
Interference Graphs of Programs in SSA-form

Interner Bericht 2005-15

Sebastian Hack

Institut für Programmstrukturen und Datenorganisation
Fakultät für Informatik
Universität Karlsruhe

ISSN 1432-7864

Abstract

Register allocation is the task of mapping the variables in a program to processor
registers. This problem is often reduced to coloring the so-called interference
graph which the compiler computes from the input program. Theoretically, for
each undirected graph there is a program having that graph as its interference
graph. In this paper, we show that interference graphs of programs in SSA-form
are chordal.

1 Introduction

The register allocation problem was stated as a graph coloring problem by
Chaitin [CAC+81]. For each variable in the program, there is a vertex in
the interference graph. Whenever the compiler finds out that two variables can-
not be held in the same register (they are simultaneously live), an edge is drawn
between the two corresponding vertices in the interference graph.

It is easy to see, that each undirected graph is the interference graph of
some program. Consider an undirected graph G = (V,E). Following program
has G as its interference graph: for each vertex in V , there is a variable in this
program. For each edge between two vertices v and w (we will shortly write
vw ∈ E), the following fragment causes an interference between the variables
for v and w:

v := 0
w := 1
v := v + w

Repeating these three lines for each edge in G yields a program which has G
as interference graph. For example, consider the graph G in figure 1(a) and its
generating program in figure 1(b).

v1

v2

v3v4

v5

(a) Interference Graph G

v1 := 0
v2 := 1
v1 := v1 + v2

· · ·
v5 := 0
v1 := 1
v5 := v5 + v1

(b) The program

Figure 1: A program and its interference graph G

Andersson [And03] posed the question, whether interference graphs are
always perfect (see definition 6) and validated a weaker condition, the so-called
1-perfectness for a set of interference graphs produced by several compilers, ex-
perimentally. However, pathological counterexamples can be constructed easily,
as one can see in figure 1(b). This graph is the so called C5 (see section 3) and
is the smallest example of a non-perfect graph.

This changes if we do not consider variables but values for allocation. The
essential property of the SSA-form is, that for each value, there is exactly one

1

variable or equivalently, each variable is (statically) only assigned once. So,
looking at the example above, the edge from v5 to v1 can only exist, if v5 is
assigned twice which violates the SSA property. This suggests that not every
undirected graph might occur as an interference graph to programs in SSA-form.
In fact, the interference graphs of SSA-form programs are just the set of chordal
graphs. Chordal graphs are known to be perfect (see [Gol80] for example).

The rest of this report is organized as follows: In the next section, we pre-
cisely describe our model of a program, the SSA-form of a program and the
notion of liveness in our setting. In section 3, we quote some basic definitions
from graph theory. Finally, in section 4, we prove that the interference graphs
of programs in SSA-form are chordal.

2 Prerequisites

2.1 Programs

We assume a program to be given by its control flow graph (CFG). A CFG is a
directed graph, whose nodes are called labels. Each label in a CFG corresponds
to one instruction1 of the form

` : (y1, . . . , ym) := τ(x1, . . . , xn)

where Op` = τ is the instruction performed at this label defining the variables
y1, . . . , ym using Arg` = {x1, . . . , xn}. Furthermore, each label ` has a set of
control flow predecessor labels

P` = {P 1
` , . . . , Pn

` }

If `′ is the i-th predecessor of ` we also write `′ →i `, if the predecessor index
is irrelevant, we simply write `′ → `. Each CFG has a distinct label start
with Pstart = ∅. A sequence of labels p = {`1, . . . , `n} is called a path, if
`1 → `2, . . . , `n−1 → `n. We then also write p : `1 → . . . → `n. As we require
our program to be in SSA-form, each variable is only assigned once. We will
denote the label at which a variable v is defined by Dv.

Special care has to be taken for φ-instructions. SSA semantics states, that
all φ-instructions in a basic block are simultaneously evaluated upon entering
that block. Thus, we have to put all φ-instructions at the start of a block into
one label. Alternatively, we define an instruction φ′, which subsumes such a set
of φ-instructions. We replace

` : y1 = φ(x11, . . . , x1n)
. . .

ym = φ(xm1, . . . , xmn)

1Note, that this setting implies that the instructions are already scheduled. We explicitly
do not consider the kind of register allocation problems stated by Sethi [Set75], in which a
schedule has to be found to minimize the register pressure.

2

by the more concise:

` : (y1, . . . , ym) = φ′(x11, . . . , x1n, . . . , xm1, . . . , xmn)

which sets yi = xij if ` was reached via P j
` . For convenience, we define

Arg′`[j] = {xij | 1 ≤ i ≤ m}

to refer to the arguments of a φ′-instruction corresponding to P j
` .

The notion of dominance is crucial to programs in SSA-form. We say, a
label `1 dominates a label `2, if each path from start to `2 contains `1 and
write `1 � `2.

2.2 Liveness

The interference graph G of a program is built based on the information retrieved
by the liveness analysis, which computes for each label the set of live variables
according to following definition:

Definition 1 (Liveness). A variable v is live at a label `, if there is a path from
` to a usage of v not containing a definition of v.

Assume the set of variables live at a label ` is {v1, . . . , vn}, then there is an
edge vivj ∈ EG for each vi, vj with 1 ≤ i < j ≤ n.

Remark 1 (Interference). Two variables v and w interfere iff there exists a label
at which both are live.

For ordinary instructions, it is clear that all their arguments interfere due to
definition 1. However, this is not true for φ′-instructions because the traditional
definition of usage does not hold for φ′-instructions. If v is an argument to a
φ′-instruction at a label `, it depends on the predecessor by which ` is reached,
if v is used at ` or not. So, to make the traditional definition of liveness work,
we have to incorporate the predecessors of a label into the notion of usage:

Definition 2 (Usage).

usage : N× Labels×Variables → B

(i, `, v) 7→

{
v ∈ Arg` if Op` 6= φ′

v ∈ Arg′`[i] if Op` = φ′

Now, a usage is not only dependent on a label and a value but also on a
number which represents the predecessor by which the label was reached. If the
instruction at a label is not φ′, this definition resembles the common concept of
usage by simply ignoring the predecessor index.

The traditional definition of liveness quoted above, uses paths which end in
usages of some variable to define liveness. In this traditional setting, usages
and paths are unrelated. Since with definition 2, a usage is also dependent on
control flow information, it is straightforward to merge usage and paths into
one term:

3

Definition 3 (Usepath). A path p : `1 → · · · → `n is a usepath from `1 to `n

concerning a value v, iff v is used at `n regarding this path. More formally:

usepath : Paths×Variables → B

(p : `1 → . . . → `n, v) 7→

{
usage(i, `n, v) if p = `1 →i `n

usepath(`2 → · · · → `n, v) otherwise

Using this definition of usage together with the traditional definition of live-
ness stated above, one obtains a realistic model of liveness in SSA programs:

Definition 4 (Liveness). A value v is live at a label `1 iff there exists a label
`n with usepath(`1 → `2 → · · · → `n, v) and Dv 6∈ {`2, . . . , `n}

We use the definition of usepaths to re-formulate the notion of a strict pro-
gram coined by [BCH+02].

Definition 5 (Strict Program). A program is called strict, iff for each value v,
each path from start to some label ` with usepath(start → · · · → `, v) contains
the definition of v.

3 Chordal Graphs

In this section, we quote definitions from basic graph theory and the theory
of perfect graphs important to this report. Let G = (V,E) be an undirected
graph. We call a graph G complete, iff for each v, w ∈ VG, there is an edge
vw ∈ EG and denote it by Kn, n = |VG|. We call H an induced subgraph of
G, if VH ⊆ VG and for all nodes v, w ∈ VH , vw ∈ EG ⇐⇒ vw ∈ EH holds.
H is called a clique if H is complete and H ⊆ G for some G. ω(G) is the size
of the largest clique in G. A graph G = (V,E) with V = {v1, . . . , vn} and
E = {v1v2, . . . , vn−1vn, vnv1} is called a cycle and is denoted by Cn.

A coloring is a partition of VG into subsets C1, . . . , Ck whereas v, w ∈ Cm

implies that vw 6∈ EG. The chromatic number χ(G) is the smallest k for which
C1, . . . , Ck is a coloring of G.

Definition 6. A graph G is called perfect, iff ω(H) = χ(H) for each H ⊆ G.

Definition 7. A graph G is called chordal iff it does not contain any induced
Cn for n ≥ 4.

Remark 2. Let G = (V,E) be an undirected graph. In general, determining
χ(G) is NP-complete. If G is chordal, determining χ(G) can be done in O(|V |2)
as proved in [Gav72].

4 Interference Graphs of SSA-form Programs

In this section, we prove that interference graphs of programs in SSA-form
are chordal. An informal reason why interference graphs of SSA-form programs

4

must be chordal is given by the work of Gavril [Gav74], who shows that chordal
graphs are the intersection graphs of trees2. Since the dominance relation defines
a tree (see [LT79]) and the (non-φ′) usages of values are dominated by their
definition, the lifetime of a variable in an SSA-form program can be thought of
as such a tree.

In the following, we consider a strict program (see definition 5) and its
interference graph G. Let us begin by proving some lemmas3.

Lemma 1. Each label ` at which a value v is live is dominated by Dv.

Proof. Assume, ` is not dominated by Dv. Then there exists a path from start
to ` not containing Dv. From the fact that v is live at ` it follows that there
is a usepath of v from ` to some `′ not containing Dv (see definition 4). This
implies, that there is a usepath of v from start to `′ not containing Dv which
is impossible in a strict program.

Lemma 2. If two values v and w are live at some label `, either Dv dominates
Dw or vice versa.

Proof. By Lemma 1, Dv and Dw dominate `. Thus, either Dv dominates Dw

or Dw dominates Dv.

Lemma 3. If v and w interfere and Dv � Dw, then v is live at Dw.

Proof. Assume, v is not live at Dw. Then, there is no usepath of v from Dw to
some `′. So v and w cannot interfere.

Lemma 4. Let ab, bc ∈ EG and ac 6∈ EG. If Da � Db, then Db � Dc.

Proof. Due to Lemma 2, either Db � Dc or Dc � Db. Assume Dc � Db. Then
(with Lemma 3), c is live at Db. Since a and b also interfere and Da � Db, a is
also live at Db. So, a and c are live at Db which cannot be by precondition.

Finally, we can prove that the interference graph of a program in SSA-form
contains no cycle larger than 3:

Theorem 1 (Chordality). The interference graph of a program in SSA-form is
chordal.

Proof. We will prove the theorem by showing that G has no induced subgraph
H ∼= Cn for any n ≥ 4. We consider a chain in G

x1x2 . . . xn ∈ EG with n ≥ 4 and ∀i ≥ 1, j > i + 1 : xixj 6∈ EG

Without loss of generality we assume Dx1 � Dx2 . Then, by induction with
Lemma 4, Dxi � Dxi+1 for all 1 < i < n. Thus, Dxi � Dxj for each j > i.

2in this context, a tree is a kind of interval with one start point and multiple end points
which are directed downwards.

3Lemmas 1 and 3 have also been given by Budimlić in [BCH+02] under a different setting
of liveness

5

Assume, there is an edge x1xn ∈ EG. Then, there is a label ` where x1

and xn are live. By Lemma 1, ` is dominated by Dxn and due to the latter
paragraph, ` is also dominated by each Dxi , 1 ≤ i < n. Let us consider a label
Dxi , 1 < i < n. Since Dxi dominates `, there is a path from Dxi to `. Since Dxi

does not dominate Dx1 , there is a path from Dxi to ` which does not contain
Dx1 . Thus, x1 is live at Dxi . As a consequence, x1xn ∈ EG implies x1xi ∈ EG

for all 1 < i ≤ n. So, G cannot contain an induced Cn, n ≥ 4 and thus is
chordal.

References

[And03] Christian Andersson. Register allocation by optimal graph coloring.
In G. Hedin, editor, CC 2003, volume 2622 of LNCS, pages 33–45,
Heidelberg, 2003. Springer-Verlag.

[BCH+02] Zoran Budimlić, Keith D. Cooper, Timothy J. Harvey, Ken Kennedy,
Timothy S. Oberg, and Steven W. Reeves. Fast copy coalescing and
live-range identification. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and implementation,
pages 25–32. ACM Press, 2002.

[CAC+81] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E.
Hopkins, and P. W. Markstein. Register allocation via coloring.
Journal of Computer Languages, 6:45–57, 1981.

[Gav72] Fănică Gavril. Algorithms for minimum coloring, maximum clique,
minimum covering by cliques, and independent set of a chordal
graph. SIAM Journal on Computing, 1(2):180–187, June 1972.

[Gav74] Fănică Gavril. The intersection graphs of subtrees in trees are exactly
the chordal graphs. J. Combin. Theory Ser. B, (16):47–56, 1974.

[Gol80] Martin Charles Golumbic. Algorithmic Graph Theory And Perfect
Graphs. Academic Press, 1980.

[LT79] T. Lengauer and R. E. Tarjan. A fast algorithm for finding domina-
tors in a flowgraph. Transactions on Programming Languages And
Systems, 1(1):121–141, July 1979.

[Set75] Ravi Sethi. Complete register allocation problems. SIAM Journal
On Computing, 4(3):226–248, 1975.

6

