + -

3.1.2 Execution of a Speculative Task

Each spawned process starts execution in the RUNTASK routine.
Before the actual user code is executed, the child process needs to
be set up properly (lines 20 to 25). First, the state pointer, which
is passed from the parent, is saved to a global variable, such that it
is available to the segmentation fault handler. Note that this change
of the global variable is only visible to this specific child, since
the operating system automatically creates private copies of all
changed memory pages. Next, a new memory region for the stack is
allocated, such that stack operations of the different child processes
do not collide. By setting the stack pointer (RSP) to the top of this
new region, the user code will allocate all new stack frames there.

Apart from the newly allocated stack and the TaskState struc-
tures, all writable memory regions are made inaccessible by mpro-
tect system calls. The memory regions of the process are deter-
mined dynamically from the virtual /proc/self/maps file. This
ensures that a segmentation fault (segfault) is triggered whenever
the user code tries to access (read or write) any memory in these
regions. This segfault is handled by a custom segfault handler
(lines 31 to 39), which records that the page was accessed by the
process, and makes it available read-only. On the second segfault
per page, we know that this must be a writing access, since reads
were already allowed. Hence, also write access is granted, and the
page is stored in the set of modified pages. If a third segmentation
fault happens, this can only mean that the previous mprotect calls
did not succeed, hence the memory address is illegal. This happens
for example when a task accesses memory through a pointer which
should have been updated by a previous task, but this update is not
visible to the process. In this case, we just abort the execution of the
process, and the main process retries execution later, when all pre-
vious tasks have committed (see Section 3.1.3). In fact, we check
the return code of the previous mprotect system calls directly, in or-
der to detect such situations already on the first segmentation fault.

After returning from the actual user code of the respective task
(line 26), the finished flag in the TaskState is set to signal that
the task terminated regularly. Then, the parent is notified of the
completion of the process, and all modified memory pages are
transmitted to the parent process via the pipe established before
forking (line 30). If available, we use the vmsplice system call for
this, which has potentially better performance than just writing the
data page by page.

3.1.3 Validation and Committing Speculative State

Before starting the actual commit phase, the parent process first
waits until the child process either signals that it finished execu-
tion of the task code via the state.ready condition, or the task exits

3

Algorithm 1 Pseudo-code implementation of U-TLS

1: procedure UTLSRUN(tasks) ⊲ main routine
2: N ← len(tasks)
3: ctx← allocate TLSContext

4: states← allocate shared TaskState[N]
5: for i← 0 to N − 1 do

6: states[i].pipe← PIPE()
7: states[i].pid ← FORK(runTask, tasks[i], states[i])

8: comp← 0
9: while comp < N do

10: if COMMIT(tasks[comp], states[comp], ctx) then

11: comp← comp + 1
12: else

13: break

14: for i← comp to N − 1 do

15: KILL(states[i].pid)

16: for i← comp to N − 1 do

17: functionPtr ← tasks[i].fun

18: functionPtr(tasks[i].in, tasks[i].out)

19: procedure RUNTASK(task, state) ⊲ child process
20: save state pointer into global variable (process-local)
21: allocate a new stack and set RSP
22: protect whole memory (except own stack)
23: install segmentation fault handler SEGFAULT

24: state.read pages← ∅

25: state.modified pages← ∅

26: RUNUSERCODE(task)
27: state.finished ← true

28: NOTIFY(state.ready)
29: for each page addr in state.modified pages do

30: WRITE(state.pipe, page addr,PAGE SIZE)

31: procedure SEGFAULT(page addr) ⊲ segfault handler
32: if page addr ∈ state.modified pages then

33: abort

34: if page addr ∈ state.read pages then

35: add page addr to state.modified pages

36: grant write access to page (with COW)
37: else

38: add page addr to state.read pages

39: grant read-only access to page

40: procedure COMMIT(task, state, ctx) ⊲ commit one task
41: WAIT(state.ready or killed(state.pid))
42: success← state.finished and VALIDATE(state, ctx)
43: if not success then

44: state.finished ← false

45: state.pid ← FORK(runTask, task, state)
46: WAIT(state.ready or killed(state.pid))
47: success← state.finished

48: if success then

49: for each page addr in state.modified pages do

50: READ(state.pipe, page addr,PAGE SIZE)
51: add page addr to ctx.modified pages

52: return success

53: procedure VALIDATE(state, ctx) ⊲ conflict checking
54: for each page addr in state.read pages do

55: if page addr ∈ ctx.modified pages then

56: return false

57: return true

prematurely (line 41). The latter might happen if the code tries to
access inaccessible memory, e.g. via an invalid pointer, or because
the program aborts explicitly, e.g. via an assertion. In this case,
state.finished is still false, and the task is considered failed. Other-
wise, validation is performed (line 42) by checking for an intersec-
tion between all pages read by the child process (state.read pages)
and all pages modified since forking it (ctx.modified pages). If there
is an intersection, the child process might have read outdated data,
and is considered failed also.

If any of these two checks fail, the task needs to re-execute
(lines 44 to 47). This new fork will now see all memory updates
by previous tasks, and thus no validation needs to be performed
afterwards, as there cannot be read-after-write conflicts. If this new
process still does not execute the user code without aborting in
between, the commit is aborted. Subsequently, it will be executed
in the main process directly (line 18), such that any signals will be
delivered to the main process.

Finally, if either the first execution or the re-execution suc-
ceeded, the actual commit is performed (lines 49 to 51). The con-
tent of all modified pages is read from the pipe connecting the
two processes, and written to the corresponding location in the
non-speculative memory. All modified pages are registered in the
ctx.modified pages set for validation of subsequent tasks.

3.1.4 Optimizations

Since the first task in each task list can never conflict with any other
task, we do not need to track the pages read by this process. Hence,
all memory is initially read-only instead of inaccessible for the
first task, and the segfault handler immediately grants write access.
The same reasoning applies for re-executed tasks: Since they are
spawned only when all preceding tasks have already committed,
they require no validation, hence no read set needs to be tracked.

This optimization saves a lot of unnecessary context switches due
to page faults induced by read accesses.

Also, if there are more tasks than hardware threads available in
the system, it makes sense to only spawn as many tasks initially
as there are hardware threads, and spawn the next one whenever a
task finishes. This would call for a more sophisticated verification
scheme: Instead of just memorizing which pages have been modi-
fied, a global clock (or version number) can be associated to each
page, tracking which task modified the page last. When forking a
new process, the version of the global memory (i.e. the sequence
number of the last committed task) can be stored, and a memory
conflict is only reported if at commit time any read page has a ver-
sion number greater than this stored version. Thus a conflict is only
detected if the process actually used an outdated memory page.
This concept is similar to time-based STM systems [5, 24]. U-TLS
does not contain this optimization for two reasons: First, our bench-
marks don’t spawn more tasks than hardware threads, which is also
ensured by most automatic parallelization systems. Second, U-TLS
mostly serves as an evaluation vehicle for K-TLS.

3.1.5 Restrictions of U-TLS

Obviously the U-TLS system can only be used on Unix systems
offering the operating system facilities needed, in particular copy-
on-write process forking, protecting individual pages for either
read-only or no access, customized segmentation fault handlers,
and inter-process communication to copy back changed data.

Apart from that, there are also restrictions on the executed user
code. Since conflict checking and commit only handles memory ef-
fects, there should be no other side effects within a task. Unwanted
side effects include any file operations, like opening or closing file
handles, or reading or writing to them. Those effects will neither
be applied in order, nor can they be rolled back. Even though the

4

parent can be protected from damage by these side effects by not
inheriting the file descriptor table, but creating a copy for the child,
this still does not guarantee to preserve the semantics of sequential
execution. Other side effects, like creating new memory mappings,
(un-)protecting memory regions, any file system operation or other
externally visible effects cannot be prevented by this approach ei-
ther.

3.2 Virtual-Memory Based TLS In Kernel Space (K-TLS)

K-TLS works similar to U-TLS, but the major operations are ex-
ecuted in the operating system kernel, instead of from user space.
This not only improves efficiency, but also allows to handle I/O and
other system calls from within speculative tasks, providing general
protection of arbitrary user code (see Section 3.2.5). This section
describes the design of the kernel code as shown in Algorithm 2.

3.2.1 User-Space Interface

The interface for starting speculative parallel execution in K-TLS
is identical to the one of U-TLS (cp. Section 3). The big difference
is that the task list is not processed, but just passed to the kernel
module via an ioctl call. This call returns the number of tasks which
were executed and successfully committed in the kernel. If this
number is smaller than the number of tasks in the list, the remaining
tasks are executed in user space sequentially (lines 4 to 6).

3.2.2 Kernel-Space Interface

The kernel-space routine that implements the ioctl call is KTLSRUN,
which receives the task list from user space. It then allocates a
KTLSContext to store information about the execution of the cur-
rent task list, and an array of N TaskState structures, one for each
task. The KTLSContext consists of a pointer to the kernel struc-
ture for the parent process (parent task), and a map which stores
the version number of each page modified by any speculative task.
This version number is the sequential number of the last task which
modified this page, and is used for conflict detection (see Sec-
tion 3.2.4).

Then, the individual tasks are forked as described in the next
section. Afterwards, they are committed in order (lines 19 to 28).
Just as for U-TLS, the parent first waits for the completion of
the task. Then, it validates the recorded changes of the task (see
Section 3.2.4). If this validation fails, the task is re-spawned with an
up-to-date view of all memory changes committed so far (lines 23
to 24). This re-spawned process does not need to be validated, since
no other task committed since its start. It is checked however, that
the last spawned process for this task (original or re-spawned) does
complete the execution of the user code (line 25). If this check
fails, this means that the process either received a signal because
of illegal memory accesses, or exited explicitly by calling abort
or triggering an assertion. If all checks succeed, then the task’s
memory changes are committed to the main process.

3.2.3 Execution of Speculative Tasks

After a new child process is forked from the main process (line 33),
its memory is made inaccessible by clearing all pages of the re-
specting virtual memory area (VMA) from the page table, and reg-
istering our own page fault handler for this VMA. Then, a hash map
for all accessed memory pages is allocated, and a new memory area
for the stack is created with a size of 16 MB. This memory region
is unprotected, and pages are allocated on demand. The top of the
stack is initialized with a copy of the input data of the task, such that
accessing this data does not trigger a page fault. Also, space for the
output of the task is reserved there. The content of this space will be
copied to the original output location of the task during the commit
phase. Then, the registers of the newly forked task are set such that
the process—once scheduled—will use the newly allocated stack

for its stack frames (remember that the stack grows downwards),
and will execute the user code with the input and output spaces on
the stack as arguments (lines 41 to 45). Finally, the task is sched-
uled for execution by an idle core.

During execution of a speculative task, the kernel module only
becomes active if page faults or system calls (cp. Section 3.2.5)
happen. Page faults are handled in the PAGEFAULT routine. It first
resolves the memory address to the VMA of the current process,
to get a pointer to the TaskState structure of the current task. If
it then finds that this is the first page fault in this task, it sets
the start version of the task to the sequence number of the last
committed task (task.ctx.version). This ensures that there are no
false conflicts reported if another task commits between the fork
point and the first memory access of the current task. Then, the
page is looked up in the page table of the parent task (line 57). If
the page exists, its address is added to the set of touched pages,
and it is returned as the outcome of the page fault. The operating
system then adds the page to the page table of the current task, or
creates a private copy of it in the case of a write page fault. If no
corresponding page is found in the parent process, NO PAGE is
returned by the page fault handler, which results in a segmentation
fault being triggered.

3.2.4 Validation and Commit

The pre-commit validation of a task can be cut short if no task com-
mitted since the first memory access of the task (line 64). Other-
wise, all pages which have been touched by the process (read or
written) are checked against the page versions map in the context
to detect if any of them was modified since the start of the task. If
no conflict is found during this validation, then the actual commit
phase can start.

During commit, for each page which was accessed by the task,
the kernel module compares the physical pages this address maps
to in the task and the parent process (lines 72 to 73). If those
pages differ, then the kernel created a private copy of the page
via the copy-on-write semantics of shared pages, thus we know
that the page was modified. In this case, we update the page table
of the parent process to map addr to the modified page new, and
register the new version of this page in the ctx.page versions map.
Afterwards, we still need to copy the direct output of the task (cp.
Section 3) from the child’s stack back to the parent (lines 77 to 78).

3.2.5 Handling of System Calls

TLS systems often promise full isolation of speculative tasks, but
this merely includes memory effects. As a kernel module, K-TLS
also provides full isolation in the presence of system calls like I/O
or low-level memory operations like mmap or mprotect. To this
end, the kernel module manipulates the system call table which
stores the pointers to the kernel-mode system call handlers. All

entries corresponding to forbidden system calls2 are rewritten such
that a K-TLS routine is invoked on an attempt to perform a system
call. This routine first checks whether the current process executes
a speculative K-TLS task. If not, the routine jumps to the original
system call handler. This check only requires a small number of
memory accesses, and produces no observable overhead. If the
process executes a speculative task, the task is immediately aborted.

3.2.6 Optimizations

For the sake of simpler presentation, we slightly simplified some
of the implementation details in the previous sections. For perfor-
mance reasons, the actual implementation sometimes deviates from

2 A small number of system calls is white-listed because they do not modify
any state in their process, e.g. nanosleep or gettimeofday.

5

Algorithm 2 Pseudo-code implementation of K-TLS

1: procedure RUNTASKS(tasks) ⊲ user-space interface
2: fd ← OPEN(”/dev/ktls”)
3: numExec← IOCTL(fd,KTLS RUN, tasks)
4: for i← numExec to len(tasks)− 1 do

5: functionPtr ← tasks[i].fun

6: functionPtr(tasks[i].in, tasks[i].out)

7: procedure KTLSRUN(tasks) ⊲ kernel-space entry
8: N ← len(tasks)
9: ctx← allocate KTLSContext

10: ctx.parent task← current

11: ctx.start version← 0
12: ctx.page versions← allocate hash map

13: states← allocate TaskState[N]
14: for i← 0 to N − 1 do

15: states[i].sequence nr← i
16: states[i].ctx← ctx

17: SPAWNTASK(tasks[i], states[i])

18: exec← 0
19: while exec < N do

20: WAITFORCOMPLETION(states[exec].task)
21: valid ← VALIDATE(ctx, states[exec])
22: if not valid then

23: SPAWNTASK(tasks[exec], states[exec])
24: WAITFORCOMPLETION(states[exec].task)

25: if states[exec].task.exit code 6= 0 then

26: break

27: COMMIT(ctx, states[exec])
28: exec← exec + 1
29: for i← exec to N − 1 do

30: KILL(states[i].task)

31: return exec

32: procedure SPAWNTASK(task, state) ⊲ spawn new task
33: state.task← COPYPROCESS(current)
34: PROTECTMEMORY(state.task)
35: state.touched pages← allocate hash set

36: state.stack← ALLOCATEVMA(state.task, 16 ∗ 220)
37: stackTop← state.stack + 16 ∗ 220

38: outputSpace← stackTop− len(task.output)
39: inputSpace← outputSpace− len(task.input)
40: inputSpace[0 : len(task.input)]← task.input

41: state.task.regs.rbp← inputSpace

42: state.task.regs.rsp← inputSpace

43: state.task.regs.rip← task.fun

44: state.task.regs.rdi← inputSpace

45: state.task.regs.rsi← outputSpace

46: SCHEDULETASK(state.task)

47: procedure PROTECTMEMORY(task) ⊲ setup virt. memory
48: for each vma in task.vmas do

49: if vma.flags & VM WRITE then

50: CLEARPAGES(task, vma)
51: vma.page fault handler← PAGEFAULT

52: vma.vm private data← task

53: procedure PAGEFAULT(addr) ⊲ page fault handler
54: state← FINDVMA(current, addr).vm private data

55: if state.touched pages is empty then

56: state.start version← state.ctx.version

57: page← PAGETABLEWALK(task.parent, addr)
58: if page exists then

59: add addr to state.touched pages

60: return page

61: else

62: return NO PAGE

63: procedure VALIDATE(ctx, state) ⊲ pre-commit validation
64: if state.start version = ctx.version then

65: return true

66: for each addr in state.touched pages do

67: if ctx.page versions[addr] > state.start version then

68: return false

69: return true

70: procedure COMMIT(ctx, state) ⊲ commit speculative state
71: for each addr in state.touched pages do

72: newP← PAGETABLEWALK(state.task, addr)
73: oldP← PAGETABLEWALK(ctx.parent task, addr)
74: if newP 6= oldP then
75: PAGETABLEUPDATE(ctx.parent task, addr, newP)
76: ctx.page versions[addr]← state.sequence nr

77: outputSpace← state.stack + 16 ∗ 220 − len(task.output)
78: task.output← outputSpace[0 : len(task.output)]

the description in the text. We give an overview over these opti-
mizations below.

In Algorithm 2, the main process first forks each task, and
then sets up the forked task for speculative execution. The real
implementation actually does most of the setup in the forked task
itself, thereby executing it in parallel to the setup of other tasks and
removing its delay from the critical path. This is achieved by setting
the instruction pointer initially to the newly allocated stack area,
and having the stack page fault handler execute the setup on the
first page fault (this handler otherwise just returns a newly allocated
page). The parent then only copies the current process, sets up the
stack VMA and the instruction pointer, and schedules the task.

We also optimize the actual forking of the task: Instead of
performing a deep copy of the parent page table—as it is usually
done in a fork—and then clearing all page table entries which
belong to protected memory (line 50), we just skip copying the
respective VMAs and associated page table entries, and allocate
new VMAs during the aforementioned setup. Similarly, the file
descriptor table does not need to be copied, since system calls
working on these open files are prohibited anyway.

Since spawning new processes still requires significant time
(see Section 4.1.1), we avoid repeated forking by reusing finished

processes for the execution of later tasks. To this end, after com-
mitting or rolling back a finished task, the corresponding process
does not exit. Instead, it clears all page table entries belonging to
writable VMAs, puts itself in a waiting queue and sleeps until it is
woken up to either execute another speculative task, or because the
parent process is exiting.

4. Evaluation

Since K-TLS requires loading a kernel module into the operating
system of the evaluation system, all evaluation is performed in a
virtual machine. Intel virtualization extensions (VT-x) are enabled
to minimize the runtime impact of virtualization. Additionally, sev-
eral non-K-TLS benchmarks are run directly on the host system.
We verify that the time measures match those in the virtual ma-
chine. The host system is equipped with a quad-core Intel i7 870
CPU running at 2.93 GHz and 16 GB of main memory. The virtual
machine has access to all four CPUs, and 8 GB of memory. For each
benchmark, we report the arithmetic mean over 10 runs. No other
processes were executing on both the host and the guest system.

We compare the U-TLS and K-TLS systems described in Sec-
tion 3 against the state-of-the-art STM system TinySTM, which
provides similar guarantees as TLS. We improved the internal us-

6

1 2 4 8 16 32 64

1

4

16

64

NUMBER OF TASKS SPAWNED

R
U

N
T

IM
E

[M
IL

L
IS

E
C

O
N

D
S
] Threaded (e.g. STM)

U-TLS

K-TLS

Figure 1. Overhead of spawning a task list of varying size. Since
STM uses threads instead of processes, it spawns tasks the fastest
(around 0.3 ms). U-TLS uses a fork system call per task, which
takes around 1.2 ms, plus initial 4 ms per task list. K-TLS forks
the process directly in the kernel, requiring less context switches
for protecting memory. K-TLS takes around 1.5 ms initially plus
0.6 ms per spawned task. Additionally, it reuses tasks once they
finish execution, leading to less actually forked tasks for larger
numbers.

age of data structures of TinySTM to achieve constant complexity
per access, instead of linear in the original implementation. A sim-
ilar approach was proposed by Harris et al. [10]. This is necessary
because the memory footprints of TLS tasks are typically much
larger than those of traditional transactional memory benchmarks.
Also, automatic parallelizers typically exclude tasks which are too
small for the parallelization and communication overhead to pay
off. In order to preserve the sequential semantics during speculative
parallel execution in STM, we establish a linear commit order by
waiting for all predecessor tasks to finish before starting the commit
phase.

4.1 TLS Overhead

The first part of the evaluation measures the overhead of the prim-
itive operations of a TLS system: the time for spawning tasks, the
overhead that the speculation system induces during the parallel ex-
ecution of the tasks, and the validation and commit time. For each
of these figures, we run a microbenchmark as described in the fol-
lowing sections.

4.1.1 Spawning Tasks

Most runtime systems that track memory accesses explicitly (like
STM) execute parallel tasks in individual threads. U-TLS and
K-TLS use virtual memory and therefore have to fork processes
which execute the tasks. Hence, their initial overhead is larger,
whereas the overhead during task execution is smaller.

In this benchmark, each run creates a task list of N empty tasks,
where N varies between 1 and 64. We measured the overall wall-
clock execution time of executing this task list for the different sys-
tems (STM, U-TLS, K-TLS). In all cases, the time for validating
and committing the empty transactions is negligible; the times re-
ported are indeed caused by spawning the threads or processes, and
protecting the memory. All numbers are in the range of millisec-
onds. Therefore, we cross-validated the experiment with 100 and
1000 iterations and validated that the measurements are reliable.

Figure 1 shows the result of this benchmark. As expected, fork-
ing processes takes considerably longer than spawning threads, as
the operating system has to clone more resources like the signal ta-
ble or page table. STM takes around 0.2 ms per task if the number

of threads spawned is below the number of cores, and up to 0.5 ms
otherwise. U-TLS takes about 4 ms for spawning a single task via
the fork system call, and 1.2 ms for each additional one. Addi-
tional tasks cause less overhead than the first task, since some setup
work of the tasks—like protecting writable memory via mprotect
calls—is executed in parallel by all tasks. K-TLS takes about 2 ms
for spawning the first task, and between 0.5 and 0.6 ms per addi-
tional task. These numbers are lower than for U-TLS because cre-
ating new processes and protecting its memory requires less context
switches if executed directly in the kernel (cp. Section 3.2.6). Addi-
tionally, K-TLS reuses the processes after finishing the execution of
one task. This reduces the cost per additional task to below 0.2 ms.

4.1.2 Execution Overhead

The second source of overhead is the tracking of memory accesses
during runtime. In STM this is done explicitly in software by keep-
ing a read and a write set, which is inspected and updated during
transactional load and store operations. In U-TLS and K-TLS the
overhead is caused by two actions: copying memory pages which
have been written, and context switches between user space and
kernel space for each page fault. K-TLS reduces context switches
by handling the respective page faults directly in the kernel.

In order to compare the runtime overhead of the different sys-
tems, we run a benchmark in which four parallel tasks perform
random write accesses to disjoint memory blocks. The memory
area which is updated by each task has a size of 16 MB. Fig-
ure 2(a) shows the runtime for every system with respect to a vary-
ing number of memory accesses. Figure 2(b) shows the correspond-
ing speedup against sequential execution. Note that all numbers are
reported on a logarithmic scale on both axes.

For a very low number of memory accesses (up to 128), the
most efficient execution is sequential. Above this limit, paralleliza-
tion without any runtime system gives a speedup. Interestingly, be-
tween 2

12 and 2
17, the speedup is even super-linear, probably due

to better cache utilization in the parallel cores. STM and U-TLS
never succeed to beat the sequential runtime. For STM, part of this
bad performance can be explained by the rollbacks it performs. Be-
cause TinySTM maps memory addresses to a lock array of fixed
size, there are hash collisions which provoke false rollbacks. From
2
16 on, TinySTM executes, on average, more than one rollback per

execution of four tasks, and reaches a 50% rollback rate for more
writes. U-TLS has surprisingly high overheads for mid-sized num-
ber of writes. Profiling this reveals that the repeated change of ac-
cess rights on individual memory pages fragments the virtual mem-
ory descriptor in the kernel, and increases the number of VMAs up
to several thousands. The Linux kernel organizes the virtual mem-
ory descriptor as a linked list. Because it is traversed on every page
fault (and other operations), it leads to a severe slowdown in the
kernel code. As more and more pages get unprotected, the respec-
tive memory areas are merged again, mitigating this slowdown for
larger memory footprints. K-TLS on the other hand outperforms se-
quential execution from 2

18 accesses upwards, and converges to the
unsafe parallel execution at higher numbers. It avoids the problem
of fragmenting the virtual memory descriptor because it directly
updates page table entries instead of virtual memory areas. This is
only possible in kernel space.

4.1.3 Validation and Commit

After parallel execution, all systems have to validate the set of reads
and writes (commit). STM does this on the granularity of a word
in software, U-TLS and K-TLS use page level granularity for both
tasks. Figures 2(c) and 2(d) show the time spent in validation and
commit.

The validation time is negligible for all configurations. For the
missing STM values, we measured less than one microsecond per

7

Sequential STM U-TLS K-TLS

20 24 28 212 216 220 224 228 232
2−4

20

24

28

212

216

220

NUMBER OF WRITES

R
U

N
T

IM
E

[M
IL

L
IS

E
C

O
N

D
S
]

(a) Runtime for varying number of writes

20 24 28 212 216 220 224 228 232

4×

1×

1

4
×

1

16
×

1

64
×

NUMBER OF WRITES

S
P

E
E

D
U

P
O

V
E

R
S

E
Q

U
E

N
T

IA
L

(b) Speedup over sequential execution

20 24 28 212 216 220 224 228 232
2−12

2−10

2−8

2−6

2−4

2−2

NUMBER OF WRITES

V
A

L
ID

A
T

IO
N

T
IM

E
[M

S
]

(c) Time spent for conflict checking

20 24 28 212 216 220 224 228 232

2−4

20

24

28

NUMBER OF WRITES

C
O

M
M

IT
T

IM
E

[M
S
]

(d) Time spent for committing

Figure 2. Performance of the different runtime systems on an artificial benchmark, in which each task randomly updates memory cells
within a 16 MB memory block. For a small number of memory accesses, the STM system performs best, but still falls behind sequential
execution. K-TLS consistently outperforms U-TLS. It provides speedups over sequential execution for mid-sized to large-sized matrices, and
finally reaches the perfect speedup of 4X.

run. Validation time never exceeds one percent of overall execution
time, for most configurations it is orders of magnitude lower.

The time spent for committing is much larger. For both TLS
systems it increases until about 4096 memory accesses, which is
the point where most memory pages in the 16 MB range have
been touched at least once. From this point on, the commit time
stabilizes because no new pages have been touched. STM commits
faster than U-TLS in the midrange, where memory accesses are
very sparse on the pages. Then, it increases further, until also most
individual words have been written at least once. K-TLS shows the
least commit time over the full range.

4.2 Usage in Automatic Parallelization

Section 4.1 shows that all operations of a TLS system are sped
up by implementing them directly in the operating system. This
section evaluates how these performance benefits translate into
more speedup of speculatively parallelized programs.

To this end, we integrated all three systems (STM, U-TLS
and K-TLS) into the automatic parallelization framework Sam-
bamba [30]. The compiler extracts functions for the individual
tasks, passes input and output values via an individual memory
structure, and places calls to the API of TLS to create a new list,
add a task to the list, spawn the execution of the list, and finally

delete the list. If a loop is to be parallelized, the system allocates
a task list before entering the loop, and in each iteration adds the
corresponding task(s) to the list. Once 16 tasks are collected (or the
loop exits), the task list is executed and then cleared.

The benchmarks we have chosen for this evaluation are the
serial elision of the Cilk [2] program suite. This suite contains
mostly programs working in a divide-and-conquer manner, writing
the computed results in a shared array or matrix. This shared object
often causes data dependencies to be detected statically, because
state-of-the-art alias analyses cannot proof the accesses disjoint.
Additionally, there are real data dependencies caused by memory
allocation, accesses to shared objects on the heap, or premature
termination via assertions or explicit aborts.

Table 2 lists the programs used for the evaluation, and their re-
spective parameters. Several programs from the Cilk suite were ex-
cluded either because they do not operate on shared data (and there-
fore need no TLS), use explicit locking, or use Cilk intrinsics like
inlets for which there exists no serial elision. The following shortly
describes the programs which could be speculatively parallelized.

Cilksort a sorting algorithm which uses mergesort with parallel
sorting and parallel merging, and switches to quicksort for
smaller arrays.

8

Table 2. Characteristics and performance of eight programs from the Cilk program suite, automatically parallelized using the Sambamba
framework [30]. All programs require speculation, either because of possible side effects like termination in parallel tasks, because of real

data dependences, or because of imprecision in the static analyses. Speedups below 1 (like 1

S
×) represent slowdowns of factor S. K-TLS

provides much better performance than user-space TLS in all eight programs. We do not report numbers for STM, because it did not terminate
within two hours on six of the programs, and when it terminates, it performs much worse than U-TLS.

program input size n
u

m
b

er
o

f
sp

ec
u

la
ti

v
e

ta
sk

s

n
u

m
b

er
o

f
ro

ll
b

ac
k

s

p
er

ce
n

ta
g

e
o

f
ro

ll
b

ac
k

s

av
g

.
n

u
m

b
er

o
f

re
ad

p
ag

es

av
g

.
n

u
m

b
er

o
f

w
ri

tt
en

p
ag

es

av
g

.
ru

n
ti

m
e

p
er

ta
sk

o
v
er

al
l

ru
n

ti
m

e
se

q
u

en
ti

al

o
v
er

al
l

ru
n

ti
m

e
K

-T
L

S

o
v
er

al
l

ru
n

ti
m

e
U

-T
L

S

sp
ee

d
u

p
K

-T
L

S

sp
ee

d
u

p
U

-T
L

S

Cilksort 4194304 8 0 0 % 6148 4096 347.3 ms 2.06 s 0.99 s 3.32 s 2.09× 1

1.61
×

Fft 4194304 18 1 5.6 % 7769 1294 102.5 ms 1.21 s 1.04 s 126.21 s 1.17× 1

104
×

Heat 4096x1024x100 204 2 1.0 % 8088 4056 47.9 ms 3.72 s 6.88 s 2506.25 s 1

1.85
× 1

674
×

Lu 2048 756 147 19.44 % 49 18 16.9 ms 13.44 s 6.19 s 9.62 s 2.17× 1.40×

Matmul 2048 2 0 0 % 8195 2048 25764.2 ms 49.64 s 24.88 s 39.66 s 1.99× 1.25×

Plu 2048 150 0 0 % 327 135 99.9 ms 12.95 s 6.12 s 9.21 s 2.12× 1.41×

Spacemul 2048 8 0 0 % 6149 2048 2814.3 ms 17.87 s 5.14 s 5.45 s 3.48× 3.28×

Strassen 2048 8 0 0 % 6149 2048 3467.8 ms 21.90 s 7.55 s 100.98 s 2.90× 1

4.61
×

Geometric mean: 1.82× 1

3.99
×

Fft an implementation of fast fourier transform.

Heat which simulates heat diffusion by running a number of Jacobi
iterations. The rows of the grid which is transformed in each
iteration are allocated on the heap and accessed via two levels
on indirection.

Lu a naive implementation of LU decomposition, which factors a
matrix as the product of a lower triangular matrix and an upper
triangular matrix.

Matmul which implements the multiplication of two rectangular
matrices by divide and conquer.

Plu another implementation of LU decomposition with partial piv-
oting.

Spacemul an optimized implementation for matrix multiplication
of square matrices.

Strassen which implements the Strassen algorithm for multiplying
square matrices.

Even though there are three implementations of matrix multi-
plication, they show very different memory access patterns. Mat-
mul recursively splits the matrix along the largest dimension, which
leads to striped memory accesses if the largest dimension is not the
X dimension. Spacemul splits the square matrix in four quarters
in each recursion step, providing more parallelization opportuni-
ties. Strassen also splits the matrix into four quarters, but processes
them in a different order, leading to less consecutive accesses.

For all programs, we generated the serial elision, which resem-
bles a correct sequential execution of the program. We then ap-
plied the parallelization analysis of Sambamba, and placed manual
parallelization hints for speculation because Sambamba does not
support speculation yet. In all programs, we changed the memory
allocation such that large objects are automatically aligned to 4096
bytes. This ensures that partitions of the data by a power of two are
likely to reside on separate pages. This transformation could also be

fully automated by a parallelizing compiler by installing a custom
memory allocator or transforming all memory allocation sites.

The parallelization is straightforward to apply in all cases. Be-
tween one and four locations are parallelized in each program.
The locations are always at the kernel of the computation, which
is either a recursive function, or a loop. Speculation is often only
needed because of the imprecision of static analyses. Experts can
re-implement these algorithms without the need for speculation.
Automatic approaches however can not.

Figure 3 plots the speedups measured on the eight programs,
with error bars showing the standard deviation. We observe that
while U-TLS is only able to speed up four of the programs, K-TLS
provides speedups for seven of them. Also, K-TLS is superior to
U-TLS in all cases. The geometric mean of the speedup of K-TLS
is 1.82×, while U-TLS shows a slowdown of 3.99×. This sums
up to a 7.28× speedup of K-TLS over U-TLS. We also ran the
programs with STM instrumentation, but—like others before [1,
3, 32]—observe that it is unusable in the context of automatic
parallelization. STM only terminated on two programs within a
timeout of two hours. On Cilksort it shows slowdowns of 13×, and
on Plu of 78×, which is much slower than U-TLS.

Interestingly, both U-TLS and K-TLS still provide speedup for
the Lu program, where the percentage of rollbacks is close to 20%.
These slowdowns are caused by the many small tasks which operate
on data which does not span multiple pages, resulting in false
conflicts being detected. Note that the average runtime of one task
is only 16.9ms in this benchmark, and the number of read and
written pages is the lowest of all programs. This suggests that TLS
even provides speedups for low to medium sized parallel tasks.

The large slowdowns of U-TLS are often caused by scattered
memory accesses, which partition the virtual memory area of the
process (see Section 4.1.2). On Fft and Strassen, this is caused by
the accesses to the shared array. Heat allocates the rows of the
grid in the heap, so they are not consecutive either. Heat is also
the only program which executes system calls inside of speculative

9

C
il

k
so

rt

F
ft

H
ea

t

L
u

M
at

m
u

l

P
lu

S
p

ac
em

u
l

S
tr

as
se

n

1

8
×

1

4
×

1

2
×

1×

2×

4×

S
P

E
E

D
U

P
O

V
E

R
S

E
Q

U
E

N
T

IA
L

E
X

E
C

U
T

IO
N

U-TLS K-TLS

1

104
×

1

674
×

Figure 3. Comparison of the speedup achieved by automatic par-
allelization of eight programs from the Cilk suite. K-TLS outper-
forms the state-of-the-art U-TLS as well as STM (not shown in this
plot because all bars are far below the negative limit).

tasks (in this case a brk system call to allocate more heap space).
It therefore triggers a rollback in K-TLS. In U-TLS, the respective
tasks were manually excluded because the parallel program would
crash otherwise.

4.2.1 Performance vs. Input Size

To further evaluate the performance of speculatively parallelized
programs on varying input sizes, we chose the Strassen program
for further investigation. Remember that Strassen recursively pro-
cesses quarters of the matrix, hence the memory accesses are not
consecutive, but in a striped manner. This also makes it particularly
difficult to prove the memory accesses in the parallel tasks disjoint,
hence speculation is required for automatic parallelization.

Figures 4(a) and 4(b) show the result of executing this program
either sequentially, or parallel with STM, U-TLS or K-TLS for con-
flict detection. The overall picture is comparable to Figure 2, but
this time U-TLS does not show huge overheads. This is because the
Strassen algorithm writes the matrix cells successively, so the vir-
tual address space does not as fragmented as for random accesses.
At the smallest measured size of 16, the implementation does not
recurse, so no parallelization is performed. The parallel code path
exists though, resulting in less optimized code being generated also
for the executed sequential code path. This causes the slowdown of
several microseconds.

For matrices up to 512 × 512 elements, each row spans not
more than one memory page, so the quarters which are processed
in parallel share memory pages. Therefore, both K-TLS and U-TLS
detect memory conflicts, and need to re-execute each task. For
matrices above this limit, K-TLS again converges to the parallel
execution without a runtime system. All other systems fail to give
speedups in this benchmark. For U-TLS, we observe a performance
loss from 1024 upwards. This is because for smaller matrices the
modified pages form continuous regions, and these are much more
efficient to communicate through the pipe (cp. Section 3.1.2) than
the individual pages for larger sizes.

Sequential STM U-TLS K-TLS

24 26 28 210 212

2−8

2−4

20

24

28

212

216

220

224

MATRIX SIZE

R
U

N
T

IM
E

[M
IL

L
IS

E
C

O
N

D
S
]

(a) Runtime of the strassen algorithm

24 26 28 210 212

4×

1×

1

4
×

1

16
×

1

64
×

1

256
×

1

1024
×

MATRIX SIZE

S
P

E
E

D
U

P
O

V
E

R
S

E
Q

U
E

N
T

IA
L

(b) Speedup over sequential execution

Figure 4. Performance of the automatically parallelized Strassen
implementation from the Cilk program suite. Both STM and U-TLS
fail to provide any speedup. K-TLS outperforms sequential execu-
tion once the matrices are large enough such that each row spans
multiple memory pages. In this case, we come close to the perfect
speedup of 4×.

5. Conclusion

We have presented K-TLS that is, to the best of our knowledge, the
first thread-level speculation system that uses the virtual memory
system and is implemented entirely in kernel space. Unlike existing
TLS systems, K-TLS not only provides isolation of memory effects
but also for I/O effects and other system interactions. Our experi-
mental evaluation shows that K-TLS outperforms user-space TLS
systems in terms of spawning tasks, conflict detection, and commit.
Furthermore K-TLS is able to maintain performance even in the
presence of a non-negligible amount of rollbacks. Where the over-
head of the user-space system amortizes only for speculative tasks
with a very large footprint, K-TLS converges much earlier against
the performance of unprotected parallel execution. For a specula-
tively parallelized version of the Strassen matrix multiplication al-
gorithm, K-TLS is the only speculation system able to match the
speedup of unprotected parallel execution for medium input sizes.
Our results indicate that kernel-space TLS systems can provide sig-
nificant efficiency gains as well as improved soundness guarantees
for speculative parallelization.

10

References

[1] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe
Multithreaded Programming for C/C++. In OOPSLA ’09, pages
81–96, 2009.

[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An Efficient Multithreaded Runtime
System. In PPOPP ’95, pages 207–216, 1995.

[3] C. Cascaval, C. Blundell, M. Michael, H. Cain, P. Wu, S. Chiras,
and S. Chatterjee. Software transactional memory: Why is it only a
research toy? Queue, 6(5):46–58, nov 2008.

[4] M. Cintra and D. R. Llanos. Toward efficient and robust software
speculative parallelization on multiprocessors. In PPoPP ’03, pages
13–24, 2003.

[5] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In
DISC ’06, pages 194–208, 2006.

[6] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang.
Software behavior oriented parallelization. In PLDI ’07, pages 223–
234, 2007.

[7] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of
word-based software transactional memory. In PPoPP ’08, pages
237–245, 2008.

[8] P. Felber, C. Fetzer, P. Marlier, and T. Riegel. Time-Based Software
Transactional Memory. IEEE TPDS, 21(12):1793–1807, Dec. 2010.

[9] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and
K. Olukotun. The Stanford Hydra CMP. Micro, 20(2):71–84, 2000.

[10] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory
transactions. ACM SIGPLAN Notices, 41(6):14–25, June 2006.

[11] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In ISCA ’93, pages 289–300,
1993.

[12] B. Hertzberg and K. Olukotun. Runtime automatic speculative
parallelization. In CGO ’11, pages 64–73, 2011.

[13] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Speculative
thread decomposition through empirical optimization. In PPoPP ’07,
pages 205–214, 2007.

[14] K. Kelsey, C. Zhang, and C. Ding. Fast Track: Supporting Unsafe
Optimizations with Software Speculation. In PACT ’07, pages 414–
429, Sept. 2007.

[15] H. Kim, N. P. Johnson, J. W. Lee, S. A. Mahlke, and D. I. August.
Automatic speculative DOALL for clusters. In CGO ’12, pages
94–103, 2012.

[16] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and
J. Torrellas. POSH: A TLS Compiler that Exploits Program Structure.
In PPoPP ’06, pages 158–167, Mar. 2006.

[17] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizing sequential
applications on commodity hardware using a low-cost software
transactional memory. In PLDI ’09, pages 166–176, 2009.

[18] C. E. Oancea, A. Mycroft, and T. Harris. A lightweight in-place
implementation for software thread-level speculation.

[19] J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. S. Lam, and
K. Olukotun. Software and hardware for exploiting speculative
parallelism with a multiprocessor. Technical report, 1997.

[20] H. K. Pyla, C. Ribbens, and S. Varadarajan. Exploiting coarse-grain
speculative parallelism. In OOPSLA ’11, pages 555–574, 2011.

[21] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August.
Speculative parallelization using software multi-threaded transactions.
In ASPLOS ’10, pages 65–76, 2010.

[22] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August.
Decoupled software pipelining with the synchronization array. In
PACT ’04, pages 177–188, 2004.

[23] L. Rauchwerger and D. A. Padua. The LRPD test: Speculative
run-time parallelization of loops with privatization and reduction
parallelization. IEEE TPDS, 10(2):160–180, 1999.

[24] T. Riegel, P. Felber, and C. Fetzer. A Lazy Snapshot Algorithm with
Eager Validation. In S. Dolev, editor, DISC ’06, pages 284–298, 2006.

[25] P. Rundberg and P. Stenström. An All-Software Thread-Level Data
Dependence Speculation System for Multiprocessors. Journal of

Instruction-Level Parallelism, 3(2001), 2002.

[26] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: a high performance software transactional
memory system for a multi-core runtime. In PPoPP ’06, pages 187–
197, Mar. 2006.

[27] N. Shavit and D. Touitou. Software transactional memory. In
PODC ’95, pages 204–213, 1995.

[28] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors.
ACM SIGARCH Computer Architecture News, 23(2):414–425, May
1995.

[29] J. G. Steffan and T. C. Mowry. The potential for using thread-level
data speculation to facilitate automatic parallelization. In HPCA ’98,
pages 2–13, 1998.

[30] K. Streit, J. Doerfert, C. Hammacher, A. Zeller, and S. Hack.
Generalized Task Parallelism. TACO, 12(1), 2015.

[31] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or Discard
execution model for speculative parallelization on multicores. In
Micro ’08, pages 330–341, Nov. 2008.

[32] C. Tian, M. Feng, and R. Gupta. Supporting speculative parallelization
in the presence of dynamic data structures. In PLDI ’10, pages 62–73,
June 2010.

[33] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and
D. I. August. Speculative decoupled software pipelining. In PACT ’07,
pages 49–59, 2007.

[34] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-Tabatabai. Code
Generation and Optimization for Transactional Memory Constructs in
an Unmanaged Language. In CGO ’07, pages 34–48, Mar. 2007.

11

