
A Framework for the Optimization of the WCET of
Programs on Multi-Core Processors

Maximilian John
Saarland University

Saarbrücken, Germany
s9mnjohn@stud.uni-sb.de

Michael Jacobs
Saarland University

Saarbrücken, Germany
jacobs@cs.uni-sb.de

ABSTRACT
For a timing-critical system, it is mandatory to guaran-
tee upper bounds on the execution times of its programs.
Such bounds can be derived using worst-case execution time
(WCET) analysis. WCET analysis for multi-core processors
is challenging as the behavior of one processor core in gen-
eral depends on the behavior of the other cores. A common
option to reduce this dependency is the use of time division
multiple access (TDMA) bus arbitration.

We consider a multi-core processor with a shared TDMA
bus. A system schedule for this processor assigns hard real-
time tasks to processor cores and determines their execution
order. A bus schedule determines which processor core is
allowed to access the bus at which points in time. The
WCET of a program executed on the processor depends
on the choice of the system schedule and the bus schedule.
We propose a framework that aims at reducing the overall
WCET of the system by simultaneously constructing both
schedules. Furthermore, we introduce a system model that
allows to describe the considered programs in a simple way.
We subsequently discuss how to overcome some restrictions
of our system model. Finally, we sketch possible evaluations
of our framework.

1. INTRODUCTION
For timing-critical applications, it is mandatory that their

response times do not exceed the deadlines defined by the
physical environment. A timing-critical application may be
implemented by a composition of several programs. If there
is a safe estimation of the WCET of each such program,
we can give an upper bound on the total response time
of the application. In many cases, it is important that
these estimates are relatively tight in order to verify the
timeliness of the application. WCET analysis is commonly
used to derive an upper bound on the execution times of a
program and thereby estimates the WCET of the program.
The WCET analysis of programs executed on single-core
processors is already studied well [1].

Multi-core processors typically share resources—like caches
or buses—between several processor cores. Some of the ad-
vantages of multi-core processors are reduced weight, reduced
production costs and a good ratio between performance and
energy consumption. Therefore, it is a current trend to also
use them for the design of timing-critical embedded systems.
However, the resource sharing leads to the cores behaving
in a different manner than with dedicated resources of the
same capacities. We refer to these effects as shared resource
interference [2]. As a consequence of this interference, the

behavior of one processor core may depend on the behavior of
all other processor cores. In this case, a precise WCET anal-
ysis is challenging. It is no longer sufficient to focus on one
core’s behavior in order to derive a tight upper bound on the
execution times of a program executed on it. To bound the
complexity of such an analysis, existing approaches mainly
concentrate on bounding the direct timing penalties due to
shared resource interference, e.g. the time that a processor
core is blocked at the shared bus before its access request is
granted [3, 4].

In this paper, we focus on the interference caused by shared
buses. It is common to assume that the shared bus must not
be accessed by more than one processor core at the same
time. Therefore, there is typically an instance defining which
core is allowed to access the shared bus at a particular point
in time—the bus arbiter. We say that a processor core is
blocked as long as one of its access requests is not granted
by the arbiter. Obviously, the blocking time contributes to
the overall execution time of a processor while executing a
particular program. Thus, it is important to also consider
the bus blocking in WCET analysis. In general, the precise
consideration of the bus blocking experienced by one core
requires the examination of the concurrent cores. This makes
WCET analysis complex. However, in combination with
TDMA bus arbitration, the bus blocking that one processor
core suffers from does not depend on concurrent cores. This
allows the WCET analysis to precisely model bus blocking
without modeling concurrent processor cores. In this paper,
we assume a system with a shared bus arbitrated according
to a TDMA policy.

TDMA bus arbitration bases its decisions on a static bus
schedule that assigns every time slot to the processor core
which is allowed to access the bus at that instant. A pro-
gram’s execution time heavily depends on the static choice
of this bus schedule. Thus, the eased analyzability comes at
the cost of having to choose a bus schedule. This choice of
the bus schedule should ideally lead to low WCET bounds
for time-critical programs.

We present a heuristical framework that optimizes the
system schedule and the bus schedule for a given task set
and a given number of processor cores. The optimization
goal is to minimize the WCET. The framework is modular
in the sense of defining an interface for heuristics that select
the task to be executed next on a particular processor core.

Throughout our paper, we make the following contribu-
tions:

1. A simple system model for hard real-time tasks with
access to a shared bus

1



2. A modular framework for the optimization of the WCET
of hard real-time systems

3. Approaches to apply the framework to real-world sys-
tems

2. SYSTEM MODEL
Our model is denoted by the following characteristic pa-

rameters. It consists of several equal processor cores, a shared
bus and a set of hard real-time tasks. Each task may request
access to the shared bus at several points in time during its
execution. Assume for the moment that every access request
to the bus is granted immediately. Figure 1 depicts an exem-
plary task. It has two bus accesses (marked purple) at time
units 1 and 3, respectively. The second access is twice as long
as the first one. The execution time of this task—assuming
that both access requests are granted immediately—is 6 time
units. Note that it is a fundamental assumption of our system
model that every task is characterized by a single execution
behavior and thus also by a single execution time (we will
sketch in Section 4.2.1 how to support tasks with several
execution behaviors).

Figure 1: An example task

In our model all tasks are released simultaneously at time
unit 0 and have to be executed exactly once. We assume that
a task can be started independently of the progress of other
tasks. In addition, there is a static assignment from tasks
to the processor cores. The tasks assigned to a particular
processor core are scheduled non-preemptively following a
static task order. The use of non-preemptive scheduling
offers several advantages for hard real-time systems [5]. We
refer to the combination of the task assignment and the task
orders as system schedule. Figure 2 shows an example of a
system schedule.

P1 : τ3 τ2

P2 : τ5 τ1 τ4

Figure 2: A system schedule

The example system schedule assigns five tasks to two
processor cores. Tasks τ2 and τ3 are executed on the first
processor core whereas the remaining tasks are executed on
the second one. Furthermore, the presented system schedule
describes the task order per core, e.g. task τ2 is executed after
task τ3. According to this system schedule, both processor
cores request access to the bus at time unit 4. However, the
shared bus can only serve one processor core per time unit.
In the following, we introduce a bus arbitration to guarantee
this.

Our system model uses TDMA bus arbitration. That
means, the arbiter has static knowledge about which proces-
sor core is allowed to access the bus at which point in time.
This static knowledge is present in the form of a bus schedule
which maps time units to processor cores. Note that we do
not rely on periodic bus schedules. An access request of a
core that is not allowed to access the bus is blocked. Figure
3 shows the system schedule of Figure 2 supplemented with
a bus schedule.

P1 : τ3 τ2

P2 : τ5 τ1 τ4

bus : P1 P1 P1 P2 P1 P2 P2 P2 P2

Figure 3: The effect of a bus schedule

Note that processor core P2 is blocked at time unit 4 because
P1 is allowed to access the bus. Thus, the considered pair of
system schedule and bus schedule leads to a response time
of 9 time units for task τ4. As a consequence, the overall
execution time (maximum over the response times of all
tasks) also amounts to 9 time units.

Intuitively, we assume that the number of time units that
a task is blocked just adds up to its execution time. This
assumption is commonly known as timing compositionality.
For a detailed discussion of timing compositionality we refer
to an article by Hahn et al. [6].

For the next example, consider the same system schedule
and bus schedule as in Figure 3. But this time, we replace
τ4 by τ ′4.

τ ′4

Figure 4: New task τ ′4

This leads to the access of task τ ′4 being interrupted. Accord-
ing to our system model, interrupted bus accesses have to
be restarted from scratch. Therefore, the system schedule
and the bus schedule lead to an overall execution time of 10
time units for the task set (as shown in Figure 5). Thus, the
number of time units used for interrupted accesses also adds
up to the execution time in a compositional way.

P1 : τ3 τ2

P2 : τ5 τ1 τ ′4

bus : P1 P1 P1 P2 P1 P2 P2 P2 P2 P2

Figure 5: An interrupted and restarted access

Problem statement: Obviously, the system schedule as
well as the bus schedule influence the overall execution time
of the system. We assume that the task set and the number
of processor cores is already given. Based on this input, we
try to find a pair of system schedule and bus schedule leading
to a short overall execution time for the task set.

As our system model assumes a single execution time
per task (ignoring possible bus blocking effects), the overall
execution time of the task set and the overall WCET of
the task set coincide for our system model. For the sake
of generality and comparability, we will only use the term
overall WCET in the rest of this paper.

Finding an optimal static multiprocessor schedule is known
to be a hard optimization problem already in the absence
of accesses to a shared bus [7]. Therefore, we focus on
developing a heuristic approach that finds a pair of system
schedule and bus schedule leading to an overall WCET close
to the possible minimum.

3. APPROACH
In this section, we present a framework that allows us to

heuristically optimize the overall WCET of a task set on a

2



Data: tasks: set of tasks,
n: number of processor cores,
th: task selection heuristic,
bh: bus schedule heuristic

1 (sys, bus)← empty schedules for n processor cores;
2 while tasks 6= ∅ do
3 task← th(tasks, sys, bus);
4 p idle← find first idle core in (sys, bus);
5 sys← add task in sys to p idle;
6 bus← bh(sys, bus, ”partial ”);
7 tasks← tasks \ {task};
8 end
9 bus← bh(sys, bus, ”complete”);

10 return (sys, bus);

Algorithm 1: Optimization procedure

multi-core processor system by choosing a system schedule
and a bus schedule. It is centered around Algorithm 1, which
is similar to the approach by Rosén et al. [8]. In contrast to
the work of Rosén, however, our algorithm is parametric in
the task selection heuristic. It integrates the construction of
the system schedule and the construction of the bus schedule
by alternately adding a task to the system schedule and
building a part of the bus schedule.

The algorithm takes as input parameters the set of tasks,
the number of processor cores, the task selection heuristic
th and the bus schedule heuristic bh. The task selection
heuristic th selects one of the remaining tasks to be added to
the already existing system schedule. It may base its decision
on the already constructed parts of the system schedule and
the bus schedule. The bus schedule heuristic bh continues
the construction of the given bus schedule.

Algorithm 1 starts by assuming that none of the processor
cores is assigned any of the tasks. We call this an empty
system schedule. Analogously, an empty bus schedule is yet
undefined for all time slots. In line 3 we select one of the
remaining tasks to be added to the system schedule. As
a next step, we consider the first point in time for which
the bus schedule is yet undefined. Now, let p idle be one
of the processor cores which has finished the execution of
its assigned tasks up to this point. Line 5 extends the
existing system schedule by assigning the selected task to
p idle. The task order of the system schedule is extended
such that the added task is executed after the tasks previously
assigned to p idle. After this extension, there may be points
in time for which the bus schedule is not yet defined although
no processor core is idle. Therefore, line 6 continues the
construction of the bus schedule until one of the processor
cores is idle again (”partial ”). Afterwards, we remove the
selected task from the set of remaining tasks (line 7) and
repeat the previous lines until no task remains (line 2). As
a final step, line 9 continues the construction of the bus
schedule up to the point in time at which all processor cores
are idle (”complete”).

4. FUTURE WORK

4.1 Access-Aware Task Selection Heuristics
The quality of the results obtained by our framework is

mainly determined by the quality of the heuristics used for
the construction of the system schedule and the bus schedule.

P1 : τ1

P2 : τ2 τ3

(a) System schedule created by placing
the longest tasks first

P1 : τ1

P2 : τ3 τ2

bus : P1 P1 P1 P2 P2 P2 P2 P2

(b) Optimal schedule

Figure 6: Influence of the system schedule on the possible
execution time

τ :


τ ′ :

(a) Simple overlay

τ :



σ1

σ1 σ2

σ1 σ2

τ ′ : σ1 σ2

(b) Access-aligned overlay

Figure 7: Computing a single execution behavior

Thus, it will be our main goal to develop and compare
different heuristics.

A recent approach by Rosén et al. [8] presents a rather
simple task selection heuristic which can be used in our
framework. In combination with our system model, this
heuristic boils down to selecting the longest remaining task
to be scheduled next. An exemplary system schedule created
according to this heuristic is depicted in Figure 6(a). Note
that any bus schedule added to this system schedule leads
to a blocking of at least 3 time units for at least one of the
processor cores.

In contrast, Figure 6(b) shows that it is in fact possible
to come up with a system schedule that fully utilizes all
processor cores without necessarily delaying one of them.
Intuitively, this is possible because the system schedule ar-
ranges the tasks in a way that no bus accesses overlap. This
motivates us to develop task selection heuristics which try
to reduce the access overlaps. In order to do so, it is manda-
tory to take into account the access behavior of the different
candidate tasks.

4.2 Generalizing the Approach

4.2.1 Tasks with Multiple Execution behaviors

3



bus : P1 P1 P1 P1 P2 P2 P2 P2

(a) Legal bus schedule

bus : P1 P1 P1 P2 P2 P2 P2 P2

(b) Illegal bus schedule

Figure 8: Bus schedule with bus-processor ratio 4

Our system model assumes tasks with a single execution
behavior (ignoring possible bus blocking effects). This as-
sumption guarantees the efficiency of our approach as there
is no need to enumerate many different execution behaviors
per task.

However, real-world tasks executed on modern hardware
platforms typically exhibit various execution behaviors. We
aim at supporting such tasks without giving up the efficiency
and simplicity of our system model. In order to support a
task with a set of execution behaviors, we propose to replace
this set by a single execution behavior. For every possible
bus schedule, this single execution behavior should lead to
an execution time at least as high as the maximum over the
execution times of all members of the original set.

One possible way to obtain the single execution behavior
is to overlay the execution behaviors of the original set. The
principle of overlaying is depicted in Figure 7(a). Essentially,
every relative position of the resulting behavior is marked as
access if at least one of the original behaviors has an access at
this position. Note that the resulting behavior may contain
strictly more time units of bus accesses than every original
behavior.

Another approach to the construction of the single execu-
tion behavior aligns the accesses of the original behaviors
before performing the overlay. Figure 7(b) illustrates this
approach for the same set of behaviors as already used in the
example of Figure 7(a). The intuition is that we number the
accesses in the increasing order of their appearance per exe-
cution behavior. Subsequently, we add the minimal amount
of margin to the execution behaviors such that all accesses
with the same number start at the same instant. We see that
the resulting execution behavior contains one time unit of
bus access less than the result in Figure 7(a). However, this
comes at the cost of a longer execution time (8 time units
compared to 7 in Figure 7(a)).

4.2.2 Task Dependencies
So far, we consider a scenario without task dependencies.

However, supporting such dependencies in our approach is
straight-forward. The task selection heuristic simply has to
return a task for which all predecessors in the dependency
graph already finished their execution.

This treatment of the task dependencies may—in certain
situations—lead to the task selection heuristic not being able
to select any of the remaining tasks. We can simply solve
this problem by allowing the heuristic to return a dummy
task of length 1 without bus access in such cases.

4.2.3 Less Fine-Grained Bus Schedules
In our system model, we assume that we can define the

bus schedule at the same granularity of time units as the
execution behavior of the tasks. If we assume that our tasks
are defined at the granularity of a processor cycle, then for

many realistic hardware platforms the bus schedule will not
be definable at the same granularity. It is common to have
an integer factor K defining the bus-processor ratio for a
given hardware platform. Then the value of the bus schedule
may only change at integer multiples of K.

∀n ∈ N. n 6≡ 0 mod K ⇒ bus(n) = bus(n− 1)

Consider for example a bus-processor ratio of 4. Figure 8(a)
shows a bus schedule that conforms to this ratio. The bus
schedule in Figure 8(b) does not conform to this as it changes
its value at time unit 3.

Our approach naturally supports such restrictions by using
bus schedule heuristics that only create allowed bus schedules.

4.3 Evaluation
We plan to extract execution behaviors (as defined by our

system model) from real-world programs. Subsequently, we
intend to construct task sets based on these behaviors. We
will use these task sets to compare the effectiveness and
efficiency of different task selection and bus schedule heuris-
tics. Additionally, we will compare the different heuristics to
provably optimal results for relatively small examples.

Furthermore, we are interested in how the different ways
to generalize our approach (cf. Section 4.2) influence the
overall WCET obtained by our approach. For example, we
want to find out which is the best way to replace a set of
execution behaviors by a single behavior.

5. REFERENCES
[1] R. Wilhelm et al., “The worst-case execution-time

problem — overview of methods and survey of tools,”
ACM Transactions on Embedded Computing Systems,
vol. 7, no. 3, pp. 36:1–36:53, 2008.

[2] A. Abel et al., “Impact of resource sharing on
performance and performance prediction: A survey,” in
CONCUR, 2013, pp. 25–43.

[3] R. Pellizzoni and M. Caccamo, “Impact of
peripheral-processor interference on wcet analysis of
real-time embedded systems,” IEEE Transactions on
Computers, vol. 59, pp. 400–415, 2010.

[4] R. Pellizzoni et al., “Worst case delay analysis for
memory interference in multicore systems,” in
Proceedings of the Conference on Design, Automation
and Test in Europe, 2010, pp. 741–746.

[5] M. Marouf and Y. Sorel, “Scheduling non-preemptive
hard real-time tasks with strict periods,” in Emerging
Technologies Factory Automation (ETFA), 2011 IEEE
16th Conference on, 2011, pp. 1–8.

[6] S. Hahn et al., “Towards compositionality in execution
time analysis – definition and challenges,” in Proceedings
of the International Workshop on Compositional Theory
and Technology for Real-Time Embedded Systems, 2013.

[7] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of
NP-Completeness, 1990.

[8] J. Rosén et al., “Bus access optimization for predictable
implementation of real-time applications on
multiprocessor systems-on-chip,” in Proceedings of the
28th IEEE International Real-Time Systems Symposium,
2007, pp. 49–60.

4


