
Partial Control-Flow Linearization
Simon Moll

Saarland University
Saarland Informatics Campus

Germany
moll@cs.uni-saarland.de

Sebastian Hack
Saarland University

Saarland Informatics Campus
Germany

hack@cs.uni-saarland.de

Abstract
If-conversion is a fundamental technique for vectorization. It
accounts for the fact that in a SIMD program, several targets
of a branch might be executed because of divergence. Espe-
cially for irregular data-parallel workloads, it is crucial to
avoid if-converting non-divergent branches to increase SIMD
utilization. In this paper, we present partial linearization, a
simple and efficient if-conversion algorithm that overcomes
several limitations of existing if-conversion techniques. In
contrast to prior work, it has provable guarantees on which
non-divergent branches are retained and will never duplicate
code or insert additional branches. We show how our algo-
rithm can be used in a classic loop vectorizer as well as to
implement data-parallel languages such as ISPC or OpenCL.
Furthermore, we implement prior vectorizer optimizations
on top of partial linearization in a more general way. We
evaluate the implementation of our algorithm in LLVM on a
range of irregular data analytics kernels, a neutronics simula-
tion benchmark and NAB, a molecular dynamics benchmark
from SPEC2017 onAVX2, AVX512, andARMAdvanced SIMD
machines and report speedups of up to 146% over ICC, GCC
and Clang O3.

CCS Concepts • Computer systems organization →
Single instruction,multiple data; • Software and its en-
gineering→ Compilers; •Computingmethodologies→
Parallel programming languages;

Keywords SIMD, SPMD, Compiler optimizations

ACM Reference Format:
Simon Moll and Sebastian Hack. 2018. Partial Control-Flow Lin-
earization. In Proceedings of 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’18). ACM,
NewYork, NY, USA, 18 pages. https://doi.org/10.1145/3192366.3192413

1 Introduction
Vectorization is an essential technique to achieve perfor-
mance on data-parallel workloads on machines with SIMD

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of 39th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI’18), https://doi.org/10.1145/3192366.3192413.

instructions. Data-parallel workloads originate from dedi-
cated data-parallel programming languages like OpenCL,
CUDA or ISPC, but also from classic loop vectorization.

1 int search(Node * nodes , float * Q, int i) {

2 int stack [512]; stack [0] = 0;

3 int top = 1;

4

5 float elem = Q[i];

6 int result = -1;

7

8 while (top > 0) {

9 int next = stack[--top];

10 float label = nodes[next].data;

11 int right = nodes[next].right;

12 int left = nodes[next].left;

13

14 if (label == elem) {

15 result = next; break;
16 }

17 if (any(elem < label) && left > 0)

18 stack[top++] = left;

19 if (any(label < elem) && right > 0)

20 stack[top++] = right;

21 }

22 return result;

23 }

Figure 1. Data-parallel binary tree search.

Consider the example in Figure 1 that shows the imple-
mentation of an element search in a binary tree. Assume
that i is the thread index, i.e. the ID of the SIMD instance.
(In the context of loop vectorization one would say that the
body of the function is the loop body and i the induction
variable of the loop.) The code returns the node index for
each value Q[i] if the value is in the tree, and −1 otherwise.
This code is not straightforward to vectorize because it

contains divergent (line 14) aswell as uniform (lines 17 and 19)
branches1. A branch is called uniform if we can statically
decide—by means of a divergence analysis [4, 8, 22]—if all
SIMD instances will take it or not.
The common technique to handle divergence is control-

flow linearization, also known as if-conversion. Thereby, all
instructions that are affected by divergent branches are lin-
earized into a single basic block and branching is replaced by
predication to suppress illegal computations (see Section 2
for more background).
The problem with linearization is that SIMD utilization,

and thus performance, drops because most of the time some

1The uniform condition any(v) evaluates to true for all SIMD lanes, if v
evaluates to true for any SIMD lane. Otherwise, any(v) is false.

https://doi.org/10.1145/3192366.3192413
https://doi.org/10.1145/3192366.3192413

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Simon Moll and Sebastian Hack

instances are inactive. While linearization cannot be avoided
on divergent control flow, it is absolutely mandatory to avoid
linearization of uniform control flow to produce vector code
that actually leads to speed ups for such kinds of workloads.
For example, if we apply the algorithm we present in this
paper to MPC—a data analytics kernel—we obtain a 7.31×
speedup over scalar code. With standard if-conversion, the
same benchmark times out after one hour.

The underlying problem is that existing linearization tech-
niques either fully if-convert the CFG [2], require structured
control flow [29], or contain other special cases and might
create unwanted control flow artifacts [21]. If these require-
ments are not met, these algorithms fail to retain uniform
edges, linearize code where not necessary, and therefore
deteriorate SIMD utilization. There exist domain-specific
vectorization approaches that are specific to certain prob-
lems, such as tree traversal [20, 30]. They perform very well
in their particular domain but are not applicable in a general
way.

A significant part of the benchmarks we consider in this
paper has unstructured, mixed divergent/uniform control
flow. Hence, standard if-conversion techniques fail to re-
tain uniform control flow sufficiently. To the best of our
knowledge, there is no technique that is able to reliably re-
tain uniform control flow without making strong structural
assumptions on the program.

In this paper, we present a novel if-conversion algorithm
called partial linearization whose only requirement is re-
ducible control flow, i.e. the absence of multi-entry loops
which in practice almost all programs fulfill. Furthermore,
our algorithm is simple, efficient, and, in contrast to previous
approaches, provides strong, provable guarantees on the ex-
tent of the retained uniform control flow. On the benchmarks
we consider, partial linearization retained all branches that
were statically classified as uniform.

In summary, this paper makes the following contributions:

• We present partial linearization, a novel partial if-con-
version algorithm (Section 3). Partial linearization is
simple to implement and linear in the number of CFG
edges. Unlike previous work, we prove our algorithm
correct and provide proven criteria on the retained
uniform control flow (Section 4).
• We show how the guarantees that partial linearization
gives, allow for nicely incorporating dynamic tech-
niques such as BOSCC [36].
• We implemented partial linearization in our vectorizer
RV that vectorizes LLVM bitcode. We evaluate the
implementation on a range of irregular data analytics
kernels, a neutronics simulation benchmark and NAB,
a molecular dynamics benchmark from SPEC2017 on
AVX2, AVX512, and ARM Advanced SIMD machines
and report speedups of up to 146% over ICC, GCC and
Clang O3 (Section 7).

2 Background
In this section, we recap basic definitions and review vector-
izing data-parallel programs.

2.1 Prerequisites
A CFG G = (V ,E, entry) consists of basic blocks v ∈ V ,
control-flow edges (b, i, s) ∈ E and a designated entry ∈ V
such that every block v ∈ V is reachable from entry. There
is a terminator instruction at the end of every basic block. If
the terminator is a branch then it has an array of successors.
If (b, i, s) ∈ E than s is the i-th successor of the branch in
b. Return instructions have no successors. We will use the
notation b → s ∈ E to mean ∃i .(b, i, s) ∈ E. Likewise, we
will use the notation π ∈ a →∗ b to mean a path π from a to
b through a chain of edges. We call a path complete if its last
block has no outgoing edges. The set a↓ contains all complete
paths that start in a ∈ V . We assume that ∀a ∈ V .a↓ , ∅,
that is all loops have exits. We require that all edges back
to loop entries originate in a single block, called the unique
latch block. This can can be achieved in reducible loops by
merging all back edges.
In a graph G, the block a ∈ V is said to dominate b ∈ V

(a is a dominator of b), written a ⪰D b, iff every path π ∈
entry →∗ b contains a. Symmetrically [9], the block a ∈ V
is said to post dominate b ∈ V (a is a post dominator of b),
written a ⪰PD b, iff every complete path π ∈ b↓ contains a.

A block k ∈ V is control dependent on an edge a → b ∈ E,
iff k ⪰PD b and k ̸⪰PD a. We use the notation cdep(k) ⊆ E
to denote the set of all a → b ∈ E that k ∈ V is control
dependent on [9, 12].

2.2 Vectorization of Data-Parallel CFGs
We consider the program to be given by its control flow graph
(CFG). In the data-parallel execution model, a CFG is instanti-
ated for N threads. These threads run in no prescribed order
with a unique thread index. Data-parallel programs appear
in inner as well as outer loop vectorization and in dedicated
programming languages like OpenCL, CUDA or ISPC. To
implement data-parallel programs on machines with explicit
SIMD instructions (i.e. CPUs), a compiler has to vectorize
the program accordingly. This is typically performed in four
stages.
First, a static divergence analysis determines which vari-

ables are uniform. Informally, a variable is uniform if its value
is equal among all threads. Non-uniform variables are called
varying. A branch is called uniform if its branch condition is
uniform, otherwise it is called divergent. An unconditional
branch is always uniform. All threads that reach a uniform
branch will take the same branch destination and therefore
the branch might be retained in the vectorized program. A
loop is called divergent if SIMD threads that enter the loop
will leave it in different iterations or through different loop
exits. Otherwise, the loop is uniform.

Partial Control-Flow Linearization PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Second, instructions are inserted that compute the control
predicate for every basic block. Third, if-conversion is used
to eliminate divergent branches from the CFG. Finally, the
vector code backend replaces every non-uniform instruction
with a vector instruction. It also predicates instructions or
inserts so-called blending code to mask out the results of the
inactive threads.

2.3 Divergence Analysis

1 run(k, n) { // k:v , n:u
2 q = n > 0 // q :u
3 if (q) {

4 int i = 0; // i :u
5 do {

6 v = 1.0; // v :u
7 m = k%3 == 0 // m :v
8 if (m) {

9 v = A[i]; // v :u
10 } // v :v
11 C[k] = v;

12 ++k; ++i; // k:v , i:u
13 p = i < n; // p :u
14 } while(p)
15 } }

(a)

e ⊤
u

h q

v

a q∧m

j q
u

x ⊤

q

q
q∧m

q∧m

q∧m

q ∧ p

q∧p

(b)

⊤ :u

q :u

q∧m :v

q :u

⊤ : u

(c)

Figure 2. (a) Function run with shapes (varying v and uni-
form u). (b) CFG with branch shapes (below blocks), edge
predicates (light gray at edges) and block predicates (light
gray inside blocks). (c) partially linearized CFG, control is
uniform, block predicates have shapes.

Intuitively, a vectorized program executes the code of the
scalar program for every SIMD thread in lockstep. As an
instruction is executed, every SIMD thread produces an indi-
vidual output for it. Divergence analysis [4, 8, 22] determines
statically for each variable a shape that describes how the
value of the instruction relates across SIMD threads.

Figure 2a shows an example of Whole-Function Vectoriza-
tion [22]. The vectorizer will create a SIMD version of the
scalar function run. In that vectorized function, the parame-
ter k will be a vector, its shape in the analysis is thus varying.
The parameter n will remain a scalar, and thus has a uniform
shape. Divergence analysis propagates these initial shapes
through the data flow graph to derive the shapes of all in-
structions. The inferred shapes are annotated as comments
in Figure 2a. The if-statement in Line 8 is divergent since it
transitively depends on the variable k.

For the purpose of if-conversion, we are only interested in
the uniform and varying shapes of branch conditions. More
elaborate shapes [8, 15] help for other optimizations. Di-
vergent branches are if-converted for vectorization because
SIMD CPUs can not handle divergent branches in hardware.

2.4 Predication
Figure 2b shows the CFG of Figure 2a and Figure 2c the re-
sult after if-conversion. In the original program (Figure 2a),
line 9 may only execute if the condition m holds. Line 9 cor-
responds to the block a in the CFG of Figure 2b If the CFG is
if-converted, awill execute whenever the loop iterates. How-
ever, it is only safe to perform the load in a if the condition
q ∧m holds as indicated in Figure 2b.

To control the execution of basic blocks, the vectorizer
predicates them. Whenever execution reaches a basic block
the instructions in it perform their effect only if the predicate
is true. The vectorizer inserts additional instruction in the
blocks that compute the predicates.

Given a CFG G , the vectorizer generates predicates for all
basic blocks b ∈ V and all edges a → b ∈ E. The predicate
for an edge a → b is the conjunction of the block predicate
of a and the branch condition of a leading to b. The predicate
of a block b is the disjunction of the edge predicates of the
control dependence edges of b [28].
The generated predicates have shapes as all other values

in the program, shown in Figure 2c for the block predicates.
In formal notation, we denote that a block has a uniform
predicate by uni(a) for a ∈ V . We call an edge a → b ∈ E
uniform, written uni(a → b), iff uni(a) and block b ends in a
uniform branch. Iff the constituents of a block predicate are
all uniform, then the predicate of the block itself is uniform,
i.e. uni(a) ⇐⇒ uni(cdep(a)).

3 Partial Linearization
In this section, we present a novel if-conversion algorithm
that linearizes control flow only partially and retains certain
uniform branches. We begin with an informal overview over
the algorithm, prove its correctness, and finally prove two
properties of our algorithm that characterize the uniform
control flow edges it can retain.

3.1 Block Index
A block index Index : Blocks→ {0, ..,n − 1} is a topological
sort of the basic blocks of a CFG (with backedges removed)
that satisfies compactness constraints. A topological block
sort Index is compact with respect to a set of basic blocks
B ⊂ Blocks, iff all blocks in the range of

[min{Index(b) | b ∈ B},max{Index(b) | b ∈ B}]

are also elements of B. In Figure 3a the blocks c , f and д
fall compactly in the range 4 to 6 because c dominates them.
A block Index is a topological block enumeration that is
compact with respect to the element blocks of all loops and
dominated-block sets [42]. We require reducible loops, which
have a unique header that dominates all other nodes in the
loop [17]. Unique loop headers have the minimum index of
their loop’s blocks.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Simon Moll and Sebastian Hack

a

u
b
v

c

v
d e f g

h i

k

0
1

2 3
4

56

7 8
9

(a) G with index.

a

b c

d e f g

h i

k

(b) up to 1.

a

b c

d e f g

h i

k

(c) up to 5.

a

b c

d e f g

h i

k

(d) up to 6.

a

b c

d e f g

h i

k

(e) up to 7.

a

b c

d e f g

h i

k

(f) final Gℓ .

Figure 3. Walkthrough of partial linearization. (a) source CFG G [21] with divergent branches. (b)-(f) partially linearized CFG
Gℓ after the specified iteration (block index number). Deferral edges are shown as dashed arrows.

3.2 Algorithm
The algorithm, shown in Figure 5, works on loop-free CFGs.
Because we require reducible CFGs, loop headers and back
edges can be unambiguously identified. Hence, to get an
appropriate CFG, we remove all backedges. Section 3.3 elab-
orates why the algorithm is still correct for CFGs with re-
ducible loops.

The result of the algorithm is a newCFGGℓ = (V ,Eℓ, entry)
that constitutes a partially if-converted version of the orig-
inal graph G = (V ,E, entry). Coming back to the example,
the initial graph is shown in Figure 3a and the final graph
Gℓ in Figure 3f.

The algorithm visits every block inV in block index order.
At block b ∈ V , the algorithm creates outgoing control flow
edges from b and adds them to Eℓ , the set of edges in the
resulting, if-converted CFG.
If block b has a divergent branch, the branch needs to

be if-converted and receives only a single outgoing edge
in Gℓ . However, if a path in Gℓ reaches the block b then
all of the original successor blocks of b have to be part of
every possible completion of that path. In other words, if
the algorithm picks a successor next ∈ V for b in Gℓ it has
to make sure that all other successors of b in the original
graph will post-dominate b in Gℓ so that all successors will
eventually execute.

To guarantee this, the algorithm maintains the deferral re-
lationD. The algorithm ensures that whenever a pair (v,w) ∈
V ×V is put into D, the nodew will end up post-dominating
v in Gℓ (Lemma B.3 in the Appendix). When the algorithm
visits a block b with a divergent branch, it will put all the sus-
pended original successors of b into that relation. To make
the deferral relation effective, the algorithm takes the ele-
ments of D for the current node b into account when picking
a new successor for b.

3.3 Partial Linearization of Loops
Let us now discuss how to extend Figure 5 to support uni-
form, reducible loop nests. Section 5 discusses how reducible
divergent loops can be converted into uniform loops. Hence,

a
v

b
v

c

u
d
u

e

a
v

b
v

c

d

e

0

1
2

3

4

a

b

c

d

e

Figure 4. Handling of loops in partial linearization. Left: G
with nested uniform loops. Center: backedges are removed,
shown with loop compact block index. Right: Gℓ with re-
inserted backedges.

partial linearization does not have any other restriction than
requiring reducible control flow.

Running Figure 5 on the CFG that has all backedges deleted
is safe because of the following argument: We require the
latch block to be unique (Section 2.1). It therefore has the
maximum index of any block in the loop. Hence, the latch
block is the only place to re-insert the backedge even in Gℓ .
This is sound because all deferred edges of latch blocks lead
outside the loop:

The deferral relation at the latch can only refer to blocks
that were already deferred at the loop header. This is because
uniform loops have no varying loops exits that could defer
blocks that are outside of the loop. Therefore, If the latch is
reached during execution of Gℓ it is safe to assume that no
exit from the loop was taken in this iteration. Thus, if the
latch is not exiting itself, the latch can proceed with the next
loop iteration.
Figure 8 shows how partial linearization deteriorates if

the block index is not loop compact.

3.4 Correctness
Figure 5 is only concerned with producing a partially lin-
earized CFG and relies on proper predication of the code

Partial Control-Flow Linearization PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Input: CFG G = (V ,E, entry)
Input: Block index of G (see Section 3.1)
Output: Partially linearized CFG Gℓ = (V ,Eℓ, entry)

1 // P ← ∅
2 D ← ∅

3 foreach b in Index do
4 // F ← {v | ∃u .(u,v) ∈ D}
5 T ← {s | (b, s) ∈ D}

6 if b ends in a uniform branch then
7 foreach (b, i, s) ∈ E do
8 next ← min(T ∪ {s})
9 Eℓ ← Eℓ ∪ {(b, i, next)}

10 D ← D∪{(next , t) | t ∈ (T ∪{s})\{next}}
11 end
12 else
13 S ← {s | ∃i .(b, i, s) ∈ E}
14 next ← min(T ∪ S)
15 Eℓ ← Eℓ ∪ {(b, 0, next)}
16 D ← D ∪ {(next , t) | t ∈ (T ∪ S) \ {next}}
17 end
18 D ← D \ {(b, s) | (b, s) ∈ D}

19 // P ← P ∪ {b}

20 end

Figure 5. Partial linearization algorithm. Lines 1,4,19 are
abbreviations used in the proofs.

inside the blocks by predication or masking. Note that predi-
cation is orthogonal to producing the CFG itself and we will
assume a correct predication of the code in the following.
On this assumption, the transformed program is correct if
each path of the original CFG appears as a sub-path in the
partially linearized one. In the remainder of this section we
will prove that this is indeed the case.

We will first show that every path in the scalar CFG is
part of a path in the partially linearized CFG. The proof is
carried out by induction and uses the following invariant of
the outer loop.

Lemma 3.1. For each node v that has a predecessor p in P , it
holds for v that there is either an edge (p,b) ∈ Eℓ or there is
another node p ′ for which there is a path from p to p ′ in Eℓ ∪D
and (p ′,b) ∈ D.

Proof. There are two cases: Either v = b or not.
First, assume v = b. b certainly has a predecessor in P

because the nodes are visited in topological order, hence it
fulfills the premise of the lemma.
Now, b either ends in a uniform branch or not. Consider

the first case. The inner loop (line 7) determines for each
successor of b (in G!) one successor (next) in Gℓ . If next is
picked to be s , then the edge (b, s) is added to Gℓ (line 9). If
next is no successor of b in G, the deferred edge from next

to s is added to D in line 10. Hence, there is a path (in Eℓ ∪D)
from b to s .

If b does not end in a uniform branch, a similar reasoning
applies. Hence, the lemma also holds for all successors of b
that is added to P at the end of the loop body.
Now, consider v , b. line 18 deletes deferred edges and

we have to make sure that the invariant still holds for a
node v , b. There could be a path π in Eℓ ∪ D from some
predecessor u of v in G that contains an edge (b, t) that is
removed in line 18. However, in lines 10 and 16, all deferred
edges that originate in b are “re-originated” to next. because
the edge (b, next) is added to Eℓ , the to-be-removed edge
(b, t) can be replaced by the two-edge path b, next, t in π .
Hence the property is preserved for all other nodes unequal
to b. □

Theorem 3.2. For each path π of G = (P ∪ F ,E), there is a
path π ′ in Gℓ = (V ,Eℓ ∪ D), such that π is a sub-path of π ′.

Proof. By induction on P (the outer loop). The base case
trivially holds because P ∪ F is empty at the beginning of
the program.
For the induction step, assume that the induction hy-

pothesis holds for the subgraph of G induced by the nodes
in {b} ∪ P ∪ F . First of all, each predecessor of b (in G!)
has already been processed because the nodes are processed
(in the outer loop) in topological order. Hence, Lemma 3.1
applies to b.
Consider a path π ∈ entry →∗ p in G where p is a prede-

cessor of b. By the induction hypothesis, there is also a path
π ′ inGℓ that contains π as a subpath. Consider the extension
π ◦ (p → b) of π to b. By Lemma 3.1, there is either an edge
(p,b) ∈ Eℓ or a path p →∗ b in Eℓ ∪ D. □

The path embedding follows from the fact, that after the
algorithm terminated, P ∪ F = V and D = ∅.

It remains to show that if both CFGs, original and partially
linearized, are run with the same input values the original
CFG will generate a trace that is embedded in the trace
of the partially linearized CFG. Partial linearization never
introduces new branches. Further, if partial linearization
changes a branch target then the former branch target will
post-dominate the new successor in the partially linearized
CFG. In conjunction with Theorem 3.2 this means that any
execution trace of the original CFG will also be part of the
trace in the partially linearized CFG.

4 Guarantees
In this section, we prove two properties of partial lineariza-
tion that characterize the uniform control flow that can be
retained.

4.1 Preservation of Uniform Control Dependence
In an if-converted program, every instruction executes with
a predicate unless the predicate is constant. Predication can

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Simon Moll and Sebastian Hack

a

u
b
v

d
u

fc

g
u

h

e

a

b d

fc

g

h

e

Figure 6. Left: G, the source CFG with uniform predicates
in rectangle nodes, right:Gℓ , the partially linearized version
of G. The code generator can ignore all predicates, except
for those in c and f

incur a significant performance overhead because predicates
are computed and, even more severe, memory accesses and
function calls need to be guarded, for example by additional
branching. Therefore, it is desirable to avoid predicated exe-
cution where possible.
Partial linearization guarantees that predicates can be

elided if the predicate of a block is uniform even if the predi-
cate is non-constant. With this guarantee the code generator
can safely emit efficient unpredicated instructions for basic
blocks with uniform predicates. We make this guarantee
precise in Theorem 4.1 and provide a proof.

Theorem 4.1. If uni(b), i.e. the predicate of a block b ∈ V
is uniform, then execution will reach block b in Gℓ iff the
predicate of b is true.

The proof makes use of Lemma 4.2, which states that if
uni(k) then the control dependences of k are preserved in
Gℓ . We provide the proof for Theorem 4.1 here and refer the
reader to Appendix B for a full technical proof for Lemma 4.2.

Lemma 4.2. If uni(k) then cdep(k) = cdepℓ(k) where cdepℓ
is the control dependence in Gℓ .

Proof. We now prove Theorem 4.1. We will first show that if
k is executed inG then it is also executed inGℓ . This follows
from the correctness of partial linearization that if π is a path
in G with k ∈ π then π is embedded in a path π ′ in Gℓ with
k ∈ π ′.

It remains to show that if execution reaches the block k in
Gℓ then block k will also execute inG . We prove the claim by
induction over the block index. Theorem 4.1 is the induction
hypothesis.

Base case: If cdep(k) = ∅ then k is always executed in G.
Since every path inG is embedded in a path inGℓ , the block
k is also always executed in Gℓ . Note that cdep(entry) = ∅
for entry, the first block in the block index.
Induction step: Assume uni(k) for some k ∈ V . We need

to show that if k is executed in Gℓ then k is also executed
in G.
Let π ′ ∈ entry →∗ k be an arbitrary prefix path to k

in Gℓ . Then, there is an edge a → b ∈ cdepℓ(k) such that
π ′ ∈ entry →∗ a → b →∗ k .

a

v
b
u cd

e

b
u cd

e

a

b

cd

e

Figure 7. Left: source CFG; center: Gb the dominance sub-
graph of b; right: preserved uniform branch in b after partial
linearization.

By Lemma 4.2, a → b ∈ cdep(k) as well. Since uni(k), it
follows that uni(cdep(k)) and thus uni(a) and the branch in
a is uniform.

By the induction hypothesis for a < k it follows that a
will only be executed in Gℓ if it is executed in G. Since the
branch in a is uniform this implies that the edge a → b will
only be taken in Gℓ if a → b is taken in G.
However, a → b ∈ cdep(k) implies that k ⪰PD b and thus

any complete path in G that contains b will eventually pass
through k . Hence, if uni(k) and k is executed inGℓ then it is
executed in G as well. □

4.2 Preservation of Uniform Branches
Partial linearization preserves uniform branches in blocks
with uniform predicates, as implied by Theorem 4.1. How-
ever, the algorithmwill even preserve some uniform branches
in blocks with varying predicates.
Figure 7 shows an example of this. Block b has a uni-

form branch but its predicate is varying because b is control-
dependent on the edge a → b, which is varying. Still, the
uniform branch in b will be preserved.

We present a branch preservation guarantee that extends
to those branches as well. The guarantee uses the concept of
relative uniformity of predicates. A blockb is uniform relative
to its dominator d , if b has only uniform control dependences
in the dominance region of d . We will refer to the dominance
subgraph of d as Gd , formally defined by Definition 4.3.

Definition 4.3. The dominance region Gd = (V d ,Ed ,d) is
the subgraph of G = (V ,E, entry) that d ∈ V dominates:
Ed = {x → y ∈ E | d ⪰D x}
V d = {x ∈ V | d ⪰D x ∨

(∃y.y → x ∈ Ed
)
}

A blockb has a uniform predicate relative to a dominatord ,
if b has a uniform predicate in the subgraph defined by the
dominance region of d . This is formalized by Definition 4.4.

Definition 4.4. Let d be a dominator of b. Consider the
dominance region graphGd rooted in d . The entry mask of d
in Gd is uniform. We call b uniform relative to d , iff b has a
uniform mask in Gd .

In the example of Figure 7, we show the dominance region
graph Gd of b in the center. The block b dominates c and
so the edge b → c will be preserved. Generally, as stated
by Theorem 4.5, if an edge a → b is uniform relative to

Partial Control-Flow Linearization PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

a

v
b
u

d ec

f

0
1

2
3

4
5

a

b
u

d ec

f

a

b

d ec

f

a

v
b

c
d
u

e

0
12
3
4

a

b
c

d

e

a

b
c

d

e

Figure 8. Top: Effect of non dominance-compact block in-
dex. Bottom: Effect of non loop-compact block index. Left:
original CFGs G with (non compact) block index, Center:
processed up to 1, Right: Gℓ with defect.

a node d and d dominates the edge then the edge will be
preserved.

Theorem 4.5. Given a dominance-compact block index, par-
tial linearization will preserve an edge b → y ∈ E if uni(b) or
there exists a block d ∈ V with the following properties in G:

1. d ⪰D b ∧ d ≻
D y (d dominates the edge b → y).

2. uni(b → y) in the dominance region Gd of d .

One non-obvious implication of Theorem 4.5 is that we
can insert tests for all-false masks in the CFG (BOSCC) [38]
even before if-conversion (Section 6). If the mask is all false,
partial linearization guarantees that the guarded block and
all blocks that it dominates will be skipped.

Proof We give an intuition why Theorem 4.5 is correct.
The full proof can be found in the Appendix C. The insight
behind the theorem is that partial linearization makes the
same decisions on a dominance region as it does on thewhole
graph.
To this end, the block index of G has to be dominance

compact. To see this, consider the non-dominance-compact
block index in Figure 8. Block b dominates b → d and b → e .
However, as the unrelated block c is deferred at b and is next
in the block index the uniform branch of b will be folded
anyway.

5 Transforming Divergent Loops
Automatic vectorizers need to remove control divergence
before code can be vectorized. To this end, divergent loops
have to be turned into uniform loops.
In existing work, handling of divergent loops is usually

spread out over the whole vectorizer pipeline [21, 40]. Hence,
all stages have to consider the case that a loop could be diver-
gent, as during if-conversion, mask generation and vector
code generation.

We transform divergent loops into uniform loops by fold-
ing divergent exits into data flow. The transformed loops are
still scalar but do not diverge through their loop exits.

a
u

b
v

gf

a

0
b
1

c
2

d

3

e
4

f
5

g
6

a

b

c

d

ef g

Figure 10. Divergent loop transform on the Mandelbrot
example. Left: scalar CFG. Center: after divergent loop trans-
form with block index. Right: partial linearization up to 3.

In our setting, all data flow is in SSA form. ϕ-nodes se-
lect incoming values depending on the predecessor block
that reached them. If a predecessor edge is if-converted, ϕ-
nodes are replaced with blend instructions that switch on
the predicates of the folded edges to pick a value [16].

1 for (i = 0; i < Limit; ++i) {

2 z = z * z + c;

3 if (hypot(__real__ z, __imag__ z) >= ESCAPE)

4 break;
5 }

Figure 9. Inner loop of Mandelbrot with a kill exit (for
condition) and a divergent exit (if condition). z is varying.
Limit and ESCAPE are uniform.

Figure 9 shows the inner loop of a Mandelbrot set com-
putation. Figure 10 shows the corresponding CFG on the
left. The loop runs for every pixel of an image with varying
values of z for each pixel. The loop exit in Line 4 is divergent
because in every iteration some SIMD threads may exit the
loop here while others continue. Thus the Mandelbrot loop is
divergent as a whole. The iteration variable i is used outside
of the loop. For every thread, the value of i is the number of
the iteration when the thread exited the loop. Since the loop
trip count varies by the thread, i is varying, too.

The divergent loop transformationwill transform theMan-
delbrot loop into the uniform loop shown in the center of Fig-
ure 10. Thereby it operates in two stages:

First, the transformation creates a live mask ϕliveMask node
in the loop header to track the live threads in the loop. For
each exit to a block x , another mask ϕxExitMsk node is added
to the loop header to record which thread left the loop to
the exit x . In the example, these are the exits to f and д and
so there are ϕfExitMsk and ϕgExitMsk. The transformation will
also create an empty loop latch block, called the pure latch
block. That is block d in the example. Figure 11 shows the
contents of the final pure latch d .
The transformation inserts the only exit branch of the

transformed loop in the pure latch. The branch continues
with the loop header if any thread continueswith the loop. As
soon as this condition does not hold anymore, the branches
exits the loop to a new dedicated exit block e . That exit block

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Simon Moll and Sebastian Hack

1 ϕliveUpd ← [ϕliveMask, b], [0, c], [0, a]
2 ϕfExitUpd ← [ϕliveMsk, b], [ϕfExitMsk, c], [ϕfExitMsk, a]
3 ϕgExitUpd ← [ϕgExitMsk, b], [ϕcMask, c], [ϕgExitMsk, a]
4 ϕiOut ← [ϕiTrack, b], [ϕi, c], [ϕi, a]
5 br any(ϕliveUpd) a e

Figure 11. pure latch block (d) with mask update ϕ.

e will branch on the exit masks to dispatch all threads to
their actual loop exit destinations (f and д). Since there is
only one uniform exit in the transformed loop from the pure
latch d to the dedicated exit block e , the loop is now uniform.
The if-cascade dispatching to the original loop exits f and д
potentially contains divergent branches. However, these are
now part of the parent loop.

Second, the divergent loop transform rebounds every exit-
ing branch to jump to the pure latch instead of the original
loop exit. When a rebound edge is taken, the loop live mask
and the loop exist masks are updated with additional ϕ nodes
in the pure latch block. The node ϕliveUpd sets the live mask to
zero if the latch is reached from any rebound exiting edge and
maintains the old live mask otherwise. The nodes ϕfExitUpd ,
ϕgExitUpd update the exit masks for blocks f and д.

If the pure latch is reached from a former exiting block,
the live mask is set to 0 and the exit mask to the predicate
of the exiting edge. In Figure 10, the exit from a is rebound
to the pure latch d . The former latch block b also had an
exiting edge. We break the exiting edge of the former latch
block by inserting a new block c . Its only purpose is to have
a non-exiting incoming edge form b to update the ϕ nodes.

We insert an any mask intrinsic in the pure latch to check
whether any thread will continue in the loop and exit to
block e otherwise. Partial linearization will regard it as a
regular uniform branch. The backend lowers the intrinsic,
for example with a ptest instruction on x86 AVX2 targets.

Partial Linearization of Transformed Loops When the
transformed loop is visited during partial linearization the
uniform edge from a to d will be retained. The rebound diver-
gent branch from b to д will be if-converted. The resulting
CFG is shown on the right of Figure 10. The ϕ-nodes will be
folded down to blends (not shown here).

6 BOSCC with Partial Linearization
Branch on Supercondition Code (BOSCC) [36] is a technique
to add dynamic tests for uniformity to skip over linearized
code for which a static analysis failed to prove uniformity.
BOSCC inserts branches that skip a region if the predicate of
the region entry evaluates to false for all SIMD threads. In this
section, we show how to obtain BOSCC’ed code generically
using partial linearization. By exploiting the guarantees we
established in Section 4, we show that handling BOSCC is
contained as a special case in partial linearization by adding a
“BOSCC gadget” (see below) to the CFG before linearization.

1 for (k = 0; k < n; k++) {

2 .. j = pearlist[i][k]; ...

3 xij = xi - x[dim * j]; ...

4 r2 = xij * ...

5 if (r2 > rgbmaxpsmax2) continue; // 0 %

6 ... sj = fs[j] * (rborn[j] - BOFFSET) ...

7 if (dij > rgbmax + sj) continue; // 0 %

8 ..

9 if ((dij > rgbmax - sj)) { ... } // 35.1 %

10 } else if (dij > 4.0 * sj) { ... } // 91.3 %

11 } else if (dij > ri + sj) { ... } // 75.0 %

12 } else if (dij > fabs(ri - sj)) { ... } // 100 %

13 } else if (ri < sj) { ... } // n/a %

14 }

Figure 12. Structure of hot loop in SPEC2017 644.nab_s
with branch probabilities (if-case taken).

a

c b

(a)

any(b)

c a

b

(b)

any(b)

c a

b

(c)

a

b

c

(d)

any(a)0

a

1
8 any(b)2

b

3
7 any(c)4

c
5

6

9

(e)

any(a)

a any(b)

b any(c)

c

(f)

Figure 13. (a) divergent branch in a, (b) BOSCC gadget to
skip b, (c) deferral relation at node a. (d) Excerpt CFG from
hot loop in nab (Listing 12, Line 11 till end). (e) With three
nested BOSCC gadgets. (f) After partial linearization.

Potential for BOSCC occurs in real benchmarks and ap-
plications. Consider the innermost hot loop from 644.nab_s
benchmark from SPEC2017 shown in Figure 12. The domi-
nating control feature of the loop is a deep if-cascade with
very biased branch probabilities, shown as comments in Fig-
ure 12. For the three if-statements from Line 10 to Line 12 the
probability to branch to the if-case is each at least 75% and
even 100% for Line 12. So, there is a 91.3% chance that the
loop will continue to the next iteration already after Line 10.
The if-branches in Figure 12 are divergent since they de-

pend on the iteration variable k and will be fully if-converted.
This leads to inefficient SIMD code as the statements below
Line 10 will often execute with an all-false predicate. BOSCC
branches placed at the if-else cases skip the remainder of
the cascade as the predicate becomes all false. In fact, using
BOSCC in Figure 12 leads to a speedup of 35% over the Intel
C Compiler (icc) on AVX512.

Partial Control-Flow Linearization PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

6.1 The BOSCC Gadget
Consider the CFG in Figure 13a and suppose we want to
insert a BOSCC-branch to skip block b if its mask is all false.
Block b has the unique predecessor a. We insert a BOSCC
gadget, a small CFG pattern that makes partial linearization
skip over b and its dominance region if its mask is all false.
Figure 13b shows the installed BOSCC gadget.
The BOSCC gadget consists of a new block any(b) that

contains the instructions of the original block a minus its
terminator. The block gets a new uniform branch that jumps
to a, if any thread in the mask of b is true, and branches to c
otherwise. The BOSCC gadget makes sure that b will only
execute iff the predicate of b contains at least one live thread.
Figure 13c shows the CFG after partial linearization has

passed through the BOSCC gadget. The divergent branch
of block a has been if-converted while the any(b) branch
persists as it is uniform. The linearized CFG will skip block
b, and its dominance region, if the predicate of b is all false.
This is guaranteed by the branch preservation property (The-
orem 4.5) of partial linearization.
In the hot loop of the nab benchmark, we insert all-false

tests in three locations. On the left of Figure 13, we show
the part of the CFG with the last four if-else cases (Lines 10
to 12) in the loop body. We insert three BOSCC gadgets to
skip the if-statements contained in the else-cases, resulting
in the CFG of Figure 13e. Figure 13f shows the linearized
CFG. The locally-inserted BOSCC gadgets have a non-local
effect on partial linearization: the order of the if-cases in the
linearized CFG is reversed compared to the code of Listing 12.
This arrangement lets the linearized CFG skip the remainder
of the if-cascade as soon as one of the all-false tests succeeds.

7 Evaluation
We implemented partial linearization in RV 2, a whole-function
and outer-loop vectorizer for LLVM. Our implementation is
based on the compiler framework LLVM 4.0.1 [25]. We eval-
uate our approach on a range of irregular workloads from
a data analytics benchmark suite, a neutronics simulation
code and the 644.nab_s benchmark of SPEC2017 [39].
All experiments were conducted on an Intel 7900X CPU

(Skylake) with AVX512 (512bit SIMD registers), an Intel Xeon
E3-1225 CPU (Haswell) with AVX2 (256bit SIMD registers)
and a Raspberry Pi 3 (ARM Cortex-A53 CPU) with Advanced
SIMD (128bit SIMD registers).

In our case studies, we compare against the Intel C Com-
piler (ICC, 17.0.4), GCC (7.2.0) and Clang (4.0.1).

7.1 Irregular Data Analytics Kernels
These kernels are rich in unstructured control flow as well as
uniform and divergent branches and have been found hard
to vectorize [20].

2https://github.com/cdl-saarland/rv

ProgrammingModel The kernels are written as functions
in scalar C++ code and make use of predicate intrinsics (pop-
count, any) to branch on properties of the predicate (number
of live threads, etc). In scalar execution, these intrinsics are
inlined and behave as if the vector width was 1.

Benchmarks Weadopted the Vantage Point, Nearest Neigh-
bor, Point Correlation, k-means clustering and Barnes-Hut
data analytics kernels and data sets from the existing Lones-
tar [24] and Treelogy [18] benchmark suites and added two
new benchmarks: multi-radius point correlation (mpc) and
binary tree (bt). To make the kernels amenable to vector-
ization, we replaced their recursive implementation by an
explicit stack. Furthermore, we added a speculative traversal
technique [1], a well-known technique to increase SIMD
utilization for such codes. The following list describes the
benchmarks and their input sets in further detail:
• Barnes Hut (bh) Acceleration structure for n-body
simulations. random: 1000,000 random bodies. plum-
mer: 100,000 bodies from a plummer model.
• Nearest Neighbor (nn) Nearest Neighbor on a kd
tree.
random: 1000,000 random points (diameter 141.421).
geocity: 2,673,765 city coordinates (diameter 385.32).
covtype: 581,012 data points with nine integer features
from a tree coverage data set [7] (diameter 10246.1).
• Vantage Point (vp) Nearest Neighbor on a Vantage
point tree. Same inputs as nn.
• Point Correlation (pc) Point correlation kd-tree im-
plementation. Count the number of points that lie with
in a radius of a sample position. (Varying sample coor-
dinates, uniform radius (50)). Same inputs as vp.
• Multi-Radius PointCorrelation (mpc)Multi-radius
point correlation [14]. Same inputs as PC.
• K-means (km) KD-tree based k-means algorithm (K
= 128). Same inputs as nn.
• Binary tree (bt) Element search on a binary tree. ran-
dom: 262,144 random elements.
• XSBench binary search (xs) Binary search in sorted
array for maximal element below a quarry. This is
the inner-most loop of the XSBench benchmark [41].
random: 4,194,304 elements.

Multi-Radius Point Correlation For the bh, nn, pc, vp
and km benchmarks, the query coordinate is always varying
while all other parameters to the query are uniform. It has
been noted [14] that some machine learning applications
benefit from a SIMD version of Point Correlation that takes
a vector of radii and a single coordinate. Using our approach,
we can automatically create such a SIMD kernel from the
normal Point Correlation source code simply by changing
the parameter shapes. The multi-radius point correlation
kernel (MPC) is a point correlation kernel with a uniform
coordinate and varying radii.

https://github.com/cdl-saarland/rv

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Simon Moll and Sebastian Hack

1. 2. 3. total
0

0.2

0.4

0.6

0.8

1

sp
ee

d
u

p
/f

as
te

st

ICC GCC Clang RV RV+BOSCC

(a) 644.nab_s
xsbench

0

0.2

0.4

0.6

0.8

1

sp
ee

d
u

p
/f

as
te

st

(b) XSBench

0
1
2
3
4

1.
75

0.
61

0.
83

1.
04

·1
0−

4

2.
62

·1
0−

4

3.
46

·1
0−

4

0.
37

0.
26

0.
4

1.
58

·1
0−

3

0.
65

0.
47

0.
55

2.
59

7.
63

·1
0−

2

* * * * *

3.
03

1.
17

1.
3 1.

74

1.
87

1.
63

3.
69

2.
19 3.

02

1.
34

2.
98

0.
4

7.
31

5.
45

6.
18

1.
57

1.
18

1.
26

2.
59

2.
11

sp
ee

d
u

p
/O

3

full if-conversion partial linearization

vp-city
vp-random

vp-covtype
nn-city

nn-random
nn-covtype

km-city
km-random

km-covtype
pc-city

pc-random
pc-covtype

mpc-city

mpc-random
mpc-covtype

bh-plummer
bh-random bt xs mean

0
0.2
0.4
0.6
0.8

1

u
ti

li
za

ti
on

(c) Treelogy (AVX512 - Skylake)

1. 2. 3. total
0

0.2

0.4

0.6

0.8

1

sp
ee

d
u

p
/f

as
te

st

(d) 644.nab_s
xsbench

0

0.2

0.4

0.6

0.8

1

sp
ee

d
u

p
/f

as
te

st

(e) XSBench

0
1
2
3
4

1.
36

0.
5

0.
64

7.
9

·1
0−

5

2.
03

·1
0−

4

0.
49

0.
3

1.
47

·1
0−

4

5.
61

·1
0−

4

1.
6

·1
0−

5

2.
7

·1
0−

4

3.
82

·1
0−

4

2.
59

·1
0−

4

0.
52

0.
44

0.
58

0.
49

1.
21

·1
0−

2

* *

2.
25

0.
88

0.
96

0.
96

1.
09

0.
96 1.

56

1.
02

1.
19

0.
74 1.

19

0.
32

2.
92

2.
09 2.
42

1.
18

0.
98 1.
3

0.
56 1.

14

sp
ee

d
u

p
/O

3

vp-city
vp-random

vp-covtype
nn-city

nn-random
nn-covtype

km-city
km-random

km-covtype
pc-city

pc-random
pc-covtype

mpc-city

mpc-random
mpc-covtype

bh-plummer
bh-random bt xs mean

0
0.2
0.4
0.6
0.8

1

u
ti

li
za

ti
on

(f) Treelogy (AVX2 - Haswell)

1. 2. 3. total
0

0.2

0.4

0.6

0.8

1

sp
ee

d
u

p
/f

as
te

st

(g) 644.nab_s
xsbench

0

0.2

0.4

0.6

0.8

1

sp
ee

d
u

p
/f

as
te

st

(h) XSBench

0
1
2
3
4

1.
99

0.
7 1.
03

1.
88

·1
0−

4

6.
54

·1
0−

4

4.
08

·1
0−

4

8.
09

·1
0−

4

2.
4

·1
0−

4

0.
9

0.
75

0.
51

0.
17

3.
12

·1
0−

2

* * * * * **

2.
24

0.
8 1.
1

0.
71

0.
96

1.
19

1.
11

0.
8 1.
11

0.
66

0.
84

0.
46 1.

58

1.
41

1.
53

1.
14

0.
93

0.
73

0.
18 0.

92

sp
ee

d
u

p
/O

3

vp-city
vp-random

vp-covtype
nn-city

nn-random
nn-covtype

km-city
km-random

km-covtype
pc-city

pc-random
pc-covtype

mpc-city

mpc-random
mpc-covtype

bh-plummer
bh-random bt xs mean

0
0.2
0.4
0.6
0.8

1

u
ti

li
za

ti
on

(i) Treelogy (Adv. SIMD - Cortex-A53)

Figure 14. Running time results.

Query Inputs The PC, VP, NN, MPC, XS and bintree ker-
nels query a data structure at user-specified coordinates. We
draw uniform random coordinates from the bounding boxes
of the data set. In case of bintree, we take 4096 random sam-
ples from the data range with 50% chance of being a tree
element. This array is then sorted. For the XSBench binary
search, we draw 220 random samples and sort them. All ver-
sions of the kernels were run with the exact same inputs and
query order. Performance differences are therefore due to
vectorization and the employed if-conversion technique.

Results We evaluate the data analytics kernel under the
following settings:
• Partial linearization. vectorizedwith partial lineariza-
tion and divergent loop transform.
• If-conversion. vectorized with if-conversion and di-
vergent loop transformation. If-conversion is the stan-
dard technique [2, 40] to eliminate divergent branches.
• Baseline. Scalar kernels compiled with O3 optimiza-
tion level (includes LLVM’s loop and SLP vectorizers).

Note that our goal is generic vectorization of CFGs. There-
fore, we do not compare against prior work on dedicated
automatic vectorization of tree traversals [20] that achieves
even better results but is limited to this particular kind of
code and are not applicable to other codes such as 644.nab_s.

We show the results in Figure 14c for AVX512, in Figure 14f
for AVX2 and in Figure 14i for ARM Adv. SIMD. Each figure

shows the measured speed up over the Baseline on top and
the average SIMD utilization below. The slowest partially
linearized kernel finished within two minutes on AVX2 and
AVX512 and within 45 minutes on Adv. SIMD. The timeout
for AVX2 and AVX512 was thus set to one hour for AVX2
and AVX512 and to two hours on ARM Adv. SIMD. Timed
out results are marked with an asterisk (∗) and do not factor
into the reported means. The average SIMD utilization is
the average number of active SIMD threads per basic block
execution divided by the vector width.

Comparisonwith If-Conversion Partial linearization out-
performs if-conversion on all three machines and on all ana-
lytics kernels, except for xs. The xs kernel is extracted from
the XSBench benchmark, which will be discussed in Sec-
tion 7.3.

The SIMD utilization improvements are due to preserved
uniform branches as Table 1 reveals (column Branch/pres).

In the if-converted kernels, all uniform branches are folded.
This causes the blocks that the branch would otherwise skip
to execute with an all-false predicate, which in turn drains
SIMD utilization. This includes uniform top-level branches.
However, the vector code backend will re-introduce the
folded branches to guard instructions with side effects. LLVM
will often merge and hoist these checks. The runtime num-
bers we report for the full if-conversion case include the full
LLVM O3 pipeline run after our vectorizer.

Partial Control-Flow Linearization PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Table 1. Branch, loop, loop exit and mask statistics. div
branches are divergent branches, lost branches are uniform
branches that had to be if-converted and pres branches are
preserved uniform branches. uni/div are uniform/divergent
loops (loop exits). true is the number of loads/stores with a
constant true predicate, uni is the number with non-constant
uniform predicates and var is for varying predicates.

Name Branch Loop Exit L/S Masks
div lost pres uni div uni div true uni var

bh 0 0 3 2 0 0 0 14 6 0
bt 2 0 4 0 1 1 1 3 0 6
km 8 0 8 3 2 2 2 14 35 6
mpc 4 0 13 6 2 2 2 6 52 6
nn 8 0 8 3 2 2 2 14 35 6
pc 8 0 6 3 2 2 2 14 32 6
vp 1 0 3 2 0 0 0 16 3 1
xs 1 0 1 0 1 0 1 0 0 1
nab-1/vec 7 0 3 1 0 0 0 6 4 11
nab-1/bsc 7 0 6 1 0 0 0 6 4 11
nab-2/vec 2 0 3 1 0 0 0 31 10 20
nab-2/bsc 2 0 3 1 0 0 0 31 10 20
nab-3/vec 7 0 2 1 0 0 0 37 14 22
nab-3/bsc 7 0 5 1 0 0 0 37 14 22
xsbench 1 0 1 2 1 0 1 46 0 2

The higher the number of uniform branches in the kernel
(column Branch/pres), the more pronounced is the utiliza-
tion gap between partially linearized and fully if-converted
kernels. This effect is strongest for thempc kernel that shows
a 7.31 speed up with partial linearization but times out if full
if-conversion is employed: mpc contains the most uniform
branches and uniform loops of all of the benchmarks.

The memory accesses in all kernels, except for xs, operate
either on uniform pointers or access contiguous memory
(as in C[tid]). The xs kernel contains a single load from
a varying pointer (a gather to load from the array) with a
varying predicate (last column of Table 1). There is no gather
instruction in the ARM Advanced SIMD ISA and the load
is scalarized to an if-cascade. The same happens for AVX2
because, although gather instructions exist on AVX2, LLVM
will not emit them for Haswell as they are deemed inefficient.
Only for AVX512 does LLVM generate a gather instruction
leading to the situation that this is the only target where
speedups over scalar can be observed for the xs kernel.

Comparison with Scalar Baseline On AVX512, all ker-
nels show a speedup except for the pc benchmark with the
covtype dataset. For the covtype dataset, the query radius is
less then 5% of the diameter of the dataset (bounding box).
Therefore, the redundancy gains by traversing the tree in
lock step are low. This reflects in the low SIMD utilization of
little more than 50% and thus translates to poor performance.

On the other hand, the mpc kernels achieve significant
speedups over the scalar baseline. There is a single query
coordinate for all SIMD threads in mpc. Therefore, the set of
nodes to visit is highly redundant among the query instances
grouped together by vectorization.

The evaluationmachines cover three different vectorwidths
from 128 Bits to 512 Bits. The SIMD utilization for a given
benchmark is stable independent of the machine.

Across the benchmarks the performance of the vectorized
tree kernels scales with the vector width. In mpc and bt the
performance scales roughly by a factor of 2 with the vector
width, which is the theoretical maximum gain to be expected
by a doubled vector width if microarchitectural differences
are ignored.

7.2 Case Study: 644 nab_s
We use the 644.nab_s benchmark of SPEC2017 to show the
efficacy of the BOSCC gadget. We evaluated on the SPEC2017
refspeed data set for AVX512/AVX2 and on the reftrain data
set for Adv. SIMD because of memory constraints. We com-
pare against Clang (with PGO), GCC and ICC (on x86 only)
as shown in Figure 14a, Figure 14d and Figure 14g.

About 77% of the running time in the 644.nab_s is spent
in three hot loops of the egb function (aminos profile). We
will refer to these loops by the order they occur in the code
(loops 1 to 3). We applied RV to all three loops with the
full vector length of the target. We measured the time spent
in each of these loops and the total running time on the
benchmark. The first and third loop have the deep, divergent
if-cascade as outlined in Figure 12.
None of the compilers (ICC, GCC, Clang) perform auto-

matic loop vectorization on the three hot loops. Vectorization
without BOSCC leads to regressions compared to Clang on all
but the AVX512 target. BOSCC enables significant speedups
for this benchmark on AVX512 and Adv. SIMD. We attribute
the performance difference between AVX512 and AVX2 to
the factor-two difference in vector width.

RV inserts three BOSCC gadgets in the first and third loop
as shown in Figure 13. These branches add to the preserved
branches in Table 1 for the */bsc variants of loops 1 and 3.

7.3 Case Study: XSBench
XSBench is a proxy benchmark for the key computational
kernel of the Monte Carlo neutronics application OpenMC [33].
About 85% of the total runtime of the actual OpenMC appli-
cation is spent in this code [41]. We run XSBench with the
nuclide grid type option. The input sizes were XL for AVX2
and AVX512 and small for Advanced SIMD due to memory
constraints. We apply RV to an outer loop that internally
runs the xs kernel as part of the simulation code. As shown
in Table 1 the vectorization of that loop requires the diver-
gent loop transform and partial linearization to preserve
the uniform loop. Our approach attains a speed up of 146%

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Simon Moll and Sebastian Hack

(AVX512) and 14.24% (AVX2) over the best of GCC, Clang
and ICC.

7.4 Partial Linearization
Table 1 shows that partial linearization preserves all uniform
branches (column Branch/lost) across all benchmarks, Not a
single uniform branch was folded (lost) as the byproduct of
if-converting a divergent branch.

Comparison with ISPC The nab benchmark in the setting
RV+BOSCC, shown in Figure 13, uses unstructured control
flow. ISPC’s if-conversion technique isn’t applicable here.
Transforming the CFG in order to make it structured would
render the BOSCC gadget ineffective. The adopted Treel-
ogy benchmarks use mixed uniform/varying short-circuit
conditionals, as in if (U && V). ISPC defaults to full if-
conversion in this case. Partial linearization will naturally
preserve the branch on U and only fold the branch on V.

8 Related Work
There exist numerous optimizations to make data analytics
kernels amendable to GPU execution [13, 19] and vectoriza-
tion [20]. Data analytics kernels feature a mixture of uniform
branches, for traversing the data structure, and divergent
branches making these kernels hard to vectorize [20]. There-
fore, Automatic SIMD vectorizers for traversal algorithms
are highly specialized for this problem class [20, 30–32].
Uniform branch preservation has also been studied in

the context of GPUs kernels [10, 27]. Preserved uniform
branchesmake the GPU kernels more efficient. GPUs support
divergent branches in hardware, which is why these works
do not address if-conversion at all. However, eliminating
divergent branches in the program is a strict requirement
for SIMD CPUs. If-conversion is the principal technique to
eliminate divergent branches for SIMD vectorization [2].
The Intel SPMD Program Compiler (ISPC) [29] operates

on fully structured ASTs. As such, unstructured branches
either need to be uniform (gotos) or will be if-converted
completely. However, unstructured control flow appears in
practice. For example, Bahmann et al. [6] showed that in
SPEC2006, 4390 of 14321 CFGs are unstructured. Partial lin-
earization subsumes ISPC’s if-conversion because partial
linearization preserves all the branches that ISPC preserves.
This follows as a corollary from Theorem 4.5. Hence, partial
linearization is more powerful than ISPC’s heuristic.
The early algorithm by Ferrante and Mace [11] has an
O(n logn) complexity and inserts blocks and branches. Kar-
renberg [21], Karrenberg and Hack [23] present an incom-
plete partial linearization algorithm that recovers control
with additional (cluster-dependent) branches. These branches
can cause irreducible control even if the original CFG was
acyclic. For example, Karrenberg’s method already creates
an irreducible loop for the CFG in Figure 3. Regarding com-
pile time, partial linearization has linear complexity in the

number of edges while Karrenberg’s method is quadratic and
spans over five algorithm listings. For absence of guarantees
the BOSCC-gadget would not reliably work with Karren-
berg’s method.
A different class of algorithms insert new basic blocks,

predicates and branches after complete if-conversion [3, 26,
37]. None of the aforementioned techniques gives compara-
ble branch preservation guarantees to partial linearization.

Previous work has looked into handling loops with diver-
gent exits. This includes the set up [22, 40] of live masks for
divergent loops. Uniform exits in divergent loops were stud-
ied previously [23]. However, all of these approaches handle
divergent loops specially throughout the vectorizer pipeline.
Our approachmakes divergent loops uniform in a standalone
transformation. The following analyses and transformations,
including the if-conversion algorithm, become simpler since
all loops they see are uniform.
The BOSCC technique [36, 37] inserts BOSCC branches

after if-conversion and requires a predicate hierarchy graph.
Techniques related to BOSCC in GPU kernel optimization
support BOSCC before if-conversion but only on SESE re-
gions [27]. In contrast, the BOSCC gadget encodes the se-
mantics of BOSCC branches directly in the CFG. Partial lin-
earization then natively folds these down to their intended
effect, even in unstructured control scenarios and without
additional data structures [36].

Several techniques have been proposed to enable the loop
vectorization of non data-parallel loops [5, 35]. The tech-
niques presented here are applicable after these techniques
have established the legality of vectorization. Techniques
such as block unification [8, 34] that improve the utilization
in divergent code are complementary to partial linearization.

9 Conclusion
In this paper, we presented partial linearization, a simple and
efficient if-conversion algorithm for unstructured CFGs that
focuses on retaining uniform control flow. Partial lineariza-
tion can be used in a classic loop vectorizer as well as to
implement data-parallel languages such as CUDA, OpenCL,
or ISPC on a machine with explicit SIMD instructions. In
contrast to prior work, partial linearization has provable
guarantees on the extent of uniform control flow that can
be are retained. At the same time, it will never insert new
branches or duplicate code. We evaluate the implementation
of our algorithm on a range of control-flow intensive kernels
on which classical vectorizers fail to achieve speed ups. Par-
tial linearization was able to retain all uniform branches in
these benchmarks. On wide range of vector machines (AVX2,
AVX512, ARM Adv. SIMD) we report speedups of up to 146%
over ICC, GCC and Clang O3.

Partial Control-Flow Linearization PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

A Extended Notation & General Remarks
A.1 Extended Notation
The set of blocks that k ∈ V is control dependent on is
defined as cdepB(k) = {a ∈ V | ∃b .a → b ∈ cdep(k)}
We write ⪰PD

ℓ
and cdepℓ to refer to post dominance and

control dependence on the partially linearized graph Gℓ .
We use the notation x@q for q ∈ V and x being a variable

in the algorithm to refer to the value of variable x after its
update in the outer loop iteration of block q. For example,
next@p is the value of variable next after line 14, if p has a
varying branch. Ifp has a uniform branch than next@p refers
to the value of next after line 8. In case of uniform branches
there can be multiple definitions of next for next@b. The
inner loop iteration next@b is referring to will be made clear
in the context.

A.2 General Remarks
Note that line 18 can be removed from the algorithm without
any effect on the resulting Gℓ . This is because D@b is only
read in the definitions of T@b ′ with b ′ > b. Further, line 18
is the only statement that removes entries from the deferral
relation. Thus, after a new pair (x ,d) ∈ D@b is added in
line 10 or line 16, it will be the case that d ∈ T@x .

B Preservation of Uniform Control
Dependence

Lemma B.1. If uni(k) then cdep(k) = cdepℓ(k) where cdepℓ
is the control dependence in Gℓ .

It is the purpose of this Section to prove Lemma B.1 that
was used as an unproven lemma in the proof of Theorem 4.1.

B.1 Auxiliary Lemmas
Lemma B.2.

c ∈ T@b =⇒ ∀(b, s) ∈ Eℓ [(s, c) ∈ D@b ∨ s = c]

Note that T@b contains the deferral targets of b before D is
modified while D@b includes the updates to D after the outer
loop iteration for b has finished.

Proof. For any such c ∈ T@b, we distinguish three cases in
the outer loop in the iteration of b ∈ V :
Case 1. b has a divergent branch and x = min(T@b) with

∀s ∈ S@b .x ≤ s .
Since x ≤ min(S@b ∪ T@b) always next@b = x . If x = c
then (b, 0, c) ∈ Eℓ . Otherwise, if x , c , then (b, 0,x) ∈ Eℓ
and (x , c) ∈ D@b after line 16.
Case 2. b has a divergent branch and s = min(S@b) <

min(T@b).
So, next@b = s and next@b < T@b. We get (b, 0, s) ∈ Eℓ
and (s, c) ∈ D@b because next@b < T@b.
Case 3. b has uniform branch.

For every iteration of the inner loop, there are two cases for
each (b, i, s) ∈ E: If next@b , c then (b, i, next@b) ∈ Eℓ

and (next@b, c) ∈ D@b since c ∈ T@b and c , next@b.
Otherwise, if next@b = c then (b, i, next@b) ∈ Eℓ . □

Lemma B.3. c ∈ T@b =⇒ c ≻PD
ℓ
b

Proof. Given that c ∈ T@b, consider every complete path
π ∈ b↓ in Gℓ . Since π is complete it ends in some x ∈ V
where x is a block without successors inGℓ . When the outer
loop processed x , it also held that T@x = ∅. However, when
b was processed it held that c ∈ T@b. Hence, there must be
a nodem ∈ π where next@m = c . To see why, assume that
there was no m ∈ π with next@m = c . By Lemma B.2, it
must therefore hold that c ∈ T@x . However, this contradicts
that x has no successors in Gℓ . As this reasoning applies to
any complete path π from b in Gℓ , the node c is element
of any such path π . Thus, by definition of post dominance,
c ≻PD

ℓ
b. □

Lemma B.4. a ⪰PD x =⇒ a ⪰PD
ℓ
x

Proof. We show the claim by induction over the post domi-
nance relation in G.
Base case The claim trivially follows for a = x .
Induction step Assume that a ≻PD x . For every successor p
with x → p in E it holds that a ⪰PD p. By the induction hy-
pothesis therefore a ⪰PD

ℓ
p. For every edge (x , i, next@x) ∈

Eℓ there are two cases: Either immediately next@x = p or it
holds that next@x , p. In the latter case (next@x ,p) ∈ D@x
after the update to D and so p ≻PD

ℓ
next@x by Lemma B.3

with a ⪰PD
ℓ
p. Therefore, in general a ≻PD

ℓ
x . □

Lemma B.5. uni(a) =⇒ T@a = ∅

Proof. We will prove this claim by an outer induction over
the block index and an inner induction over the post domi-
nance region of a node. For the outer induction, the induction
hypothesis is equivalent to the claim uni(a) =⇒ T = ∅.

Outer base case For the first node in the block index, the
claim follows from the initial state with D = ∅.

Outer induction step We may assume that given uni(a)
it holds that ∀d ∈ cdepB(a).T@d = ∅. This is because
uni(a) implies uni(cdep(a)). It remains to show that then
also T@a = ∅. We will prove this by induction over the
post dominance region of a in block index order. The induc-
tion hypothesis for the inner induction step is a ⪰PD p =⇒
(∀t ∈ T@p.a ⪰PD t). For the case that p = a, this implies that
T@a = ∅ because ∀t ∈ T@a.t > a.

Inner base case The base case for the inner induction is
the minimum node p ∈ V with a ⪰PD p. IfT@p = ∅ the claim
follows trivially. Otherwise, assume there exists a t ∈ T@p.
First, note that p < T@x for any x ∈ V . Assume that

p ∈ T@x , there must be a node s with the edge s → p ∈ E
during which processing the pair (next@s,p) was inserted
into the deferral relation. Then, a ̸⪰PD s because p is the
minimum node with a ⪰PD p and hence s → p ∈ cdep(a).

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Simon Moll and Sebastian Hack

With uni(a) it follows that s has a uniform branch and the
outer induction hypothesis implies that T@s = ∅. Therefore,
always (next@s,p) < D@s after line 10, for any such s →
p ∈ E. This contradicts p ∈ T@x for any x ∈ V .

So, if t ∈ T@p due to (next@q, t) ∈ D@qwith next@q = p
then q → p ∈ E. However, then again q → p ∈ cdep(a)
and q must have a uniform branch and the outer induction
hypothesis yields T@q = ∅. Thus, (next@q, t) < D@q after
the outer loop has finished processing q. Therefore, t ∈ T@p
can not exist and finally T@p = ∅.

Inner induction step We proceed with the inner induc-
tion step for a node p ∈ V such that a ⪰PD p. Again, consider
there was a t ∈ T@p such a ̸⪰PD t while a ⪰PD p. There must
have been an outer loop iteration of the algorithm for a node
s ∈ V (i.e. "b = s") such that next@s = p and (p, t) ∈ D@s
after the iteration.

We distinguish three cases for s:
Case 1. s → p ∈ cdep(a). Therefore s has a uniform

branch and by the (outer) hypothesis if holds that T@s = ∅.
This leads to the contradiction that (p, t) < D@s after s was
processed.

Case 2. a ⪰PD s . As s < p, we can apply the inner in-
duction hypothesis and obtain ∀z ∈ T@s .a ⪰PD z. Since
s < p and a ⪰PD p, a ≻PD s . From a ≻PD s it follows also that
∀s → n ∈ E.a ⪰PD n. Therefore, regardless whether s has
a uniform or varying branch it holds that a ⪰PD t , which
contradicts the assumption.

Case 3. s → p < cdep(a) ∧ a ̸⪰PD s . We know that s → p <
E because otherwise s → p would be a control dependence
of a. Hence, there must be a different q ∈ V with q → p ∈ E,
such that p < T@q but (next@q,p) ∈ D@q after the update
of D in the iteration of q.
As a ⪰PD p, also a ⪰PD q. To see why assume that a ̸⪰PD q

and so q → p ∈ cdep(a). By the outer induction hypothesis
q must have a uniform branch and T@q = ∅. However, in
that case p was never added as a deferral target in line 10.
Therefore, a ⪰PD q.

Since p = next@s and s → p < E, there must be in
particular such a node q with q → p ∈ E and a path π ′ ∈
q →∗ x → s in Gℓ . Note that for every nodem ∈ π ′ it holds
that next@m ∈ T@m or next@m is an immediate successor
of m. By the inner induction hypothesis and a ≻PD m, it
follows that ∀t ∈ T@m.a ⪰PD t . Likewise, since a ≻PD m also
a ⪰PD next@m if next@m is an immediate successor ofm.
Finally, x ∈ π ′ and next@x = s and so also a ⪰PD s . This
contradicts the assumption of the case that a ̸⪰PD s . Hence,
Case 3 can never occur. □

Lemma B.6. if uni(k) with k ∈ V
then for all b ∈ V , k ⪰PD b =⇒ (∀t ∈ T@b .k ⪰PD t).

Proof. This is the inner induction hypothesis of Lemma B.5. It
is thus proved by the accompanying proof of that Lemma.We

will use the induction hypothesis as a standalone argument
and thus rephrase it here as a corollary. □

Lemma B.7. If uni(k) with k ∈ V
then for all b ∈ V , [∃t ∈ T@b . (k ⪰PD t)] =⇒ k ⪰PD b

Proof. We will prove the claim by induction over the block
index.

Base case The base case is given for instanceswhereT@b =
∅, which includes the entry block of the CFG. If T@b = ∅
then ∀t ∈ T@b .(k ̸⪰PD t).

Induction step We prove the induction step for b ∈ V .
Since T@b , ∅, the node b = next@p for some p ∈ V with
p < b. When each such p is processed by partial lineariza-
tion, it will add new entries of the form (b,d) to the deferral
relation that result in entries d ∈ T@b. Note that D = ∅
initially, and these transfers by nodes p with next@p = b are
the only way to add elements to T@b.

We thus distinguish the following cases for t ∈ T@b with
k ⪰PD t where (b, t) was added to the deferral relation for a
node p with next@p = b.
Case 1. ∃i .(p, i,b) ∈ E

If k ⪰PD t for t ∈ T@p then by the induction hypothesis,
k ⪰PD p. Further, since p → b ∈ E, immediately k ⪰PD b.

Case 2. ∄i .(p, i,b) ∈ E
In this case b = next@p ∈ T@p. By the induction hypothesis
with t ∈ T@p, k ⪰PD p. So, it follows from Lemma B.6
with uni(k) that ∀t ∈ T@p.k ⪰PD t and in particular k ⪰PD

next@p = b.
□

Lemma B.8. if ∀a → b ∈ E.uni(a → b) then
∀b .a → b ∈ E ⇐⇒ a → b ∈ Eℓ

Proof. uni(a → b) implies that a has a uniform branch and
thus ∀a → b ∈ E.uni(a → b). Since uni(a) then T@a = ∅
by Lemma B.5. Because of that a → b ∈ E implies a →
b ∈ Eℓ by the algorithm. This means that |{b | a → b ∈
Eℓ}| ≥ |{b | a → b ∈ E}|. However, the algorithm will only
reduce the degree of branches. This means that |{b | a →
b ∈ Eℓ}| ≤ |{b | a → b ∈ E}|. Thus, ∀b .(a → b ∈ E ⇐⇒
a → b ∈ Eℓ). □

Lemma B.9. if uni(a) then
[
a ⪰PD b ⇐= a ⪰PD

ℓ
b
]

Proof. We prove the claim by induction over the post domi-
nance relation in Gℓ . The induction hypothesis is as follows
with induction performed over the node b with an arbitrary
but fixed node a:

If uni(a) then a ⪰PD
ℓ
b =⇒ a ⪰PD b.

In the following assume uni(a). The base case is given by
the roots of the post-dominator tree that is the b ∈ V , such
that there is no a with a ≻PD

ℓ
b.

Partial Control-Flow Linearization PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Base case Lemma B.4 implies that a ⪰PD b =⇒ a ⪰PD
ℓ

b.
Since b is a root of the post-dominator tree, there is no other
a ∈ V with a ⪰PD

ℓ
b but a = b and so it follows that a ⪰PD b.

Induction step For the induction step, we will show the
contraposition a ̸⪰PD b =⇒ a ̸⪰PD

ℓ
b. Given that a ̸⪰PD b and

b is processed in the outer loop, we distinguish the following
cases:

Case 1. There exists (b, i, next@b) ∈ Eℓ with next@b ∈
T@b.
In this case, it follows directly from Lemma B.7 that a ̸⪰PD b
implies a ̸⪰PD next@b. By the induction hypothesis for
next@b, we conclude thata ̸⪰PD

ℓ
next@b. Sinceb → next@b ∈

Eℓ therefore also a ̸⪰PD
ℓ
b.

Case 2. For all (b, i, next@b) ∈ Eℓ it holds that next@b <
T@b.
In this case next@b is drawn from the immediate successors
of b in G.

Sub case 2.1. b has a divergent branch.
Assume there was a b → s ∈ E with a ̸⪰PD b and a ⪰PD s .
This implies that b → s ∈ cdep(a). However, as uni(a) the
node b must have a uniform branch, which contradicts the
assumption. Therefore, such an edge can not exist and thus
if b has a divergent branch it follows from a ̸⪰PD b that ∀b →
s ∈ E.a ̸⪰PD s . So, if b → next@b ∈ E then a ̸⪰PD next@b.
We apply the induction hypothesis to obtain a ̸⪰PD

ℓ
next@b

and finally a ̸⪰PD
ℓ
b.

Sub case 2.2. b has a uniform branch.
Since a ̸⪰PD b there must be an edge b → s ∈ E such that
a ̸⪰PD s . By assumption of Case 2, the node s is also an
immediate successor of b inGℓ . By the induction hypothesis
a ̸⪰PD

ℓ
s . Therefore, also a ̸⪰PD

ℓ
b. □

B.2 Main Proof
This is the main proof of Lemma B.1.

Proof. In the following we will assume that uni(c) for some
c ∈ V . We will prove the two directions of the equivalence
separately, that is A =⇒ B and B =⇒ A.
Direction: a → b ∈ cdepℓ(c) =⇒ a → b ∈ cdep(c)

By definition of control dependence, we obtain c ⪰PD
ℓ
b and

c ̸⪰PD
ℓ

a and a → b ∈ Eℓ . By Lemma B.4 and Lemma B.9,
given that uni(c), it follows that c ⪰PD b and c ̸⪰PD a. It
remains to show that a → b ∈ E. Assume this was not the
case, that is a → b ∈ Eℓ and a → b < E. As a → b ∈ Eℓ , we
get b ∈ T@a and therefore, by Lemma B.3, b ⪰PD

ℓ
a. Since

also c ⪰PD
ℓ

b this contradicts the assumption that c ̸⪰PD
ℓ

a.
Thus, a → b ∈ E.

Finally, from a → b ∈ E and c ⪰PD b and c ̸⪰PD a it follows
by definition that a → b ∈ cdep(c).

Direction: a → b ∈ cdepℓ(c) ⇐= a → b ∈ cdep(c)
Given a → b ∈ cdep(c) and uni(c)we conclude that uni(a →
b). Therefore, by Lemma B.8, a → b ∈ Eℓ because a has a
uniform branch and a → b ∈ E. a → b ∈ cdep(c) also implies

c ⪰PD b and c ̸⪰PD a by definition of control dependence.
However, by Lemma B.4, c ⪰PD b implies c ⪰PD

ℓ
b and since

uni(c) it also follows by Lemma B.9 that c ̸⪰PD a implies
c ̸⪰PD

ℓ
a. In short, a → b ∈ Eℓ and c ⪰PD

ℓ
b and c ̸⪰PD

ℓ
a and so

by definition a → b ∈ cdepℓ(c). □

C Preservation of Uniform Branches
Theorem C.1. Given a dominance-compact block index, par-
tial linearization will preserve an edge b → y ∈ E if uni(b) or
there exists a block d ∈ V with the following properties in G:

1. d ⪰D b ∧ d ≻
D y (d dominates the edge b → y).

2. uni(b → y) in the dominance region Gd of d .

In this section, we will prove Theorem C.1. We will prove
that the edges thatd ∈ V dominates in the partially linearized
subgraph Gd

ℓ
are part of the whole linearized subgraph Gℓ .

The proof considers two instances of partial linearization,
one onG and the other onGd and shows that they maintain
an equivalent state with respect to the equivalence relation
of Definition C.2.
We will show inductively that the equivalence relation

holds when executing the two instances in lock step for each
visited noteb ∈ V . This the lock step execution over the outer
loop (line 3) and the inner loop (line 7) in case that b ends
in a uniform branch. We pad the loop of the instance on Gd

with empty loop iterations for blocks b ∈ V \V d and edges
e ∈ E \ Ed such that both instances can execute in lockstep
over all of b ∈ V . Note that the two instances operate on the
same block index, that is Index(b) = Indexd (b) for b ∈ V d .
Finally, the equivalence relation implies that all edges in

Gd
ℓ
that d dominates are indeed embedded in Gℓ . By exten-

sion if an edge a → b ∈ E with d ≻D b is uniform in Gd for
any node d ∈ V then it will be preserved inGd

ℓ
and thus also

in the whole partially linearized Gℓ .

Definition C.2. The instances of the partial linearization
algorithm on G and on Gd are in an equivalent state at the
outer loop iteration for blockb, ifDd@b ∼ D@b and Ed

ℓ
@b ∼

Eℓ@b where these are defined as:
Dd@b ∼ D@b iff

∀x ,d ≻D y.
[
(x ,y) ∈ Dd@b ⇐⇒ (x ,y) ∈ D@b

]
Edℓ@b ∼ Eℓ@b iff

∀d ⪰D x ∧ d ≻
D y.

[
x → y ∈ Edℓ@b ⇐⇒ x → y ∈ Eℓ@b

]
C.1 Main Proof
Theorem C.3. Partial linearization maintains the equiva-
lence relation of Definition C.2.

Proof. Wewill prove this by induction over the two instances
of the algorithm. The induction hypothesis states that the
equivalence relation of Definition C.2 holds before a new

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Simon Moll and Sebastian Hack

outer loop iteration for a block b ∈ V in both G and Gℓ . We
need to show that the equivalence relation still holds after
the outer loop iteration for a block b ∈ V .

Base case (first block) The equivalence relation holds be-
fore the first outer loop iteration because up to line 3 Dd =

D = ∅ and Ed
ℓ
= Eℓ = ∅.

Induction step (case d ̸≻D next@b) Dd@b ∼ D@b As-
sume there was a (next@b,y) ∈ D@b with d ≻D y after
the outer loop iteration for b. Then next@b < y and further
next@b < d because the block index is dominance compact.
There must be an edge p → y ∈ E with p ≤ b < next@b ≤
d < y because either p = b or p must have been processed
before b to add y as a deferral target. However, if p < d then
d ̸⪰D p and also d ̸≻D y, which contradicts the assumption.

Ed
ℓ
@b ∼ Eℓ@b: The∀-quantifier in the definition ofEd

ℓ
@b ∼

Eℓ@b does not quantify over edges b → next@b ∈ Eℓ@b
with d ̸⪰D next@b. These are the only kind of edges added
to Eℓ and Edℓ in this case.

Induction step (case d ≻D next@b) We first show that
d ⪰D b. The new branch target next@b either originates
from the direct successors of b or from T@b. So, there must
be an edge p → next@b ∈ E with p ≤ b. Since d ≻D next@b
also d ⪰D p and d ≤ p. As b < next@b either d ⪰D b or
b < d . However, in case that b < d then b < p and so p has
not been processed yet, which contradicts the existence of
p → next@b ∈ E.

We now turn to the induction step. Note that the node
b has the same set of successor edges in both Gd and G
by the definition of Gd (Theorem 4.3). Further, D ∼ Dd

and Eℓ ∼ Ed
ℓ
before line 7 for a uniform branch or line 13

for a divergent branch. Therefore, we only need to show
that next@b = nextd@b for each step. It then follows that
D@b ∼ Dd@b and Eℓ@b ∼ Ed

ℓ
@b after the step.

Case 1. Inner loop step for uniform branch in b.
Let (b, i, s) ∈ E be the edge in Gd and G processed by the
inner loop. Because the inner loop executes in lock step
s@b = sd@b. We need to show that next@b = nextd@b
after line 8.
Consider the case that next@b ∈ T@b. Then, because

d ≻D next@b and D@b ∼ Dd@b, also next@b ∈ T d@b.
There could not be a t ∈ T@b with d ̸≻D t and t < next@b
since d ⪰D b and d ≻D next@b and so t < b, which contra-
dicts t > b. Hence, next@b = nextd@b.

Case 2. b has a divergent branch.
We need to show that next@b = nextd@b after line 14 where
next ← min(T ∪ S).
In case that next@b ∈ T@b there can not be a t ∈ T@b

with t < next@b for the same reason as in the uniform case.
Note that S@b = Sd@b because d ⪰D b and so min(S@b) =
min(Sd@b). Therefore, next@b = nextd@b.

It remains to show that line 18 does not affect the equiva-
lence relation. First, note that the expressionD ← D\{(b, s) |
(b, s) ∈ D} does not add new pairs to either D or Dd . Fi-
nally, if before the line there was en edge (b, z) ∈ D@b and
(b, z) ∈ Dd@b with d ≻D z, it will be removed from both
D@b and D@b.

Therefore, both instances are in equivalent state after an
outer loop iteration on b ∈ V . □

References
[1] Timo Aila and Samuli Laine. 2009. Understanding the Efficiency of

Ray Traversal on GPUs. In Proceedings of the Conference on High Per-
formance Graphics 2009 (HPG ’09). ACM, New York, NY, USA, 145–149.
https://doi.org/10.1145/1572769.1572792

[2] J. R. Allen, Ken Kennedy, Carrie Porterfield, and JoeWarren. 1983. Con-
version of Control Dependence to Data Dependence. In Proceedings
of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages (POPL ’83). ACM, New York, NY, USA, 177–189.
https://doi.org/10.1145/567067.567085

[3] Jayvant Anantpur and Govindarajan R. 2014. Taming Control Diver-
gence in GPUs through Control Flow Linearization. Springer Berlin
Heidelberg, Berlin, Heidelberg, 133–153. https://doi.org/10.1007/
978-3-642-54807-9_8

[4] Krste Asanovic, Stephen W. Keckler, Yunsup Lee, Ronny Krashin-
sky, and Vinod Grover. 2013. Convergence and Scalarization for
Data-parallel Architectures. In Proceedings of the 2013 IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (CGO)
(CGO ’13). IEEE Computer Society, Washington, DC, USA, 1–11.
https://doi.org/10.1109/CGO.2013.6494995

[5] Sara S. Baghsorkhi, Nalini Vasudevan, and Youfeng Wu. 2016. FlexVec:
Auto-vectorization for Irregular Loops. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’16). ACM, New York, NY, USA, 697–710. https:
//doi.org/10.1145/2908080.2908111

[6] Helge Bahmann, Nico Reissmann, Magnus Jahre, and Jan Christian
Meyer. 2015. Perfect Reconstructability of Control Flow from Demand
Dependence Graphs. ACM Trans. Archit. Code Optim. 11, 4, Article 66
(Jan. 2015), 25 pages. https://doi.org/10.1145/2693261

[7] J A Blackard and D J Dean. 1999. Comparative accuracies of artifi-
cial neural networks and discriminant analysis in predicting forest
cover types from cartographic variables. Computers and Electronics in
Agriculture vol.24 (1999), 131–151.

[8] Bruno Coutinho, Diogo Sampaio, Fernando Magno Quintao Pereira,
and Wagner Meira Jr. 2011. Divergence analysis and optimizations. In
Parallel Architectures and Compilation Techniques (PACT), 2011 Inter-
national Conference on. IEEE, 320–329.

[9] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. 1991. Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph. ACM Trans. Program.
Lang. Syst. 13, 4 (Oct. 1991), 451–490. https://doi.org/10.1145/115372.
115320

[10] Gregory Diamos, Benjamin Ashbaugh, Subramaniam Maiyuran, An-
drew Kerr, Haicheng Wu, and Sudhakar Yalamanchili. 2011. SIMD
Re-convergence at Thread Frontiers. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-44).
ACM, New York, NY, USA, 477–488. https://doi.org/10.1145/2155620.
2155676

[11] Jeanne Ferrante and Mary Mace. 1985. On Linearizing Parallel Code. In
Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL ’85). ACM, New York, NY, USA, 179–
190. https://doi.org/10.1145/318593.318636

https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/567067.567085
https://doi.org/10.1007/978-3-642-54807-9_8
https://doi.org/10.1007/978-3-642-54807-9_8
https://doi.org/10.1109/CGO.2013.6494995
https://doi.org/10.1145/2908080.2908111
https://doi.org/10.1145/2908080.2908111
https://doi.org/10.1145/2693261
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/2155620.2155676
https://doi.org/10.1145/2155620.2155676
https://doi.org/10.1145/318593.318636

Partial Control-Flow Linearization PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

[12] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The pro-
gram dependence graph and its use in optimization. ACM Transactions
on Programming Languages and Systems (TOPLAS) 9, 3 (1987), 319–349.

[13] Michael Goldfarb, Youngjoon Jo, and Milind Kulkarni. 2013. General
Transformations for GPU Execution of Tree Traversals. In Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC ’13). ACM, New York, NY, USA,
Article 10, 12 pages. https://doi.org/10.1145/2503210.2503223

[14] Alexander G Gray and Andrew W Moore. 2001. N-body’problems
in statistical learning. In Advances in neural information processing
systems. 521–527.

[15] Michael Haidl, Simon Moll, Lars Klein, Huihui Sun, Sebastian Hack,
and Sergei Gorlatch. 2017. PACXXv2 + RV: An LLVM-based Portable
High-Performance Programming Model. In Proceedings of the Fourth
Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC’17).
ACM, New York, NY, USA. https://doi.org/10.1145/3148173.3148185

[16] Paul Havlak. 1994. Construction of thinned gated single-assignment
form. Springer Berlin Heidelberg, Berlin, Heidelberg, 477–499. https:
//doi.org/10.1007/3-540-57659-2_28

[17] M. S. Hecht and J. D. Ullman. 1974. Characterizations of Reducible
Flow Graphs. J. ACM 21, 3 (July 1974), 367–375. https://doi.org/10.
1145/321832.321835

[18] N. Hegde, J. Liu, and M. Kulkarni. 2016. Treelogy: a benchmark suite
for tree traversal applications. In 2016 IEEE International Symposium
on Workload Characterization (IISWC). 1–2. https://doi.org/10.1109/
IISWC.2016.7581286

[19] Kaixi Hou, Weifeng Liu, Hao Wang, and Wu-chun Feng. 2017. Fast
Segmented Sort on GPUs. In Proceedings of the International Conference
on Supercomputing (ICS ’17). ACM, New York, NY, USA, Article 12,
10 pages. https://doi.org/10.1145/3079079.3079105

[20] Youngjoon Jo, Michael Goldfarb, and Milind Kulkarni. 2013. Auto-
matic Vectorization of Tree Traversals. In Proceedings of the 22Nd
International Conference on Parallel Architectures and Compilation
Techniques (PACT ’13). IEEE Press, Piscataway, NJ, USA, 363–374.
http://dl.acm.org/citation.cfm?id=2523721.2523770

[21] Ralf Karrenberg. 2015. Automatic SIMD Vectorization of SSA-based
Control Flow Graphs. Springer Vieweg.

[22] Ralf Karrenberg and Sebastian Hack. 2011. Whole-function Vectoriza-
tion. In Proceedings of the 9th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO ’11). IEEE Computer
Society, Washington, DC, USA, 141–150. http://dl.acm.org/citation.
cfm?id=2190025.2190061

[23] Ralf Karrenberg and Sebastian Hack. 2012. Improving Performance of
OpenCL on CPUs. In Compiler Construction. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1–20.

[24] Milind Kulkarni, Martin Burtscher, Calin Casçaval, and Keshav Pingali.
2009. Lonestar: A Suite of Parallel Irregular Programs. In ISPASS ’09:
IEEE International Symposium on Performance Analysis of Systems and
Software. http://iss.ices.utexas.edu/Publications/Papers/ispass2009.
pdf

[25] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In Code Gener-
ation and Optimization, 2004. CGO 2004. International Symposium on.
IEEE, 75–86.

[26] Marco Lattuada and Fabrizio Ferrandi. 2017. Exploiting vectorization
in high level synthesis of nested irregular loops. Journal of Systems
Architecture 75 (2017), 1 – 14. https://doi.org/10.1016/j.sysarc.2017.03.
001

[27] Yunsup Lee, Vinod Grover, Ronny Krashinsky, Mark Stephenson,
Stephen W. Keckler, and Krste Asanović. 2014. Exploring the Design
Space of SPMD Divergence Management on Data-Parallel Architec-
tures. In Proceedings of the 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO-47). IEEE Computer Society, Wash-
ington, DC, USA, 101–113. https://doi.org/10.1109/MICRO.2014.48

[28] Joseph CH Park and Mike Schlansker. 1991. On predicated execution.
Hewlett-Packard Laboratories Palo Alto, California.

[29] M. Pharr and W. R. Mark. 2012. ispc: A SPMD compiler for high-
performance CPU programming. In 2012 Innovative Parallel Computing
(InPar). 1–13. https://doi.org/10.1109/InPar.2012.6339601

[30] Bin Ren, Youngjoon Jo, Sriram Krishnamoorthy, Kunal Agrawal, and
Milind Kulkarni. 2015. Efficient Execution of Recursive Programs
on Commodity Vector Hardware. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’15). ACM, New York, NY, USA, 509–520. https:
//doi.org/10.1145/2737924.2738004

[31] Bin Ren, Sriram Krishnamoorthy, Kunal Agrawal, and Milind Kulka-
rni. 2017. Exploiting Vector and Multicore Parallelism for Recur-
sive, Data- and Task-Parallel Programs. In Proceedings of the 22Nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP ’17). ACM, New York, NY, USA, 117–130. https:
//doi.org/10.1145/3018743.3018763

[32] Bin Ren, Tomi Poutanen, Todd Mytkowicz, Wolfram Schulte, Gagan
Agrawal, and James R. Larus. 2013. SIMD Parallelization of Applica-
tions That Traverse Irregular Data Structures. In Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO) (CGO ’13). IEEE Computer Society, Washington, DC,
USA, 1–10. https://doi.org/10.1109/CGO.2013.6494989

[33] Paul K. Romano, Nicholas E. Horelik, Bryan R. Herman, Adam G. Nel-
son, Benoit Forget, and Kord Smith. 2015. OpenMC: A state-of-the-art
Monte Carlo code for research and development. Annals of Nuclear En-
ergy 82 (2015), 90 – 97. https://doi.org/10.1016/j.anucene.2014.07.048
Joint International Conference on Supercomputing in Nuclear Ap-
plications and Monte Carlo 2013, {SNA} + {MC} 2013. Pluri- and
Trans-disciplinarity, Towards New Modeling and Numerical Simu-
lation Paradigms.

[34] N. Rotem and Y. Ben Asher. 2014. Block Unification IF-conversion for
High Performance Architectures. IEEE Computer Architecture Letters
13, 1 (Jan 2014), 17–20. https://doi.org/10.1109/L-CA.2012.28

[35] Diogo N. Sampaio, Louis-Noël Pouchet, and Fabrice Rastello. 2017. Sim-
plification and Runtime Resolution of Data Dependence Constraints
for Loop Transformations. In Proceedings of the International Confer-
ence on Supercomputing (ICS ’17). ACM, New York, NY, USA, Article
10, 11 pages. https://doi.org/10.1145/3079079.3079098

[36] Jaewook Shin. 2007. Introducing Control Flow into Vectorized Code.
In Proceedings of the 16th International Conference on Parallel Architec-
ture and Compilation Techniques (PACT ’07). IEEE Computer Society,
Washington, DC, USA, 280–291. https://doi.org/10.1109/PACT.2007.41

[37] Jaewook Shin, Mary Hall, and Jacqueline Chame. 2005. Superword-
Level Parallelism in the Presence of Control Flow. In Proceedings of
the International Symposium on Code Generation and Optimization
(CGO ’05). IEEE Computer Society, Washington, DC, USA, 165–175.
https://doi.org/10.1109/CGO.2005.33

[38] Jaewook Shin, Mary W. Hall, and Jacqueline Chame. 2009. Evaluating
compiler technology for control-flow optimizations for multimedia
extension architectures. Microprocessors and Microsystems 33, 4 (6
2009), 235–243. https://doi.org/10.1016/j.micpro.2009.02.002

[39] Standard Performance Evaluation Corporation (SPEC). 2017. SPEC
CPU2017 Benchmark Descriptions.

[40] Shahar Timnat, Ohad Shacham, and Ayal Zaks. 2014. Predicate vectors
if you must. In Workshop on Programming Models for SIMD/Vector
Processing.

[41] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz.
2014. XSBench-the development and verification of a performance
abstraction for Monte Carlo reactor analysis. The Role of Reactor
Physics toward a Sustainable Future (PHYSOR) (2014).

[42] Christian Wimmer and Hanspeter Mössenböck. 2005. Optimized In-
terval Splitting in a Linear Scan Register Allocator. In Proceedings

https://doi.org/10.1145/2503210.2503223
https://doi.org/10.1145/3148173.3148185
https://doi.org/10.1007/3-540-57659-2_28
https://doi.org/10.1007/3-540-57659-2_28
https://doi.org/10.1145/321832.321835
https://doi.org/10.1145/321832.321835
https://doi.org/10.1109/IISWC.2016.7581286
https://doi.org/10.1109/IISWC.2016.7581286
https://doi.org/10.1145/3079079.3079105
http://dl.acm.org/citation.cfm?id=2523721.2523770
http://dl.acm.org/citation.cfm?id=2190025.2190061
http://dl.acm.org/citation.cfm?id=2190025.2190061
http://iss.ices.utexas.edu/Publications/Papers/ispass2009.pdf
http://iss.ices.utexas.edu/Publications/Papers/ispass2009.pdf
https://doi.org/10.1016/j.sysarc.2017.03.001
https://doi.org/10.1016/j.sysarc.2017.03.001
https://doi.org/10.1109/MICRO.2014.48
https://doi.org/10.1109/InPar.2012.6339601
https://doi.org/10.1145/2737924.2738004
https://doi.org/10.1145/2737924.2738004
https://doi.org/10.1145/3018743.3018763
https://doi.org/10.1145/3018743.3018763
https://doi.org/10.1109/CGO.2013.6494989
https://doi.org/10.1016/j.anucene.2014.07.048
https://doi.org/10.1109/L-CA.2012.28
https://doi.org/10.1145/3079079.3079098
https://doi.org/10.1109/PACT.2007.41
https://doi.org/10.1109/CGO.2005.33
https://doi.org/10.1016/j.micpro.2009.02.002

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Simon Moll and Sebastian Hack

of the 1st ACM/USENIX International Conference on Virtual Execu-
tion Environments (VEE ’05). ACM, New York, NY, USA, 132–141.

https://doi.org/10.1145/1064979.1064998

https://doi.org/10.1145/1064979.1064998

	Abstract
	1 Introduction
	2 Background
	2.1 Prerequisites
	2.2 Vectorization of Data-Parallel CFGs
	2.3 Divergence Analysis
	2.4 Predication

	3 Partial Linearization
	3.1 Block Index
	3.2 Algorithm
	3.3 Partial Linearization of Loops
	3.4 Correctness

	4 Guarantees
	4.1 Preservation of Uniform Control Dependence
	4.2 Preservation of Uniform Branches

	5 Transforming Divergent Loops
	6 BOSCC with Partial Linearization
	6.1 The BOSCC Gadget

	7 Evaluation
	7.1 Irregular Data Analytics Kernels
	7.2 Case Study: 644 nab_s
	7.3 Case Study: XSBench
	7.4 Partial Linearization

	8 Related Work
	9 Conclusion
	A Extended Notation & General Remarks
	A.1 Extended Notation
	A.2 General Remarks

	B Preservation of Uniform Control Dependence
	B.1 Auxiliary Lemmas
	B.2 Main Proof

	C Preservation of Uniform Branches
	C.1 Main Proof

	References

