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Abstract
Memory safety violations due to C’s undefined behavior,
although well researched, still cause security breaches year
by year. The most dangerous reported violations are spatial
safety violations, where objects are accessed outside of their
bounds. A wide variety of spatial safety sanitizers promise
easy usage, broad security guarantees, and a low execution
time overhead. However, only few of them are actually used.
Instead of proposing yet another sanitizer, we dig deep

into Low-Fat Pointers and SoftBound, two approaches to
generate fast-to-execute safe programs with strong safety
guarantees, and identify pain points in their usage. We found
that seemingly small simplifying assumptions or limitations
of the approaches often lead to spurious error reports.

On top of analyzing usability issues, we set up a framework
that abstracts common tasks of memory safety instrumenta-
tions, such as finding locations for checks and eliminating
redundant checks. This abstraction allows us to draw a fair
comparison between approaches when it comes to execution
time and the number of safe accesses. We use this framework
to give novel insights into how many accesses are provably
safe, and where to attribute execution time overhead.
Our findings help future research on memory safety in-

strumentations by identifying issues that current approaches
face in their practical application. We make our LLVM-based
instrumentation framework available to reduce the effort
required to implement new instrumentations and to ease
comparisons to Low-Fat Pointers and SoftBound.

CCS Concepts: • Software and its engineering→ Soft-
ware safety; Compilers; Software testing and debugging;
Software reliability; • Security and privacy → Software
and application security.

Keywords: Memory safety, C language, LLVM, SoftBound,
Low-Fat Pointers
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1 Introduction
Memory safety is a concern of programming languages such
as C, where arbitrary pointer arithmetic can be used to con-
struct new pointers. The language permits only the creation
of pointers to an object or one past its end, while out-of-
bounds pointer arithmetic is undefined behavior. Accessing
memory with out-of-bounds pointers is commonly referred
to as a spatial memory safety violation.

Undefined behavior makes it easy to translate C programs
to fast-to-execute machine code, because compilers only
need to preserve the program’s defined semantics and can
ignore corner cases whose behavior is undefined. However,
undefined behavior makes it hard for programmers to track
down or even notice bugs, as the program might still behave
as expected. From the security perspective, undefined behav-
ior, and especially the resulting memory safety violations,
pose a significant threat. In the CWE Top 25 ranking [8] of
the most dangerous software vulnerabilities, out-of-bounds
writes are the top of the list in 2023, and are part of the most
stubborn weaknesses over the past five years [7].

Various tools have been proposed to guarantee the spatial
memory safety of C programs [1, 3, 9, 10, 13, 16–18, 23, 26, 30–
32]. However, as Song et al. [33] have shown in their survey
on memory safety tools, it is very hard to reproduce the eval-
uations of these tools. Song et al. were able to verify 10 out
of 37 sanitizer artifacts as functional. Regarding approaches
with some level of spatial memory safety guarantees, only
three out of 21 were executed successfully [10, 31, 32]. The
reasons are manifold: Among the publicly available tools,
some did not compile or failed to run on more than half of
the SPEC CPU2006 benchmarks. The authors of tools that
are not available did either not respond to requests for the
source code, or had concerns about licensing or code quality.
Other surveys [20, 33, 36] compare memory safety ap-

proaches on paper or test the functionality of the artifacts,
but they do not focus on an even comparison. E.g., Song et al.
[33] used different compiler versions for the tools, for some
tools benchmarks were patched while for others functions
with false positives were excluded from sanitization.

In contrast to previous surveys, this paper provides a de-
tailed comparison of two memory safety approaches, which
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are broadly applicable, give strong spatial safety guaran-
tees, and introduce comparably low runtime overhead: Low-
Fat Pointers [10] and SoftBound [23]. We implemented the
approaches in MemInstrument1, a novel instrumentation
framework which serves as the basis for a fair comparison
of memory safety approaches. To the best of our knowl-
edge, this paper is the first to provide such a framework and
thereby allow a fair comparison of the two approaches.

Althoughmany compiler-basedmemory safety approaches
seem different conceptually, the basic mechanism of how
they place instrumentation code is very similar. Approaches
that instrument pointer arithmetic or pointer dereferences [1,
5, 10, 17, 23], thereby tracking pointer values through the
program, follow very basic common schemes. We exploit this
observation in MemInstrument to abstract common tasks
like determining the points for in-bounds checks and meta-
data updates. Additionally, common approach-independent
check optimizations are shared between the approaches. This
common infrastructure is the basis for a fair comparison, as
it rules out sources of runtime differences which are not
actually caused by the instrumentation, but rather due to dif-
ferences in the compiler pipeline setup or check placement.
We evaluate the runtime performance of Low-Fat Point-

ers and SoftBound and investigate how optimizations and
the compiler pipeline affect the runtime, as well as which
parts of the approaches contribute how much to the runtime
overhead. We found the approaches to be on par in terms
of runtime, while one outperforms the other on individual
benchmarks. The impact of the compiler pipeline insertion
point is significant, when not carefully chosen and compared,
one could conclude that either approach is faster by around
30%, everything else being unchanged.

Besides runtime performance, we discuss the spatial safety
guarantees of the approaches in practice, i.e., how valid C
programs are unexpectedly rejected and how memory safety
violations remain unnoticed. We found that SoftBound strug-
gles most with outdated or unavailable bounds metadata,
causing spurious error reports or impairing the ability to
detect errors. Low-Fat Pointers reports some usages of out-
of-bounds pointers, which conflicts with programmer expec-
tations as well as the LLVM IR specification, leading to error
reports for out-of-bounds pointers which are not derefer-
enced. While those shortcomings impede ensuring memory
safety for certain programs, we also show that most accesses
in successfully instrumented programs are properly safety
checked by Low-Fat Pointers and SoftBound.

In summary, the contributions of this paper are:
• A fair runtime comparison of the two memory safety ap-
proaches Low-Fat Pointers [10] and SoftBound [23].

• A novel evaluation of:
– the implications of the limitations of both approaches
in practice (Sections 4.6, 5.1.1 and 5.1.2).

1https://github.com/cdl-saarland/MemInstrument/

– insights which parts of the instrumentation contribute
to the execution time overhead (Section 5.4).

– the impact of simple optimizations and different com-
piler pipeline setups (Sections 5.3 and 5.5).

• A novel instrumentation framework to allow future re-
search to easily implement new approaches and compare
against already existing ones.

2 Background
The C programming language has been around for 50 years
now and a substantial amount of widely-used code is written
in it. The fact that out-of-bounds accesses are undefined be-
havior in C allows C compilers to omit out-of-bounds checks
in the generated code without proving accesses in-bounds
through program analysis. This gives C a performance ad-
vantage over languages with mandated bounds checking like
Java. However, this advantage comes at the cost of security as
out-of-bounds accesses can result in severe security vulnera-
bilities. To counter these problems, several memory safety
instrumentation approaches have been developed. They mod-
ify the compiler to insert check code during compilation
and thus harden the compiled program against abuses of
undefined behavior at the cost of a slower execution speed.
Memory safety instrumentations face three major chal-

lenges: giving ample safety guarantees, being compatible
to uninstrumented libraries, and incurring low overhead in
terms of runtime, binary size and memory usage. We dis-
cuss several classes of instrumentations in terms of these
aspects to motivate why we chose Low-Fat Pointers [10] and
SoftBound [23] for a more detailed comparison.

2.1 Existing Memory Safety Approaches
One category of approaches are red-zone approaches. Address
Sanitizer [31], Valgrind’sMemcheck [32] and Dr. Memory [3]
belong to this class. Red-zones arememory areas around each
allocation that are marked as inaccessible. These approaches
detect errors when a red-zone rather than a valid object is
accessed. Dr. Memory and Memcheck are binary instrumen-
tation tools that detect a wide range of errors in addition to
out-of-bounds accesses, such as memory leaks or use-after-
frees. While they are highly compatible as no recompilation
is required, Bruening and Zhao [3] report a mean runtime
slowdown of 10.2× for Dr. Memory and a 20.4× for Mem-
check on the SPEC CPU2006 benchmarks [14].

Address Sanitizer requires recompilation of the program,
but the runtime slowdown averages at only 1.7× for SPEC
CPU2006 compared to the programs optimized at -O2.
Red-zone-based approaches are inherently incomplete:

They cannot detect pointers that go out of bounds but end
up in another allocation.
Approaches that use fat pointers to pass along bounds

metadata with the pointer [2, 16, 26] report an error when
accesses end up in a different allocation. Fat pointers change

https://github.com/cdl-saarland/MemInstrument/
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Table 1. Locations for instrumentation

Instrumentation Target Task SoftBound Low-Fat Pointers

... = load ptr ensure safety in-bounds check in-bounds check
store x ptr

@global_ptr add section marker
ptr = alloca sz record allocation determine size mirror, replace
ptr = call malloc(sz) use custom malloc

ptr = phi(ptr1 %b1, ptr2 %b2, ...) propagate through phi
ptr = select c ptr1 ptr2 propagate through select
ptr = gep src_ptr i1, ... determine src_ptr

ptr = load location load from trie
ptr = call f (...) rely on invariant load from shadow stack assume in bounds
fun_arg_ptr load from shadow stack

store ptr location store to trie
return ptr establish invariant store to shadow stack in-bounds check
call f (ptr, ...) store to shadow stack

the encoding of pointers from plain pointer values to, e.g., a
struct containing the pointer value and base and size of the
object it should point to. This comes with the disadvantage
of poor compatibility to uninstrumented libraries, as these
libraries cannot handle the fat pointer encoding. Type casts
also pose a problem as they can corrupt the propagated
metadata. Due to such issues, these approaches might require
the programmer to rewrite parts of their application. Austin
et al. [2] report that their fat-pointer-based tool executes
2.3−6.4×more instructions on memory-intense benchmarks.
Learning from these drawbacks, other approaches [1, 5,

17, 23] store pointer bounds in a disjoint metadata space.
Uninstrumented code then works as usual, and type casts do
not break the code. However, some approaches [1, 5, 23] still
require wrappers for uninstrumented functions. For exam-
ple, if such a function returns a pointer, the metadata needs
to be made available to ensure safety of further accesses.
Nagarakatte et al. [23] achieve a performance overhead of
1.67× on selected SPEC benchmarks compared to an unin-
strumented program. The approach of Jones and Kelly [17]
suffers from a 12× slowdown in that evaluation [23]. Chen
et al. [5] additionally cover temporal safety, segment confu-
sion errors and memory leaks; they report a 13× slowdown
on five SPEC CPU2017 [35] benchmarks.
Akritidis et al. [1] introduce Baggy Bounds, which stores

size information of pointers in a bound table. It exploits al-
location alignment and padding to recover the base pointer
from the size and the pointer value itself. Building on this
idea, Low-Fat Pointers [10] make the base and size informa-
tion fully recoverable from the pointer value, without an
additional datastructure. As part of their technique, alloca-
tions are aligned and padded, so that the resulting program
is hardened against out-of-bounds accesses, but accesses to

the padding will not be detected. Duck and Yap [10] report a
mean slowdown of 1.56× on the SPEC CPU2006 benchmarks
compared to the uninstrumented (-O2-optimized) program.

2.2 Low-Fat Pointers and SoftBound
Although not compared on a common ground until now, the
published results indicate that SoftBound [23] and Low-Fat
Pointers [10] are themost competitive approaches in terms of
performance and spatial safety guarantees. Low-Fat Pointers
give broad security guarantees and are (to the best of our
knowledge) still the fastest self-reported approach to detect
both under- and overflow errors (also stated, for example, by
Kroes et al. [18]). SoftBound was designed with the learnings
from fat pointer approaches [2, 16, 26], fares better in terms of
runtime than other approaches with disjoint metadata [5, 17],
and was often used to compare against before [4, 5, 28, 38],
indicating its relevance in the research area.
We compare Low-Fat Pointers and SoftBound as they

stand out with respect to their safety guarantees and runtime
performance, while not being widely used. Additionally, the
two approaches have less in common than they have with
other approaches, and therefore promise (and deliver) more
diverging reasons for their shortcomings.

3 Instrumentation Framework
Although the some aspects of memory safety instrumen-
tations differ a lot, e.g., how they retrieve bound informa-
tion for pointers, they share many tasks such as checking
valid bounds whenmemory is accessed. Our instrumentation
framework factors these commonalities out and determines
code locations for metadata propagation and check place-
ment – so-called instrumentation targets –with a shared strat-
egy. Abstracting from specific memory safety approaches
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is_unsafe = call check(ptr , width , witness)

br is_unsafe , label fail , label ok

ok: store x ptr

...

fail: call report_violation ()

unreachable

Figure 1. Scheme of an in-bounds check

allows us to, e.g., define an approach-independent optimiza-
tion to eliminate redundant checks that filters instrumenta-
tion targets. Overall, this common infrastructure enables a
fair comparison between the implemented approaches.

3.1 Shared Aspects of Instrumentations
Table 1 shows which code locations are instrumented (In-
strumentation Target), for what purpose (Task), and how
Low-Fat Pointers and SoftBound instrument them. Our im-
plementation operates on the Intermediate Representation
(IR) of the LLVM compiler framework [19]. We describe the
propagation and checking with (simplified) IR syntax.
The IR represents memory accesses with load and store

instructions. At these locations, we want to ensure that the
addressed memory is valid to access. However, pointers in
LLVM IR, as in C, do not provide their bound values, which
we need to ensure safety. Hence, we propagate these values
from the allocation to the check location. We call the values
that propagate a pointer’s bounds a witness. The propagation
is achieved by code instrumentation, i.e., inserting code at
compile time that provides bound values at runtime.

Checks follow the form shown in Figure 1. A check func-
tion is called, and depending on its outcome, the access is
made or an error is reported. As memory accesses can affect
multiple bytes, the check needs to ensure that the entire
width of the access is part of the allocation. In the following,
we describe how to determine the witness for the check.

Allocations are the most overt pointer source, be it as
global variables (e.g., @global_ptr), on the stack (via LLVM’s
alloca instruction), or on the heap (e.g. via malloc). We cap-
ture their size information directly as a witness.
Unfortunately, it is not generally possible to determine

the allocation for a given pointer at compile time. Hence, we
have to instrument additional code locations to determine
the corresponding allocation. The first such instruction in
Table 1 is a phi. In SSA-form programs, 𝜙-nodes choose one
of the arguments based on which control-flow edge is taken
to the node. In our example, when control flows to the phi
node from block %b1, ptr is set to ptr1, and to ptr2 when
the predecessor is block %b2. For every phi operating on
pointers, additional (witness) phi nodes are placed. They
propagate metadata for the incoming pointers, e.g., with a
phi for the pointer base. Analogously, we place additional
selects for select instructions that operate on pointers. In IR,
pointer arithmetic translates to gep (aka get element pointer)

int checkSB(ptr_t ptr , size_t width ,

ptr_t base , ptr_t bound) {

return ptr < base || ptr > bound - width;

}

Figure 2. SoftBound in-bounds check

instructions. They provide a way of indexing into src_ptr
with indices 𝑖𝑥 . Hence, ptr inherits the bounds of src_ptr.

Compared to these cases, witness propagation becomes
more trickywhen pointers are loaded frommemory, returned
from a function, or are function arguments. Here, memory
safety instrumentations rely on an approach-specific invari-
ant that describes how to derive the witness. This invariant
is set up at stores of pointers to memory, returns of pointer
values, and function calls with pointer arguments.

We discuss more concretely how the two approaches en-
sure that a program is memory safe next.

3.2 SoftBound
SoftBound uses base and bound pointers of an allocation in
its in-bounds check, as Figure 2 shows. The check compares
the pointer to the lower bound, and the pointer plus width
to the upper bound.
For SoftBound, a witness is therefore a pair of base and

bound values. When an allocation is encountered, the base
pointer is the value returned by malloc or alloca. The
bound is determined by adding the size, which these op-
erations receive as argument, to the base. Globals have a
statically known size, which provides the same information.

Whenever possible, SoftBound propagates base and bound
values alongside the pointer through the program. For select
and phi instructions operating on pointers (cf. Table 1), it
therefore inserts two instructions: one for the base value
and one for the bound value. gep instructions require no
additional code: Their witness is the same the src_ptr’s.
Witness propagation is more involved when a pointer

escapes the function. For every store of a pointer value to
memory, SoftBound tracks the pointer’s witness in a trie data
structure [24, 25, 27]. The address where the pointer is stored
is the index for the trie [24, Figure 3]. When a pointer value
is loaded from memory, the bounds are taken from the trie.

A shadow stack propagates bound information across func-
tion calls [25]. It is allocated at program start and operated
in sync to the program’s call stack. When calling a function
with pointer arguments, their base and bound values are
pushed to the stack. The callee then relies on the invariant
that the shadow stack holds these bounds. Pointers returned
from functions are also communicated via this stack.

3.3 Low-Fat Pointers
The core idea of Low-Fat Pointers is to derive base and size of
the allocation from the pointer value. They employ a custom
memory allocation scheme that groups allocations of similar



Memory Safety Instrumentations in Practice: Usability, Performance, and Security Guarantees CGO’25, March 01–05, 2025, Las Vegas, NV, USA

Heap Globals Stack Heap Globals Stack

0x0...0

32GiB

only 16 B allocations

32GiB

only 1GiB allocations

0xF...F

Figure 3. Address space organization for Low-Fat Pointers

region index object id object offset

29 bits log2 (32 · 230 ) = 35 bits

log2 (allocSize) bits

Figure 4. Bit fields of a low-fat pointer value

int checkLF(ptr_t ptr , size_t width , ptr_t base) {

size_t region_idx = lf_region_index(base);

size_t alloc_size = lf_alloc_size(region_idx);

return (ptr - base) > (alloc_size - width);

}

Figure 5. Low-Fat Pointers in-bounds check

size into regions of the virtual address space. Figure 3 shows
these regions. Each region is dedicated to a predetermined
allocation size to which allocations are padded if necessary.
With this partitioned virtual address space, a pointer’s

value suffices to determine the size and the base pointer of
the object it is pointing to.2 Conceptually, a low-fat pointer
value consists of three bit fields, shown in Figure 4. The
region index in the most significant bits determines in which
region the object lies, and therefore the object size 𝑆 . The
remaining bits identify the pointed-to object in the region
and the offset of the pointer into this object. The sizes of
these last two bit fields depend on the region: In a region with
objects of size 𝑆 , the offset part has enough bits to represent 𝑆
different offsets, i.e., enough bits to address any byte in the
object. Masking away the least significant bits that constitute
the object offset yields the object’s base pointer.
Reconsider Table 1. One might wonder why we need to

propagate witnesses when allocation base and size can be
derived from the pointer value. The issue is that this yields
the size and base of the object the pointer currently points to.
When a pointer is dereferenced after arithmetic, we need to
check that it still points to the same object as before. Hence,
a Low-Fat Pointers witness for a pointer is the base pointer of
the allocation that it points to. Figure 5 shows how to validate
a memory access with this Low-Fat Pointers witness.

Low-Fat Pointers rely on the invariant that pointers orig-
inating from a different function or from memory are in
bounds.3 Hence, these pointers can be used to derive the
correct base value. When pointers escape from a function
2We restrict our explanation and evaluation to power-of-two sizes, as these
performed best in the original evaluation [10].
3Allocations are padded by one byte to support one-past-the-end pointers.
The behavior of any other out-of-bounds pointer in C is undefined. [15]

through stores, calls, or returns, Low-Fat Pointers establish
this invariant with an additional in-bounds check.

The initial work on Low-Fat Pointers [10] only supported
heap allocations, and was later extended with protection for
stack variables [12] and global variables [11].

4 Applicability and Safety Evaluation
Fundamentally, both approaches give wide-ranging spatial
safety guarantees: They often prevent out-of-bounds point-
ers from manipulating other allocations. A distinguishing
limitation is that Low-Fat Pointers rely on padded allocations.
Consequently, memory accesses that go past the original al-
location size into the padding will not be reported. While no
other object can be accessed using the pointer, this can leave
problems of programs undetected. In contrast, SoftBound
uses the original allocation bounds and hence also reports
these errors. We discuss the implications of the different
design decisions in both approaches and their impact on
security and applicability in the following.

4.1 LLVM IR vs. C Code
Both approaches work on LLVM IR rather than C. The LLVM
framework allows to easily write compiler passes and its IR
provides, compared to C, a fewer language constructs that
need to be supported. However, this comes at the cost of
potentially reduced bug-finding capabilities: As described
by Rigger et al. [29] and Chen et al. [5], some bugs vanish
when C is translated to IR, even without optimizations (at
optimization level -O0). By design, memory safety tools can
only provide safety for the IR program they sanitize, not the C
program it once was. In the next sections, we highlight cases
where the decision to use LLVM impacts our observations.

4.2 Out-of-Bounds Pointer Arithmetic
The C language standard [15] states in its undefined behavior
section (J.2), that the program behavior is undefined if:

“Addition or subtraction of a pointer into, or just be-
yond, an array object and an integer type produces a
result that does not point into, or just beyond, the same
array object (6.5.6).”

While the language semantics are clear, programmers’ expec-
tations often differ. Memarian et al. [21] find in a survey with
323 C experts that 73% of the participants believe that ouf-
of-bounds pointer arithmetic works, as long as the pointer
is brought back in bounds before accessing memory. This
aligns with our findings (see Section 5.1.1) and the findings
by Chisnall et al. [6], who found out-of-bounds pointers in 7
out of 15 popular Linux C packages that they investigated.
SoftBound checks that pointers are within bounds upon

access, and thus aligns with programmer expectations by
not reporting the creation of out-of-bounds pointers as an
error. Low-Fat Pointers on the other hand have to perform
an in-bounds check to establish their in-bounds invariant,
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for example when a pointer is handed over to a function
(cf. Table 1). In general, it is not an option to omit this check
to trade safety guarantees for applicability: If a program
passes an out-of-bounds pointer to another function, and
this function does arithmetic to access the object in bounds,
Low-Fat Pointers report an error. The reason is that they
check if the incoming and the dereferenced pointer point
to the same object, which is not the case for out-of-bounds
pointers that are brought back in bounds again. Therefore,
the case that programmers expect to work is not supported.
An additional concern is that the semantics of LLVM IR

define out-of-bounds pointer arithmetic [37, Section “Pointer
Aliasing Rules”]. Transformations in the LLVM pipeline be-
fore the instrumentation can thus soundly introduce out-
of-bounds pointers where there were none in the original
C program, causing spurious errors with Low-Fat Pointers.

Related memory safety approaches such as CRED [30] and
Baggy Bounds [1] add costly adaptations to their approaches
to support out-of-bounds pointer arithmetic.

4.3 External Libraries
Some programs are linked against libraries that are unavail-
able for recompilation, e.g., because they are proprietary. Nei-
ther discussed approach protects accesses in such libraries.
However, Low-Fat Pointers can still protect most of the

recompilable code out-of-the-box in this situation. Heap allo-
cations of the external library automatically use the low-fat
malloc, and hence fulfill size and alignment requirements.
When pointers to these allocations are used in the instru-
mented code, they are checked for out-of-bounds errors.
Global variables and stack allocations of the external library
are unprotected. Their addresses are not in the low-fat re-
gions, which Low-Fat Pointers handle by assuming wide
bounds, allowing accesses to all memory. E.g., many appli-
cations access the output streams of the C Standard Library,
stderr and stdout, which are global variables in the Stan-
dard Library. While these accesses are unprotected, they do
not result in applicability issues for Low-Fat Pointers.
This is different for SoftBound. Linking against an unin-

strumented library requires additional programmer effort if
the library communicates pointer values to the instrumented
code. If a function returns a pointer, SoftBound assumes that
its bounds are on the shadow stack. However, this is not
the case for uninstrumented functions. The outdated bounds
on the shadow stack usually do not match the allocation
accessed by the returned pointer, and hence a violation for a
safe access may be reported. Alternatively, an access to the re-
turned pointer can be wrongly classified as safe if the bounds
on the shadow stack happen to belong to the accessed object.
The solution for interfacing with uninstrumented libraries
are wrappers for functions that return pointers or manip-
ulate in-memory pointers. The function wrapper updates
SoftBound’s metadata and calls the original function.

void *sb_memcpy(void *dest , void *src , size_t n) {

void *dest_bs = lookup_bs (1); // get "dest" bounds

void *dest_bd = lookup_bd (1); // from shadow stack

check_abort(dest , n, dest_bs , dest_bd);

check_abort(src , n, lookup_bs (2), lookup_bd (2));

void *ret_ptr = memcpy(dest , src , n);

if (n > 0) { copy_metadata(dest , src , n); }

store_bs_bd_ret(dest_bs , dest_bd);

return ret_ptr;

}

Figure 6. SoftBound wrapper for memcpy

Figure 6 shows the wrapper for memcpy. The function
copy_metadata copies the bounds for all pointers in src to
the metadata space of dest. store_bs_bd_ret stores the
bound values of the returned pointer to the shadow stack.
SoftBound additionally uses the wrapper functions to ensure
the safety of the called function. The wrapper checks that the
given allocations are large enough to load and store the re-
quired n bytes by calling check_abort. This function checks
for an out-of-bounds access and aborts if one is detected.
This additional use of the wrapper functions results in

better safety guarantees. Low-Fat Pointers can be extended
to use wrappers with additional safety checks, but they do
not require wrappers to be applicable when linking against
uninstrumented libraries.

SoftBound has an additional issue that arises when linking
with uninstrumented libraries or in the context of separate
compilation: C allows programmers to declare global arrays
whose definition is in a different translation unit without
size information. When a C file with such a declaration is
compiled, SoftBound cannot derive the bounds of the array.
It can use NULL bounds, likely resulting in spurious violation
reports, or wide bounds, losing the ability to detect out-of-
bounds accesses. Proper solutions (which require manual
effort) are to always declare the arrays with size information,
or link all files together before applying SoftBound.

4.4 Integer to Pointer Casts
Integer to pointer casts pose a problem for both approaches.
Low-Fat Pointers introduce an in-bounds check when a

pointer is casted to an integer, and rely on the invariant that it
still points to the same object when casted back. However, no
instrumentation prevents corruption in the meantime. Thus,
programs that cast integers to pointers can be unsafe, even
if all code is instrumented and all allocations are low-fat.
SoftBound can handle integer to pointer casts in several

ways: One is to use NULL bounds for pointers casted from
integers. This causes error reports when they are derefer-
enced. However, C and LLVM allow casting a pointer to an
integer, back to a pointer, and then accessing it. Thus, this so-
lution overly restrictive. Due to SoftBound’s explicit pointer
bounds, another option is to use wide bounds for pointers
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void swap(double **one , double **two) {

double *tmp = *one;

*one = *two; *two = tmp;

}

define void @swap(double ** %one , double ** %two) {

%one_loaded = load double*, double ** %one

%two_loaded = load double*, double ** %two

store double* %two_loaded , double ** %one

store double* %one_loaded , double ** %two

ret void

}

define void @swap(double ** %one , double ** %two) {

%one_casted = bitcast double ** %one to i64*

%one_loaded = load i64 , i64* %one_casted

%two_casted = bitcast double ** %two to i64*

%two_loaded = load i64 , i64* %two_casted

store i64 %two_loaded , i64* %one_casted

store i64 %one_loaded , i64* %two_casted

ret void

}

LLVM 12 -O1 LLVM 11 -O1

Figure 7. Translation of the swap program with clang -O1 for x86_64 with LLVM 12 and LLVM 11

casted from integers. Accessing the resulting pointer can
then cause false negatives, as with Low-Fat Pointers.

One last option for both approaches is to provide a witness
manually. This improves the safety guarantees by restrict-
ing subsequent accesses to the annotated bounds. However,
manual annotation is tedious and prone to errors.
One might wonder if these casts are widely used in C

programs and advise to rewrite the program to avoid them.
While we do not oppose this, it does not resolve the issue for
the memory safety instrumentations. LLVM’s optimizations
introduce such casts even when the C program had none. In
addition, LLVM has bitcasts, which can have similar effects
as integer-to-pointer casts.

Consider the C swap function in Figure 7 and its two trans-
lations to LLVM IR. The swap function loads the pointer
value from the first pointer argument, one, and stores it in a
temporary variable. Then, it loads the value from its second
argument, two, and stores it into one. Lastly, it writes the
temporarily stored value into two.

The left IR translation loads the pointer values from both
arguments and stores each back into the opposite one. Both
instrumentations can set up their invariants at the pointer
stores. The translation on the right however obfuscates the
stores of pointer values. It first casts the double ** to an
i64 * pointer (as the compiler knows that the system has
64-bit-wide pointers). Then, it loads the pointer values as an
integers and stores them to the respective memory locations.
With Low-Fat Pointers, no safety check is placed, and,

when loaded later on, the pointer is assumed valid anyway.
In this example, no harm is caused as the pointer value was
not changed. However, this need not be the case in general.
The consequences for SoftBound are even more severe:

As only pointer loads and stores are instrumented, this store
of an integer will not update the trie data structure. The
bounds for the stored values are now outdated, and, when
loading the pointer again, the wrong bounds are loaded. In a
program without memory errors, loading the double value

later on is wrongly reported as a violation. A false negative
occurs when the pointer is moved out-of-bounds and into
the object to which the old bounds belong.

The translations are not contrived, they are generated by
different versions of LLVM (e.g., with 11 and 12). The simple
swap C function can thus cause the instrumentations to miss
errors or to report spurious ones.

4.5 Byte-Wise Copying of Pointers
A similar metadata update issue as for the swap program
in Figure 7 for SoftBound occurs when memory content is
copied byte-by-byte. The C Standard [15, Section 6.3.2.3:7]
allows casting any pointer to char * to inspect an object’s
byte representation. This causes issues for SoftBound if the
copied object contains pointer values. Since the pointer is not
copied as a whole, the copy goes unnoticed. The metadata
for the pointer at the new in-memory location is therefore
missing, causing the same unexpected behavior as described
in Section 4.4. Again, this poses no problem for Low-Fat
Pointers.

4.6 Safe Dereferences
There are cases where both memory safety instrumentations
have to assume that a pointer can access every memory
location. As discussed in Section 4.3, this is the case for
SoftBound when files are compiled separately and arrays
are declared as external without size information. Low-Fat
Pointers do not have bounds information for global or stack
variables of external libraries. In addition, if a low-fat region
runs out of memory or an object that is larger than the largest
supported size is allocated, Low-Fat Pointers resort to the
standard allocator and hence generate non-low-fat pointers.
Neither of the two approaches gives a quantitative eval-

uation of how many accesses remain unchecked because
of the intrinsic limitations of the respective approach. We
report the results of this evaluation on our benchmarks (their
selection is discussed in Section 5.1.1) in Table 2. For each
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Table 2. Number of unsafe dereferences in %, bold bench-
marks contain size-zero array declarations, an asterisk (*)
indicates zero unsafe accesses

Benchmark SB LF

164gzip 61.71 0.00
177mesa 0.00* 1.57
179art 0.00* 0.00
181mcf 0.00* 0.00
183equake 0.00* 0.00
186crafty 0.00* 0.00
188ammp 0.00* 0.24
197parser 0.27 7.14
256bzip2 0.00* 0.00
300twolf 0.37 2.08

Benchmark SB LF

401bzip2 0.00* 0.00
429mcf 0.00* 54.08
433milc 0.00* 0.00
445gobmk 0.66 0.06
456hmmer 0.00 0.08
458sjeng 0.00 1.17
462libquant 0.00* 0.00
464h264ref 0.00* 2.84
470lbm 0.00* 0.00
482sphinx3 0.00* 0.00

benchmark, we can see the percentage of access checks that
use wide bounds for SoftBound and Low-Fat Pointers. The
0% entries marked with an asterisk (*) had not a single check
with wide bounds. In both approaches, the vast majority of
accesses in the benchmarks are checked.
However, there are exceptions: We marked benchmarks

with size-less declarations of arrays in blue and bold. 164gzip,
where this feature is widely used, suffers from 62% unchecked
accesses with SoftBound. All benchmarks using this feature
suffer from at least some unchecked accesses. The only ex-
ception is 433milc, where such an array is declared, but not
used in the benchmark run. Some benchmarks also contain
integer to pointer casts, for which wide bounds are propa-
gated. With Low-Fat Pointers, the benchmark 429mcf suffers
from 54% unchecked accesses. This benchmark has one al-
location that is unchecked because it exceeds the largest
region size, in our case 1 GiB.

We can see that programming patterns such as large allo-
cations for Low-Fat Pointers and externally defined arrays
without size information for SoftBound weaken the safety
guarantees. Both limitations can be overcome, e.g., by adapt-
ing the configuration for Low-Fat Pointers, or adding size
information for SoftBound. However, this requires thorough
inspection of the tools’ reports and a fundamental under-
standing of their inner workings.

4.7 Conclusion: Applicability and Safety
In our experiments, SoftBound often reported false violations
due to outdatedmetadata (cf. Section 4.4 and 4.5). Fortunately,
inttoptr casts can be detected statically and reported to the
tool user as a potential reason for false positives or negatives.
Byte-wise copies, however, are hard to debug and hard to
find automatically.
As reported by the original papers, SoftBound is very ef-

fective to detect spatial safety errors, while Low-Fat Pointers
tend to prevent their exploitation, but are often not able to
report them. With respect to applicability in the presence

Compiler Frontend

EP: ModuleOptimizerEarly

Main Optimization Passes

EP: ScalarOptimizerLate

Late Clean-Up Transformations

EP: VectorizerStart
Target-Specific Optimizations

incl. Vectorization

clang
-O3

Pipeline

MemInstrument
Pass

Linking
incl. LTO

Runtime
Library

Executable

*.ll*.ll

*.c*.c

Figure 8. Technical setup (LTO = Link-Time Optimization).
The MemInstrument pass can be inserted at any of the high-
lighted extension points (EP) of clang.

of uninstrumented code, Low-Fat Pointers are likely easier
to use as they do not require implementing wrappers. How-
ever, if the program uses out-of-bounds pointer arithmetic,
SoftBound is the better candidate.

5 Runtime Evaluation
We compare Low-Fat Pointers and SoftBound, implemented
in our instrumentation framework MemInstrument.
The implementation for Low-Fat Pointers protects heap

allocations [10], as well as stack [12] and global variables [11].
As we are primarily interested in runtime performance, we
use powers-of-two allocation sizes, {24, .., 230} (16 B to 1 GiB).
During SoftBound’s development, the original authors

continuously improved the data structures for the bounds
metadata [22–25], we chose the most recent ones. Our imple-
mentation additionally protects variable argument functions.
We do not support vectorized code as extending SoftBound
accordingly is not straightforward.

5.1 Setup
Figure 8 shows the evaluation setup. Our framework is an
LLVM module pass and can be plugged into the compiler
pipeline at various extensions points. During compilation,
MemInstrument places code for witness propagation and in-
serts calls to check functions. For SoftBound, functions that
require wrapping are replaced by their wrapped counterparts.
We compile the files separately, and link them together af-
terwards with link-time optimizations. Definitions for the
inserted calls are in the linked runtime library.

Our approach uses an unmodified version of LLVM 12 [37].

5.1.1 Benchmark Selection. We use the C benchmarks
from SPEC CPU2006 [14] and CPU2000 [34]. SoftBound does
not support C++ and neither approach supports Fortran; this
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Figure 9. Execution Time Comparison

reduces the number from 45 to 27 benchmarks. We evaluate
only the 20 benchmarks that execute successfully with both
approaches (cf. Section 5.1.2).

The perl (253/400) and 254gap benchmarks use pseudo-
base-one arrays: They create a pointer one element before the
start of an array. This undefined behavior results in violation
reports from Low-Fat Pointers. SoftBound reports known
violations for perl, and none for 254gap. The gcc (176/403)
benchmark uses NULL pointers with large offsets to access
memory [18], and performs out-of-bounds pointer arith-
metic, both violations of the C Standard, and errors are re-
ported by Low-Fat Pointers and SoftBound. The last two,
175vpr and 255vortex, use out-of-bounds pointer arith-
metic, which Low-Fat Pointers, but not SoftBound, reports.

5.1.2 Comparability. SoftBound uses function wrappers
for the Standard Library to update its metadata. However,
these wrappers additionally check the called functions for
safety. We disabled these checks, as they could impact the
runtime comparability of the approaches (cf. Section 4.3).

The publications presenting SoftBound and Low-Fat Point-
ers evaluate different benchmarks, and Duck and Yap [10]
specifically exclude functions in some benchmarks that oth-
erwise cause errors because of out-of-bounds pointer arith-
metic. We have two choices on how to handle such cases:
(a) We exclude the same functions for both tools, or (b) we
leave these benchmarks out. While (a) is valid to compare
the approaches against each other, the performance over-
head of an only partially checked benchmark does not give
a meaningful overall slowdown value.4 Whenever failing
benchmarks could be fixed with minor source code modifi-
cations, we adapted the benchmarks, otherwise we left them
out (option (b)).

In 181mcf, a pointer is stored in a struct member with inte-
ger type (cf. Section 4.4). We changed the type to the proper
pointer type, and dropped the now unnecessary casts of

4Note that, compared to unsafe accesses that are checked as discussed in
Section 4.6, for excluded functions no code will be inserted at compile time
and hence there is a reduced execution time overhead.

pointers from/to integers. The problem of byte-wise pointer
copies described in Section 4.5 occurs in 300twolf. We re-
placed the byte-wise copy by a memcpy. Both cases lead to
spurious error reports from SoftBound because it could not
properly update its metadata, while Low-Fat Pointers did ex-
ecute the benchmark without modification. Lastly, we fixed
a known out-of-bounds access in 197parser, and two in
464h264ref. The out-of-bounds access in 197parser goes
to the allocation padding of Low-Fat Pointers, and hence
no error is reported. Low-Fat Pointers report an error on
464h264ref, SoftBound reports all of these errors.

5.2 Runtime Comparison
We use identical machines with an Intel Core i9-10900K @
3.70GHz processor and 64 GB of RAM, running a Ubuntu
20.04.4 LTS (kernel version 5.4.0). We disabled SMT and
Turboboost, and use the powersave scaling governor to min-
imize inter-run variation. All reported numbers are the me-
dian of 7 samples, executed sequentially. We noticed little
inter-run variation.
Figure 9 shows the execution time overheads of Soft-

Bound and Low-Fat Pointers, normalized to the runtime of
clang -O3 (1×). Both are optimized with a simple dominance-
based check elimination described in Section 5.3, and in-
serted into the compiler pipeline at the extension point
VectorizerStart. We can see that their mean slowdown
is comparable, 1.74× for SoftBound and 1.77× for Low-Fat
Pointers. However, individual benchmarks vary widely, and
sometimes one or the other approach performs better.

The reasons for this lie in their design: SoftBound performs
worse than Low-Fat Pointers on equake. This benchmark
has a particularly hot loop that loads pointer values from
memory. SoftBound has to look up the bounds for the point-
ers in the trie data structure, while Low-Fat Pointers only
recalculate the base pointer.
In other benchmarks, such as crafty, SoftBound outper-

forms Low-Fat Pointers. We can see from the checks in Fig-
ure 2 and Figure 5 that a SoftBound check requires fewer
instructions. Hence, it is cheaper to execute.
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Figure 10. Execution Time Comparison of SoftBound optimized, unoptimized, and only metadata propagation
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Figure 11. Execution Time Comparison of Low-Fat Pointers optimized, unoptimized, and only metadata propagation

0.26

0.9 0.86

0.48

1.29

0.51
0.4

0.88

0.51 0.54 0.46

0.87

0.38

0.64 0.59 0.5

0.83

1.25

0.11

0.64 0.65

0.29

0.89

0.45 0.4

0.96

0.51
0.31

0.71

0.37
0.5

0.39

0.85

0.39
0.54 0.59

0.43
0.21

1.13

0.11

0.72
0.54

0.29

0.9

0.59
0.37

0.96

0.51
0.32

0.72

0.38
0.52

0.39

0.84

0.4
0.54 0.59

0.42
0.21

1.13

0.11

0.7
0.54

Sl
ow

do
w
n
Fa
ct
or

1.91
1.71
1.72

16
4g
zip

17
7m
esa

17
9ar
t

18
1m
cf

18
3eq

ua
ke

18
6cr
aft
y

18
8am

mp

19
7p
ars
er

25
6b
zip
2

30
0tw

olf

40
1b
zip
2

42
9m
cf

43
3m
ilc

44
5g
ob
mk

45
6h
mm

er

45
8sj
en
g

46
2li
bq
ua
nt

46
4h
26
4re
f

47
0lb
m

48
2sp
hin
x3

ge
om
ean

1

2

3

4

1.5

2.5

ModuleOptimizerEarly ScalarOptimizerLate VectorizerStart

Figure 12. Impact of Compiler Pipeline Extension Points on SoftBound
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Figure 13. Impact of Compiler Pipeline Extension Points on Low-Fat Pointers



Memory Safety Instrumentations in Practice: Usability, Performance, and Security Guarantees CGO’25, March 01–05, 2025, Las Vegas, NV, USA

Our results do not fully reproduce the results of the origi-
nal papers, and this has various reasons: We have a different
set of benchmarks, different hardware, and different com-
piler versions than both approaches. Low-Fat Pointers used
-O2 and no link-time optimizations. SoftBound linked before
instrumenting the code. Evidently, these differences mat-
ter, which supports the need for a common framework to
compare different approaches.

5.3 Impact of Optimizations
We implemented a simple optimization to eliminates checks
that is frequently described in literature [1, 10, 23].Whenever
two accesses to the same memory location are made, and
one dominates the other, the dominated check is redundant.
While this removes a significant number of checks, between
8% for 177mesa and 50% for 256bzip2, the runtime impact
is minor. Our results are in Figure 10 for SoftBound and in
Figure 11 for Low-Fat Pointers. As remarked by Duck and
Yap [10], the compiler can optimize away these checks on
its own, and it seems to do so effectively in our setting.

5.4 Invariant Costs
We measured the impact of establishing the invariant of the
instrumentations, without executing access checks. Figure 10
shows low overhead for SoftBound in many cases, but invari-
ants can also dominate the overhead in cases like 197parser
and 464h264ref. This overhead is largely caused by main-
taining bounds for in-memory pointers in the trie data struc-
ture. However, we see that equake has low overheads while
we claimed earlier that it has a metadata load within its hot
loop. The reason for this phenomenon is that when bounds
metadata is loaded but unused afterwards, as in this configu-
ration without checks to use it, the compiler optimizes the
load away. Therefore, the numbers here underapproximate
the cost to propagate the metadata of SoftBound.

The Low-Fat Pointers invariant ensures that pointers stored
to memory, returned from a function or passed to another
function are in bounds. The overhead of these checks is
shown in Figure 11.

5.5 Impact of the Compiler Pipeline
Lastly, we evaluated the runtime impact of instrumenting
at different points in the compiler pipeline. Figure 12 and
Figure 13 show the results. While both are comparable on
ScalarOptimizerLate and VectorizerStart, they are slow
at the early extension point ModuelOptimizerEarly, where
the code is instrumented before the main optimizations
(cf. Figure 8). Memory safety checks are very effective at
preventing optimizations. The checks may abort the pro-
gram, and the compiler usually cannot prove that the abort
is not executed, hence optimizations like code motion and
loop transformations are blocked. At later extension points,
the number of memory accesses is reduced, and so is the
number of checks, resulting in better performance overall.

The gap between the early and later extension points show
how problematic it is to compare memory safety approaches
on different grounds: If you pick the numbers for one ap-
proach on the early extension point and choose the late
one for the other, you can conclude that either approach is
around 30% faster than the other one.

6 Related Work
Szekeres et al. [36] give a comprehensive overview of differ-
ent security vulnerabilities. They discuss what components
are required to execute an attack on a program, with memory
safety violations being the root to all of them.

Song et al. [33] discuss sanitizers for many kinds of unde-
fined behavior, including spatial memory safety violations,
signed integer overflow errors, and bad type casts. They
compare safety guarantees, space and time overheads, and
discuss the underlying mechanisms. While they feature an
evaluation aiming to reproduce the results for available tools,
they do so by using the publicly available versions. They
were able to execute Low-Fat Pointers on the SPEC CPU2006
benchmarks, and report the tool as functional with roughly
the execution time overhead stated by the authors. How-
ever, they were unable to successfully execute SoftBound
and omitted it for their evaluation.

Llorente-Vazquez et al. [20] provide an index for the many
possible attacks enabled by memory safety errors, and de-
fenses at different levels. This includes strategies to detect
memory safety errors like static analysis, fuzzing, symbolic
execution, and sanitizers.
All three surveys [20, 33, 36] compare a broad range of

approaches on a high level. In contrast, the goal of our work
is to compare approaches in detail. We evaluate the secu-
rity guarantees and applicability in depth, and give a fair
comparison on the grounds of a common framework.

7 Conclusion
We presented an in-depth comparison of the two promi-
nent spatial memory safety checkers, Low-Fat Pointers and
SoftBound, implemented on common grounds to allow a
fair comparison. Our evaluation shows comparable runtime
overheads on average, but one or the other gives a better per-
formance depending on the characteristics of the program.

SoftBound and Low-Fat Pointers are very effective to pre-
vent the exploitation of spatial memory safety errors. How-
ever, both tools have several limitations in their usability.
For example, the bounds metadata of SoftBound can get out-
dated, leading to spurious error reports. Low-Fat Pointers
report out-of-bounds pointer arithmetic as an error in some
situations, counter to the common expectation of program-
mers that only out-of-bounds accesses are reported as error.
Both issues are amplified by compiler optimizations and the
semantical differences of C and LLVM IR.
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Our findings demonstrate problems in the applicability
of both approaches that future research has to solve in or-
der to enable widespread use of memory safety measures in
practice. In addition, there is a significant performance gap
between mere bounds metadata propagation and full check-
ing. We see the potential for further check optimizations
here, to ultimately enable the usage in software releases,
rather than only during development and debugging.

We open-source our LLVM-based MemInstrument frame-
work to enable users to compare the tools on their programs,
and to provide researchers who explore new memory safety
approaches with an extensible base and fair comparison op-
tions to existing approaches.

A Artifact Appendix
A.1 Abstract
The artifact consists of a Vagrant VM with pre-installed
dependencies for MemInstrument, as well as our MemInstru-
ment development. Since the SPEC benchmarks evaluated
in the paper are proprietary, we provide execution instruc-
tions for our MemInstrument compiler plugin which can be
used to instrument arbitrary C programs. We provide around
200 small C programs which can be executed to verify the
functionality of the artifact.

The source code available on GitHub can be used to extend
MemInstrument. The archived artifact contains a copy of
this repository.

A.2 Artifact check-list (meta-information)
• Algorithm: MemInstrument
• Program: Small C programs
• Run-time environment: Linux, Vagrant, VirtualBox
• Hardware: x86-64
• Execution: less than 1 minute
• Howmuch disk space required (approximately): 15 GiB
• Publicly available:
https://github.com/cdl-saarland/MemInstrument

• Code licenses: NCSA (University of Illinois/NCSAOpen
Source License)

• Archived:
https://doi.org/10.5281/zenodo.13345361

A.3 Description
A.3.1 How delivered. Use the link provided in the above
check-list under Archived to find a pre-built MemInstrument
in a Vagrant VM.

A.3.2 Hardware dependencies. The artifact execution
requires a x86-64 processor.

A.3.3 Software dependencies. We have tested the arti-
fact on Linux only, it requires Vagrant and VirtualBox to run
the Vagrant VM.

A.4 Installation
The artifact contains an artifact_usage.md file, which de-
scribes the installation steps.
The source code repository contains a README.md file

for setup and testing.

A.5 Evaluation and expected result
The testing, also described in the artifact_usage.md file,
executes numerous tests with MemInstrument. These tests
check that programswhich containmemory safety violations
such as heap, stack or global variable out-of-bounds accesses
are correctly identified and that no error is reported on C
programs without out-of-bounds accesses. I.e., a program
is instrumented with Low-Fat Pointers or SoftBound and
the resulting program is executed. The tests automatically
validate against the expected outcome.

A.6 Notes
The basic command line flags for compiler and linker of
the approaches are described in Section A.4, this section
describes the additionally required flags to acquire the results
in Figure 9 to Figure 13.

SoftBound configuration basis:
-mi-config=softbound
-mi-sb-size-zero-wide-upper
-mi-sb-inttoptr-wide-bounds

Low-Fat Pointers configuration basis:
-mi-config=lowfat
-mi-lf-transform-common-to-weak-linkage

Common (additional) configuration:

• Always (to ignore inline assembler):
-mi-policy-ignore-inline-asm

• For the metadata configuration:
-mi-mode=geninvariants

• For the optimized configuration:
-mi-opt-dominance

In order to change the location of MemInstrument in
the compiler pipeline (as done for Figure 12 and Figure 13),
change meminstrument/lib/RegisterPasses.cpp:104 to

• EP_ModuleOptimizerEarly,
• EP_ScalarOptimizerLate, or
• EP_VectorizerStart.

EP_ModuleOptimizerEarly is the default in the artifact.
Recompile MemInstrument for the change to take effect.
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B Appendix
In various papers in the area of spatial memory safety, over-
flows within structs are discussed. We want to give some
details how Low-Fat Pointers and SoftBound can deal with
them and share some thoughts on the topic5.

struct simple_pair { int x; int y; } P;
int main() { print(&P.y - 1); }

%simple_pair = type { i32 , i32 }
@P = global %simple_pair zeroinitializer
define i32 @main() {

call void @print(i32* getelementptr
(% simple_pair , %simple_pair* @P, i64 0, i32 0))
ret i32 0

}

Figure 14. Intra-object overflows

B.1 Intra-Object Overflows
Consider the program in Figure 14, defining the structure

simple_pair with members x and y. The main function
calls print with the pointer argument &P.y-1. The C Stan-
dard [15, 6.7.2.1:14] does not guarantee what value will be
at this address, as the value depends on the implementation-
defined padding between struct members. Therefore, mem-
ory safety instrumentations aim to report errors for such
accesses.
Low-Fat Pointers cannot protect against these so-called

intra-object overflows by design. SoftBound can narrow its
bounds to the struct member and is hence capable of identify-
ing such errors. However, in practice, automatic narrowing
of bounds and thereby detecting intra-object overflows is not
that simple. Consider Figure 14 again, this time the LLVM
IR code on the bottom, which is generated from the C code
(with clang –O1). The address computation is translated to a
gep instruction with all-zero indices.6 This means it refers to
P.x and the arithmetic on the address of P.y has disappeared.
Effectively, there is no more issue to be reported here.

Note however that bounds narrowing is hard to automate
even at C level. It is guaranteed by the language standard
that a struct has the same address as its first member. For
our small simple_pair, this means that &P == &P.x, and a
programmer might make use of this property. In this case,
narrowing to the bounds of &P.x could lead to false positives,
while not doing it can lead to false negatives. There is an
even more problematic case: When a function receives a
pointer to a struct, do you narrow the bounds to the size of
the struct? What if this pointer is pointing into an array of
structs, and the programmer wants to iterate over the array?

As automated narrowing can only guess the programmer’s
intention, the detection of intra-object overflows likely re-
quires programmers to give manual hints on which pointer
bounds to narrow.

5For an overview of other approaches and how they handle them see [33].
6It computes the address of the first member (second “0” index) of the first
simple_pair in the allocation (first “0” index).
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