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Monte-Carlo Renderers must generate many color samples to produce a
noise-free image, and for each of those, they must evaluate complex mathe-
matical models representing the appearance of the objects in the scene. These
models are usually in the form of shaders: Small programs that are executed
during rendering in order to compute a value for the current sample.

Renderers often compile and optimize shaders just before rendering, tak-
ing advantage of the knowledge of the scene. In principle, the entire renderer
could benefit from a-priori code generation. For instance, scheduling can
take advantage of the knowledge of the scene in order to maximize hard-
ware usage. However, writing such a configurable renderer eventually means
writing a compiler that translates a scene description into machine code.

In this paper, we present a framework that allows generating entire
renderers for CPUs and GPUs without having to write a dedicated compiler:
First, we provide a rendering library in a functional/imperative language
that elegantly abstracts the individual rendering concepts using higher-order
functions. Second, we use partial evaluation to combine and specialize the
individual components of a renderer according to a particular scene.

Our results show that the renderers we generate outperform equivalent
high-performance implementations written with state-of-the-art ray tracing
libraries on the CPU and GPU.
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1 INTRODUCTION
Monte-Carlo Renderers are naturally complex and configurable
pieces of software: They typically incorporate powerful renderer-
specific languages to describe 3D scenes. Most of those languages
allow the designer to define small programs that define the appear-
ance of an object, called shaders [Pixar 1988; Sony Pictures Image-
works 2017]. Before rendering, the renderer compiles these shader
programs into either machine code or an internal representation.
During shader compilation, most renderers perform standard code
optimizations, such as constant folding or dead code elimination. At
this stage, some renderers also apply specialization [Guenter et al.
1995; McCool et al. 2002; Sons et al. 2014]: Since the scene is known,
some computations in the shaders might have become superfluous
and can thus be eliminated. For instance, the renderer can avoid
fetching and interpolating vertex attributes if those attributes are
not present or unused, or remove redundant texture lookups.
Even when shaders are specialized, concrete implementations

of rendering systems suffer from the same problem as many other
high-performance codes: In terms of software engineering, all com-
ponents (e.g. shading system, integrator, primitive intersection and
acceleration structure traversal) are ideally decoupled from each
other and implemented in a high-level, abstract way that focuses
on the algorithmic properties to make code reusable and easier to
understand. However, to achieve this decoupling and abstraction
one typically has to pay a performance price. Essentially, every code
abstraction technique that the programmer uses needs a compiler op-
timization to remove it. Because compilers usually do not succinctly
remove all of these abstractions, programmers sacrifice genericity
for performance. Code is specialized manually and generic code is
tainted by target-dependent artifacts: Developers use SIMD intrin-
sics to vectorize their algorithms, or write CUDA code that can only
run on a GPU.

A solution to this problem is to optimize across rendering library
layers. If the scene description is known at every layer during com-
pilation, constants can be folded, branches pruned, and the renderer
becomes more efficient, because it is specialized for that scene. Of
course, not all scene parameters will enable performance critical
optimizations, and some parameters may be unknown at compile-
time, like the camera position. In practice, knowing the type of each
object is enough. However, to generate a specialized renderer from
a scene description would normally require to write a dedicated,
domain-specific compiler that can not only specialize shaders, but
also the other components. From the scene description and render-
ing parameters, this compiler would generate machine code that
corresponds to a renderer in that specific configuration.
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In this paper, we use the first Futamura projection [Futamura
1982], a classic result from metaprogramming, to avoid writing such
a renderer generator. Based on this idea, we present the design
of the rendering library Rodent that uses the partial evaluation
framework AnyDSL [Leißa et al. 2018]. Rodent is declarative and
separates algorithmic descriptions from their mapping to the target
architecture. This allows Rodent to generate renderers for CPUs
and GPUs whose implementations share most of their code. On top
of this, the renderers generated by Rodent via partial evaluation
outperform equivalent renderers written using Embree [Wald et al.
2014] and OptiX [Parker et al. 2010]. These two libraries are de-
signed and hand-optimized by hardware vendors. Our renderers all
use Path Tracing with Multiple Importance Sampling, and contain
enough features to render scenes modelled by independent artists
(see Figure 6).

Contributions. In summary, this paper:

(i) defines a declarative rendering library that follows the mathe-
matical foundations of rendering and cleanly separates hardware-
related aspects from rendering concepts (Section 4),

(ii) explains how to apply partial evaluation to this renderer-generating
library in order to produce specialized renderers without writ-
ing a compiler (Section 4.6 and Section 4.7),

(iii) demonstrates that those generated renderers outperform equiv-
alent ones developed with state-of-the-art, industrial-grade
libraries on both, CPUs and GPUs (Section 5.3).

2 RELATED WORK
This paper draws from previous work in different, but connected
areas: rendering libraries, specialization of rendering algorithms
and shaders, and partial evaluation.

2.1 Rendering Libraries
Generic libraries and software systems for rendering exist in the
literature [Döllner and Hinrichs 2002; Slusallek and Seidel 1995]:
Using object orientation, the rendering system is split into classes
representing lights, shaders, integrators, and other components.
However, the focus of these libraries is typically on flexibility, rather
than performance. In fact, these frameworks are implemented in C++
and make heavy use of virtual function calls, incurring a significant
performance penalty.

Other, lower-level libraries only provide the basic infrastructure
to build a renderer [Parker et al. 2010; Wald et al. 2014; Zellmann
et al. 2017], like the traversal and intersection routines, and let the
programmer write his own modules on top of it.

Among those, OptiX [Parker et al. 2010] is a framework to write
high-performance GPU-based renderers. It lets the user write C++
programs in order to specify the behavior of a ray tracer when
emitting rays, intersecting a ray with a surface, or shading a sur-
face. Most of the library is tainted with GPU-specific aspects: For
instance, data has to be exchanged between the host and device
through buffers, vertex attributes are passed between programs
using global variables, and user-specified programs have to follow
CUDA [NVIDIA 2019] semantics. Additionally, the OptiX compiler
can only generate a megakernel from the user-specified programs,

which is known to be less efficient than the wavefront execution
model [Laine et al. 2013].

Embree [Wald et al. 2014] is another low-level library providing
highly optimized traversal and intersection routines for x86 CPUs.
Since Embree itself does not provide support for writing shaders, the
reference renderer provided in the Embree SDK uses ispc [Pharr
and Mark 2012] to vectorize shading code. The latter is a vectorizing
compiler that understands a Single Program Multiple Data dialect
of C. Bindings to Embree are available for ispc, such that an ispc
program can use the traversal kernels contained in Embree. How-
ever, this forces the renderer to be written mostly with ispc, using
a C-based language in which building abstractions is difficult if not
impractical (see discussion in Section 5.5). On top of this, and much
like with OptiX, the design of ispc and Embree force the rendering
code to be tainted with hardware- or platform-specific aspects like
the varying-ness of the arguments of a function.

2.2 Specialization and Rendering
Specialization, in the context of rendering, is often restricted to
the shading system [Guenter et al. 1995; He et al. 2018; McCool
et al. 2002; Sons et al. 2014], or focuses on simple rendering algo-
rithms [Andersen 1995; Asai 2002; Georgiev and Slusallek 2008],
like Whitted-style ray tracing [Whitted 1980].

Typically, shader specialization is done by performing some form
of partial evaluation on the shading program, written in a dedicated
language: a subset of C [Guenter et al. 1995], a DSL embedded
inside C++ [McCool et al. 2002], or a subset of Javascript [Sons et al.
2014]. Consequently, a major drawback of these systems is that they
require to design a compiler specific to the chosen language.
Nevertheless, it is widely accepted that shader specialization is

beneficial for performance. In the literature, specialized shaders
typically perform between a couple of percent faster to around two
times faster than the original, non-specialized shaders, depending
on the type of specialization applied and the shader complexity.
Traversal algorithms are also a typical use-case for specializa-

tion [Georgiev and Slusallek 2008; Pérard-Gayot et al. 2017; Selgrad
et al. 2015]. The programmer specializes a traversal algorithm to
configure it for a particular primitive type or intersection routine,
for instance. The result is an optimal traversal kernel that is as fast
or even faster than a highly optimized manual implementation.

Rather than advocating the design of a compiler specific to render-
ers, this paper argues, like others before [Andersen 1995; Futamura
1982; Pérard-Gayot et al. 2017], that specialization can be performed
using partial evaluation.

2.3 Partial Evaluation and Metaprogramming
Traditional compiler optimizations must terminate and prevent ex-
ponential growth of the program. For these reasons, the heuristics
used inmany optimizations like inlining are carefully chosen, so that
a compiler wouldn’t blindly inline recursive functions. Thus, tradi-
tional compiler optimizations cannot reliably remove abstractions
from a given program.

Partial evaluation ignores these constraints and aggressively eval-
uates parts of the program in the following way [Futamura 1982;
Jones 1996]: Given a program P with dynamic inputs D (run-time)
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and static inputs S (compile-time), a partial evaluator will then take P
and values for S , and produce a residual program R (or just residuum)
in which the static inputs have been specialized to the given values.
Note that partial evaluation does not only mean substituting the
static variables with their values but also evaluating the part of the
program that only depends on the static variables. Due to the halting
problem, partial evaluators rely on user annotations to decide which
parts to specialize. Note further that many compiler passes such
as loop unrolling or function inlining are special cases of partial
evaluation.
One can achieve similar goals with metaprogramming, and in

particular C++ templates. With metaprogramming the programmer
must manually dissect the program into two (or more) stages—
usually compile-time and run-time. This makes metaprograms hard
to read and understand as the stage is a notorious feature of the
syntax. The programmer essentially has to write a program that
generates another program. Metaprogramming has some serious
drawbacks: First, the residuum generated by the metaprogram may
be ill-typed. This is the reason for the infamous error messages
when dealing with C++ templates. With partial evaluation, well-
typedness of the residuum comes for free. Second, the programmer
must potentially implement different versions of the same func-
tion for different compile/run time combinations. For instance, a
C++ programmer wanting to implement a power function for both
a compile-time known exponent and a run-time known exponent
will write two functions:

int pow(int a, int b) { /*...*/ }
template <int B> int pow(int a) { /*...*/ }

Note that the constexpr feature of C++ would not help here because
it can only evaluate pow fully, and not partially.
In this paper, we use the first Futamura projection [Futamura

1982] to implement our renderer-generating library. In essence, the
first Futamura projection states that the compiled version of some
program P can be obtained by partially evaluating an interpreter
to P . By following the so-called tagless interpreter approach [Carette
et al. 2007], the interpreter itself can be written as a library of
higher-order functions whose composition constitutes the (abstract
syntax) of P . The important consequence from this is that using
partial evaluation, the difference between a language and a library
essentially vanishes.
To put this into context, Rodent is a form of tagless interpreter:

It is an interpreter of the scene description language that describes
what the renderer should do for every possible scene. By partially
evaluating Rodent with the scene description, we obtain a renderer
specialized for that scene.

3 BACKGROUND
Rodent is written in the programming language Impala [Leißa et al.
2018]. Impala provides several features that are crucial for imple-
menting Rodent. Most importantly, it provides partial evaluation
filters that allow the programmer to control the partial evaluator in
Impala’s compiler. In this section, we briefly discuss the properties
of Impala that are most important for our work.

3.1 Basic Features
In Impala, the loop
for i in range(0, 3) { print(i) }

is syntactic sugar for:
range(0, 3, |i| { print(i) })

The function range is called with the body of the for loop as a
last argument. The loop body is nothing more than an anonymous
function taking the loop counter i as parameter. This syntax allows
the programmer to define custom iteration functions: In particular,
the implementation of range is written in Impala itself!
The Impala compiler also offers several built-in iteration func-

tions: vectorize, parallel, cuda, and others. These functions let the
programmer specify what should be vectorized, parallelized, or ex-
ecuted on the GPU (and via which GPGPU API). Vectorization is
performed using the Region Vectorizer [Moll and Hack 2018], and
parallelization uses Intel Threading Building Blocks [Reinders 2007].
Note that these functions are not pragmas: They behave like any
other higher-order function that is written by the user and can be
passed around. The only difference is that their implementation is
provided by the compiler.

3.2 Partial Evaluation
In Impala, filters [Consel 1988] control partial evaluation. These
are Boolean expressions that independently determine for each
call-site whether to specialize a function call at compile time. They
are denoted by the @ symbol, and we highlight them in every code
snippet. Consider the filter of a recursive power function in the
following example:
fn @(n < 64) pow(x: i32 , n: i32) -> i32 {

if n == 0 {
1

} else if n % 2 == 0 {
let y = pow(x, n / 2);
y * y

} else {
x * pow(x, n - 1)

}
}

The filter will evaluate to true if the argument that is passed to n

at a particular call-site is statically known and is less than 64. This
behavior is recursive. Thus, if yet another filter-annotated function
is called inside the specialized one, the partial evaluator will examine
this call, too. For instance, the call
let z = pow(x, 5);

will be replaced with the following equivalent code, since each
specialization yields another call to pow until the recursion has been
unrolled:
let y1 = x * x; let y2 = y1 * y1; let z = x * y2;

On the other hand, calls such as pow(x, 64) or pow(x, n) where n is
unknown at compile-time, will remain, because in these cases, the
filter does not evaluate to true but to false (in the former case) or
to some symbolic expression (in the latter case).

Functions can be annotated with empty filters, or no filters at all.
If the filter is empty, it is assumed to always evaluate to true, and
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Table 1. Overview of the rendering abstractions.

Images & Textures (4.1)
struct Image

type Texture

struct BorderHandling

type ImageFilter

Materials & BSDFs (4.2)
struct Bsdf

struct BsdfSample

struct Material

struct EmissionValue

Lights (4.3)
struct Light

struct DirectLightSample

struct EmissionSample

Geometries (4.4) & Shaders (4.5)
struct Geometry

struct Shader

Renderers (4.6) & Devices (4.7)
struct Tracer

struct Device

thus acts like a recursive “always inline” attribute, useful for small
functions:
fn @inc(i: i32) -> i32 { i + 1 } // will be always inlined
let inc = @|i|{ i + 1 }; // equivalent (anonymous function syntax)

If the function contains no filter, then the filter is assumed to always
evaluate to false, and thus prevents partial evaluation.
Partial evaluation can drastically affect the performance of the

program, much like traditional compiler optimizations. However, us-
ing filter annotations in Impala, the programmer can decide exactly
when and where to specialize. This is in stark contrast to traditional
optimizations that are driven by heuristics and hardly in the hands
of the programmer.

3.3 Continuations
Continuations are functions that never return. Their return type
is ! (“bottom”). For example, fn (i32) -> ! is the type of a continu-
ation that takes an integer. As the type ! has no value constructor,
continuations must call other continuations to be correctly typed.
Internally, Impala represents every function as a continuation. For
instance, fn get_42() -> i32 { 42 } is just syntactic sugar for:
fn get_42(return: fn (i32) -> !) -> ! { return (42) }

Continuations allow the programmer to write functions that re-
turn to different code blocks that expect different types—similar to
checked exceptions:
fn safe_div(x: i32 , y: i32 , error: fn() -> !) -> i32 {

if y != 0 { x / y } else { error() }
}

Since continuations are first-class citizens in Impala, programmers
can even capture standard continuations such as return, break, or
continue and pass them around just like any other variable. This
allows programmers to emulate a multi-level break:
for i in range(0, 100) {

let exit_outer = break;
for j in range(0, 100) { exit_outer () }

}

4 RENDERING LIBRARY
It seems reasonable to expect any high-level rendering library to be
a direct translation of the mathematical foundations. Slusallek and
Seidel [1995] already discuss such an architecture. Unfortunately, in
most languages, there is a cost for abstraction: For instance, virtual
functions in C++ are often expensive because inlining calls to such

functions requires to perform devirtualization, an optimization that
is not always possible. Impala enables us to freely design the abstrac-
tions of Rodent and use partial evaluation to remove the incurred
overhead.

Rodent consists of a collection of composable rendering abstrac-
tions built on top of each other (see Table 1). Application developers
combine these abstractions to create a complete scene description,
and then generate a renderer specialized for that scene—either com-
pletely, if everything is known, or partially. Rodent consists of two
different parts that separate what is computed—the algorithm in a
declarative form—from how it is computed—the hardware-specific
mapping. This design philosophy stems from domain-specific lan-
guages like Halide [Ragan-Kelley et al. 2013] or GraphIt [Zhang et al.
2018]. We only present a set of abstractions for a Path Tracer with
Multiple Importance Sampling, due to the limited space available in
the paper. The approach can be generalized to handle more complex
rendering effects not mentioned here, since it only relies on partial
evaluation—a standard compiler optimization technique—and not a
specifically crafted compiler. We start by presenting the declarative
part of Rodent that represents the scene (Section 4.1 through Sec-
tion 4.5) and rendering algorithm (Section 4.6), and then describe the
mapping of these abstractions to the target hardware (Section 4.7).

4.1 Images and Textures
Rodent defines Images as a 2D discrete collection of pixels:

struct Image {
pixels: fn (i32 , i32) -> Color ,
width: i32 , height: i32 ,

}

A filter is as a function that maps an image and a position in the
unit square [0, 1]2 to a color:

type ImageFilter = fn (Image , Vec2) -> Color;

Note how the following constructor yields a nearest neighbor filter:

fn @make_nearest_filter () -> ImageFilter {
@ |img , uv| {

let x = min((uv.x * img.width as f32) as i32 , img.width -1);
let y = min((uv.y * img.height as f32) as i32 , img.height -1);
img.pixels(x, y)

}
}

This is not so much different from object oriented languages: There,
a filter would be represented as an ImageFilter interface, and a near-
est filter would be a class that derives from ImageFilter. In our case,
returning a function is similar to creating an object that contains a
vtable. The fundamental difference, however, is the partial evalua-
tion annotations (see Section 3) that we added to the constructor and
the returned function. These annotations instruct the compiler to
always specialize those functions at compile-time, meaning that the
residual program will not contain any calls to make_nearest_filter.
This particular way of annotating constructors together with the
functions they return is essential to remove closures and thus ensure
performance: Much like with virtual functions, compilers generally
cannot optimize calls to closures since they do not knowwhich func-
tion is actually going to be called. Moreover, closures that capture
their environment need additional storage, typically dynamically
allocated, unless the environment is small enough to be held in a
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pointer. Therefore, running code that creates closures on a GPU
is a challenge. In the remaining of this paper, we follow this prin-
ciple to the letter: Constructors and the functions they return are
always annotated to force specialization. Most top-level functions
in Rodent are just constructors: The actual computation happens
inside the functions returned by those constructors. Thanks to this,
placing partial evaluation filters is just a matter of applying the rule
mentioned previously. For more complicated, and possibly recursive
functions, the developer has to find a termination criterion for the
function and use it as a filter, just like for pow, in Section 3.2. Note
that the user of our library does not need to write filters, since he
should only call constructors, and those already contain filters.
In order to bring texture coordinates back into the unit square,

Rodent defines a border handling abstraction:

struct BorderHandling {
horz: fn (f32) -> f32 , vert: fn (f32) -> f32 ,

}

Rodent applies the horz border mode for the first texture coordinate
and vert for the second one. For example, the following constructor
yields a clamping border handling mode:

fn @make_clamp_border () -> BorderHandling {
let clamp = @ |x| min (1.0f, max (0.0f, x));
BorderHandling{horz: clamp , vert: clamp}

}

Finally, Rodent wraps all these objects into a texture. This is a
function that maps a texture coordinate to a color:

type Texture = fn (Vec2) -> Color;

To create a texture, Rodent provides the following constructor:

fn @make_texture(border: BorderHandling , filter: ImageFilter ,
image: Image) -> Texture {

@ |uv| {
let (u, v) = (border.horz(uv.x), border.vert(uv.y));
filter(image , make_vec2(u, v))

}
}

Application developers define textures by calling this constructor
with the desired border handling mode and filter:

let tex = make_texture(make_repeat_border (),
make_bilinear_filter (), image);

Evaluating the color for a particular texture coordinate is just a
matter of invoking the texture function:

let color = tex(make_vec2 (0.5f, 0.7f));

Since textures are just functions, Rodent allows procedural textures:

fn @make_checkerboard_texture () -> Texture {
@ |uv| {

let (x, y) = (uv.x as i32 , uv.y as i32);
if (x + y) % 2 == 0 { white } else { black }

}
}

4.2 Materials and BSDFs
When rendering physically-based models, materials are represented
with their associated Bidirectional Scattering Distribution Function

(BSDF). This function is used in conjunction with the rendering
equation [Kajiya 1986] to describe light scattering on a surface:

Lo (x ,ωo ) = Le (x ,ωo ) +
∫
Ω
Li (x ,ωi )f (ωi ,x ,ωo ) cos(θi ) dωi (1)

In this equation, the Li and Lo terms represent the incoming radi-
ance and outgoing radiance at point x in direction ωi or ωo , respec-
tively. These two terms are computed by the rendering algorithm.
Le (x ,ωo ) is the emitted radiance at point x in direction ωo , and
is non-zero for lights. Finally, f is the BSDF and θi is the angle
between the surface normal at x and the direction ωi .

Different models can be used to represent f , including analytical
models or measured data. In practice, the artist usually designs a ma-
terial by combining predefined models whose inputs are controlled
by textures or mesh attributes.

The rendering algorithm may need to perform several operations
on a BSDF: Sampling, evaluation, and querying for special properties
that may be useful for the rendering algorithm. In the case of Path
Tracing (PT), the algorithm needs to sample the BSDF to create
new directions at every hit point, and it needs to evaluate the BSDF
in order to perform Next Event Estimation (NEE). Additionally, if
the algorithm uses Multiple Importance Sampling (MIS) [Veach and
Guibas 1995], the renderer should also be able to query the sampling
probability for a given direction. Finally, as a small optimization,
NEE can be disabled for purely specular materials, as it is not useful
in this case.

Rodent defines a BSDF like so:
struct Bsdf {

eval: fn (Vec3 , Vec3) -> Color ,
pdf: fn (Vec3 , Vec3) -> f32 ,
sample: fn (&mut RndState , Vec3) -> BsdfSample ,
is_specular: bool

}

The sample function takes a random number generator state, an
incoming direction, and returns a BsdfSample containing the sample
value, direction, sampling probability, and the cosine between the
surface normal and the sample:
struct BsdfSample {

color: Color , in_dir: Vec3 ,
pdf: f32 , cos: f32 ,

}

The simplest analytical BSDF model is the one for a purely diffuse
BSDF. A constructor for this model might look like this:
fn @make_diffuse_bsdf(elem: SurfaceElement , kd: Color) -> Bsdf {

Bsdf {
eval: @ |in_dir , out_dir| kd * (1.0f / pi),

pdf: @ |in_dir , out_dir|
cosine_hemisphere_pdf(positive_cos(in_dir , elem.normal)),

sample: @ |rnd , out_dir| {
let (u, v) = (randf(rnd), randf(rnd));
let sample = sample_cosine_hemisphere(u, v);
BsdfSample {

color: kd * (1.0f / flt_pi),
in_dir: mat3x3_mul(elem.local , sample.dir),
pdf: sample.pdf ,
cos: sample.dir.z

}
},

is_specular: false
}

}
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This diffuse BSDF is rather standard: Its value is constant and equal
to kd/π , so that the values in kd are in the interval [0, 1]. It uses
cosine-weighted hemisphere sampling, provided by the two func-
tions cosine_hemisphere_pdf and sample_cosine_hemisphere, which
evaluate the sampling probability of cosine sampling and perform
sampling, respectively. The function sample_cosine_hemisphere re-
turns a sample on the unit hemisphere whose normal is the Z -axis,
and must thus be transformed into the local coordinate system of the
surface element. As a consequence, the cosine between the normal
and the direction is simply the Z -coordinate of the sampled direc-
tion. Note the parameter elem of type SurfaceElement: It contains
information about the current point on the surface (see Section 4.4).
A material can be viewed as a combination of a BSDF with an

emitter, if any. This matches quite well the right-hand side of the
rendering equation (see Equation (1)), representing both the Le
(emitted radiance) and f (the BSDF) terms.
struct Material {

bsdf: Bsdf ,
emission: fn (Vec3) -> EmissionValue ,
is_emissive: bool ,

}

This Material contains a BSDF and an emission profile. If the ma-
terial does not emit light, the is_emissive flag is set to false. This
flag is a way to optimize the renderer when the emission profile is
not known: The renderer does not need to evaluate the emission
value and test every component of the returned color at runtime, but
only perform a boolean check. The value returned by the emission

function contain the intensity, and probabilities for a given direction:
struct EmissionValue {

intensity: Color ,
pdf_area: f32 ,
pdf_dir: f32 ,

}

The pdf_area member represents the probability of sampling the
current point on the surface, and the pdf_dirmember corresponds to
the probability of sampling the direction using emission sampling
(sampling from the light source). These terms are necessary for
bidirectional algorithms and MIS. Rodent defines a simple non-
emissive material as follows:
fn @make_material(bsdf: Bsdf) -> Material {

Material {
bsdf: bsdf ,
emission: @ |dir| EmissionValue {

intensity: black ,
pdf_area: 1.0f,
pdf_dir: 1.0f

},
is_emissive: false

}
}

Note that the emission probabilities are irrelevant if the emission
profile is always black. Setting them to 1 lets the compiler optimize
away any division or multiplication if the programmer forgot to
check the is_emissive flag.

4.3 Lights
Light sources are usually kept distinct from other surfaces, in order
to make NEE possible. Depending on the rendering algorithm, it
might be necessary to sample them and produce a position and
direction on the light source, as is for instance the case in Photon

Mapping (PM) or any algorithm which includes tracing paths from
the light sources. Furthermore, lights may not have an area and may
be handled differently by the integrator: This is the case for point
light sources, for instance.

In order to support these features, an adequate Impala definition
could be:

struct Light {
sample_direct: fn (&mut RndState , Vec3) -> DirectLightSample ,
sample_emission: fn (&mut RndState) -> EmissionSample ,
emission: fn (Vec3 , Vec2) -> EmissionValue ,
has_area: bool ,

}

Direct emission sampling is done during NEE: The integrator in-
vokes sample_direct with a random number generator state and a
point on a surface, and in return gets a sample containing a position
on the light source, the light intensity and cosine on the light source
for the corresponding light direction, and a pair of probabilities:

struct DirectLightSample {
pos: Vec3 ,
intensity: Color ,
cos: f32 ,
pdf_area: f32 ,
pdf_dir: f32 ,

}

The probability pdf_area represents the probability of sampling
the point on the surface of the light source. The other probability
pdf_dir represents the probability of sampling the direction between
the point on the surface and the point on the light source using
direction sampling.
The sample_emission function generates a point and a direction

(along with the probabilities) from a random number generator
state:

struct EmissionSample {
pos: Vec3 ,
dir: Vec3 ,
intensity: Color ,
cos: f32 ,
pdf_area: f32 ,
pdf_dir: f32

}

This structure is mostly identical to DirectLightSample except that
it additionally contains a direction. The probabilities are computed
in a different way, though: When calling sample_direct, the pdf_dir
member of the returned DirectLightSample value is the probability
of sampling the direction between the given surface point and the
sampled point on the light source, as if it had been sampled using
emission sampling. When calling sample_emission, the probability
is the actual probability of sampling the returned direction.
As an example, a point light source could be implemented by

connecting the point on the surface to the light position to create
a direction in sample_direct, and sampling a direction uniformly
around a sphere centered on the light position in sample_emission.

4.4 Geometric Objects
Inside a rendering algorithm, geometric objects are viewed as prox-
ies to the surface information (e.g. position on surface, normal,
geometric normal, . . . ), and are associated with a shader. With this
in mind, Rodent represents geometric objects like this:
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struct Geometry {
surface_element: fn (Ray , Hit) -> SurfaceElement ,
shader: Shader

}

The SurfaceElement structure represents the geometry at the hit
point. The renderer invokes surface_element on the geometry with
the current ray and hit information to obtain surface information at
the hit point. Rodent passes this information to the shader contained
in the geometry, along with the ray and hit, in order to produce a
Material. Note that the shader is an ordinary Impala function, and
not a shader program written in another shading language.

4.5 Shaders
Shaders create materials by combining textures, BSDFs, and lights.
Since the input of a shader is the current hit point information, it
follows that they should be typed as:

type Shader = fn (Ray , Hit , SurfaceElement) -> Material;

Unlike in libraries like OptiX, these shaders are only describing a
material and do not have to return a new ray to continue the path:
Only the renderer decides how paths are traced and defined. As an
example, here is a physically-corrected Phong shader [Dutre et al.
2001] controlled by a texture:

let image = device.load_image("data/textures/wall.png");
fn phong_like_shader( ray: Ray

, hit: Hit
, elem: SurfaceElement
) -> Material {

let tex = make_texture(
make_repeat_border (),
make_bilinear_filter (),
image);

let diffuse = make_diffuse_bsdf(elem , tex(elem.uv_coords));
let ks = make_color (0.9f, 0.9f, 0.9f);
let ns = 150f;
let specular = make_phong_bsdf(elem , ks, ns);
let bsdf = make_mix_bsdf(diffuse , specular , 0.5f);
make_material(bsdf)

}

This code uses the device (see Section 4.7) to load a texture, and then
creates a material from the combination of two BSDFs, one being
diffuse and the other specular. The diffuse component is controlled
via a texture with repeat border handling mode and bilinear filtering.
In this example, the texture data comes from an image loaded into
device memory.

4.6 Renderers
Monte-Carlo renderers need to trace paths and evaluate the render-
ing equation (1) at every hit point. Textbooks on ray tracing [Glass-
ner 1989, e.g.], usually describe this process in several key steps
(see Figure 1): The renderer first emits a ray from the camera or
light source and then enters a loop. This loop first traces this ray. If
there is no intersection, the path is done and the renderer proceeds
with the next sample. Otherwise, the renderer takes the emission of
the surface (if any) into account. Then, if NEE is required, the ren-
derer traces a new shadow ray towards a light source. Finally, either
the renderer generates a continuation ray or the path terminates.
To reflect this idea, renderers in Rodent use the following type to
generate a path:

Fig. 1. Functional representation of the rendering process in Rodent. Green
nodes are described in the Tracer structure.

struct Tracer {
on_emit: OnEmitFn , on_hit: OnHitFn ,
on_shadow: OnShadowFn , on_bounce: OnBounceFn ,

}

This structure contains four members functions that define where
to emit rays, what to do when a surface is hit, where to trace shadow
rays, and whether the path should be continued or not. They directly
correspond to nodes of the rendering loop above (colored in green
in Figure 1), allowing a direct translation from a textbook algorithm
into code.

The type of those functions contains continuations: For instance,
on_shadow either traces a shadow ray, or simply does nothing depend-
ing on the type of surface (purely specular surfaces, for example,
do not benefit from NEE). To encode this behaviour, the OnShadowFn

type is defined as follows:

type OnShadowFn =
fn (Ray , Hit , &mut RayState , SurfaceElement , Material ,

fn (Ray , Color) -> !, fn () -> !) -> !;

Read this type as: “A function that takes a ray, a hit, a ray state, a
surface element, and a material. It either returns a ray and a color,
or nothing”. The other member types OnEmitFn, OnBounceFn, and
OnHitFn use the same idea.

With the information contained in the Tracer structure combined
with the scene information, the trace function in the device (see
Section 4.7) schedules shading and tracing rays in order to maximize
device utilization and parallelism. Note that the Tracer definition
allows the user of the library to implement bidirectional algorithms
as well, by calling trace twice: Once with a Tracer that emits rays
from the camera, and once with one that emits rays from light
sources.

ACM Trans. Graph., Vol. 38, No. 4, Article 40. Publication date: July 2019.



40:8 • A. Pérard-Gayot et al.

4.7 Rendering Devices
In Rodent, the concept of a device abstracts the hardware architec-
ture and scheduling mechanisms. It also contains members to load
buffers or images into device memory (as seen in Section 4.5).
struct Device {

trace: fn (Scene , Tracer) -> (),
load_image: fn (&[u8]) -> Image ,
// ...

}

The first parameter of the trace function is a Scene containing geo-
metric objects, shaders, lights, and camera. This function traces
paths according to the description of the ray tracing algorithm pro-
vided as second argument (see Section 4.6).

Thanks to this library design, each rendering algorithm uses the
same Tracer abstraction, and the Device takes care of scheduling
the tracing and shading functions. They also hold device-specific
data for the scene, such as images or acceleration data structures.
We have currently implemented three devices:

(1) A CPU device that uses vectorization in conjunction with
counting sort to shade rays.

(2) A GPU device that traces and shades rays in a megakernel.
(3) A GPU device that runs as a wavefront [Laine et al. 2013].

All those devices perform shader specialization: They either incor-
porate some dispatch mechanism based on the material index (as
in the megakernel GPU device), or sort rays by material and pro-
cess contiguous ranges of rays (as in the CPU and wavefront GPU
devices).
As an example, in the trace function of the CPU device, Rodent

renders tiles of the image in parallel. For each of these tiles, Rodent
maintains a stream (wavefront) of rays that it traverses and shades
together. Before shading, Rodent sorts rays by increasing geometry
ID—and thus, also by shader—and processes ranges of rays within
the stream with the same shader:
fn trace(scene: Scene , tracer: Tracer) -> () {

// ...
for geom_id in unroll(0, scene.num_geometries) {

// Get the range of rays that hit this geometry
let (begin , end) = geometry_range(geom_id);
for i in vectorize(vector_width , begin , end) {

// Use tracer.on_hit/on_bounce /...
}

}
// ...

}

In this excerpt, we assume that the rays are already traced and
sorted, and iterate over geometry indices. For each geometry index,
we get the corresponding range of rays in the stream (those that hit
the geometry which has the current index), and loop over it using
the vectorize built-in function.
The unroll iteration function—not built-in, but implemented in

Impala—unrolls the loop body, thus triggering partial evaluation:
If the scene contains n geometric objects, the outer loop will be
unrolled n times, generating different vectorized versions of the
loop body for every geometry. Because the loop body is specialized
for a specific geometry and shader, unused attributes in the surface
element and computations that depend on the type of material are
automatically removed by the compiler.
On the wavefront GPU device, the idea is similar but the ray

streams correspond to the entire image and the inner loop uses

cuda instead of vectorize, thus creating different kernels for every
shader.
The megakernel GPU device does not use streams. We generate

a ray that is local to the current execution thread, and implement
the rendering loop inside the compute kernel:

fn trace(scene: Scene , tracer: Tracer) -> () {
for work_item in cuda(grid , block) {

let (x, y) = (work_item.gidx(), work_item.gidy());
let (ray , state) = tracer.on_emit(x, y);
let mut terminated = false;
while !terminated {

// Intersect , shade and continue path
}

}
}

In this extract, the kernel contains the entire path tracing loop.
Typical megakernel GPU renderers often exhibit a high register

pressure and important execution divergence. Because we do not
enforce any particular schedule on the functions of the Tracer struc-
ture, we can choose the most appropriate schedule for each device.
For instance, the megakernel device schedules operations such that
small shaders are fused together, but the CPU device does not, as
this optimization is detrimental to its performance.

5 RESULTS
In this section, we compare Rodent with existing, state-of-the-art
tools and libraries to write renderers. We measure both the perfor-
mance and code complexity of every approach across a set of real
scenes modeled by independent artists.

5.1 Generating Renderers In Practice
Since Rodent expects a scene description written in Impala, we
have written a small converter from a 3D scene file to Rodent’s
scene representation. In order to generate a renderer, we only need
to run the converter on a scene of our choice, choose a device
(e.g. by inserting a line like let device = make_cpu_device() in the
converted scene), and then compile the result using Impala. The
final result is a renderer specialized for that scene that runs on the
chosen device. A real application can embed the Impala compiler
and convert a scene at run-time, using Just-In-Time compilation.

5.2 Reference Renderers
Embree [Wald et al. 2014] and OptiX [Parker et al. 2010] offer low-
level APIs to design renderers. In order to compare them against
Rodent, we have implemented renderers with both Embree as well
as OptiX while following the examples provided in their respective
documentation (the Embree example renderer1 and the OptiX path
tracer). These renderers only support triangle meshes of a certain
type and a small set of predefined shaders corresponding to the set
of possible materials in our tested scenes. Moreover, our Embree im-
plementation uses ispc [Pharr and Mark 2012] to vectorize shading
code. Acceleration data structures performance hints suggested in
the documentation have been applied for both renderer implemen-
tations (e.g. using the SBVH data structure in OptiX). We believe
this comparison is fair: We have added the source code of those

1see https://embree.github.io/renderer.html
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Fig. 2. Average distribution of the execution time for renderers generated by
Rodent (right) and the Embree-based reference (left) over all tested scenes on
an i7 6700K. We measure time tracing camera/secondary/shadow rays, and
performing shading. Other tasks include generating, sorting or compacting
rays.

two implementations to the supplemental material, along with the
source code of Rodent.

5.3 Performance
The performance of the renderers generated by Rodent and the ref-
erence renderers is evaluated on a workstation with a i7-6700K CPU
and a Titan X (Maxwell) GPU. The numbers for our test scenes are
listed in Table 2, and the associated reference images are presented
in Figure 6. This table provides additional numbers for an R9 Nano
GPU, on which OptiX cannot run.

In all of the tested cases, our renderers outperform the reference
implementations. We give a break down of the time spent in each
part of the reference CPU renderer and Rodent (Figure 2). Since
the two implementations use exactly the same BVH and traver-
sal algorithm, the time spent tracing rays is similar between both
renderers. However, shading is much faster in Rodent than in the
reference. Indeed, vectorization is more efficient when rays are pro-
cessed in a wavefront: They can be sorted by material and processed
together [Áfra et al. 2016]. On top of this, Rodent’s specialized ren-
derers contain fewer branches than the Embree reference, thanks to
compile-time specialization.
In order to explain which part of the performance difference is

due to specialization, we implemented a synthetic benchmark that
shades a batch of 4096 rays using a physically corrected Phong BSDF.
Each ray in the batch is associated with an integer S in the range
[0..3] that defines how the parameters kd , ks , and ns of the BSDF
are chosen:

base specialized
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Fig. 3. Shading performance on an i7 6700K for the simple shader described
in Section 5.3 implemented using Rodent and ispc (higher is better). Spe-
cialization is done manually in the ispc version.

• For S = 0, every parameter is a constant.
• For S = 1, kd is a texture, ks and ns are constants.
• For S = 2, ks is a texture, kd and ns are constants.
• For S = 3, ks and kd are textures, ns is a constant.

We implemented this shader using both Rodent and ispc, and tested
the impact of specialization on performance. In the ispc version,
specialization is a tedious process achieved using macros, and by du-
plicating some functions, in order to ensure that parameters remain
uniformwhenever possible. This goes against all good programming
practices, by forcing the programmer to break existing abstractions:
The interested reader can have a look at the code provided in the
supplemental material for more details. With Rodent, specialization
is done transparently by the compiler, when the number of shaders
is known. In this case, the generated executable contains 4 different
shaders, one for each value of S . Additionally, we do not have to
write annotations to specify whether a variable or parameter is
uniform or not: The compiler infers the best possible annotation for
us [Moll and Hack 2018]. The results in Figure 3 show that special-
ization brings a performance improvement of around 25% in both
versions. This confirms the intuition that specialization is, even in
such a simple example with only 4 shaders, an efficient optimization
technique.

5.4 Cross-Layer Optimizations
Another interesting question is whether cross-layer optimizations,
which happen between module or abstraction interfaces, are neces-
sary to achieve performance. To answer this, we designed another
synthetic benchmark where a simple diffuse shader is run on a batch
of rays. This time, we enabled or disabled specialization for two
different interfaces: the one between the texture and the shader, and
the one between the mesh attributes and the shader. An easy way
to do this is to add a boolean parameter to every function that spec-
ifies whether or not to perform specialization, as in the following
example:
fn @(specialize) f(specialize: bool , /* ... */) { /* ... */ }

Using this trick, the call f(true, /*...*/) will trigger specializa-
tion, but f(false, /*...*/) will not. The results of this benchmark,
shown in Figure 4, demonstrate that specializing interfaces is a clear
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Table 2. Performance comparison between the renderers generated by Rodent and the reference renderers (not available for the R9 Nano) in Msamples/s
(higher is better). On the GPUs, we list the numbers for both the megakernel device (1) and the wavefront device (2).

CPU (i7 6700K) GPU (Titan X) GPU (R9 Nano)

Scene Rodent Embree Rodent1 Rodent2 OptiX Rodent1 Rodent2

Living Room 9.77 (+23%) 7.94 38.59 (+25%) 43.52 (+42%) 30.75 24.87 35.11
Bathroom 6.65 (+13%) 5.90 27.06 (+31%) 35.32 (+42%) 20.64 14.95 27.31
Bedroom 7.55 (+ 4%) 7.24 30.25 (+ 9%) 38.88 (+29%) 27.72 19.25 32.90
Dining Room 7.08 (+ 1%) 7.01 30.07 (+ 5%) 40.37 (+29%) 28.58 16.22 30.83
Kitchen 6.64 (+12%) 5.92 22.73 (+ 2%) 32.09 (+31%) 22.22 16.68 28.13
Staircase 4.86 (+ 8%) 4.48 20.00 (+18%) 27.53 (+39%) 16.89 11.74 22.21
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Fig. 4. Performancewhen specializing the interfaces between the shader and
the texturing function (T), or between the shader and attribute computation
(A). We present the results for an i7 6700K CPU, using all cores, and on a
Titan X GPU. Note the logarithmic scale on the vertical axis.
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Fig. 5. Compilation times for various scenes and rendering devices.

win in this scenario. In general, users may not use every computed
value provided by an interface. In the event that these computations
are left unused, specialization of the interface can bring large per-
formance improvements. This is typically the case for the interface
between the shading system and the rendering system, for example.

Table 3. Implementation effort for Rodent’s core rendering library, the CPU
device, the GPU devices (including megakernel and wavefront), and for the
Embree-based and OptiX-based references. The effort is measured using
Halstead’s metric (see Section 5.5).

Rodent

Core CPU GPU Embree OptiX

LoC 1086 471 600 869 930
Effort 3.798M 4.403M 5.724M 7.856M 9.605M︸                              ︷︷                              ︸ ︸                ︷︷                ︸

13.93M 17.46M

5.5 Implementation Effort
Implementation effort can be measured in number of lines of code
(LoC), but different languages may require a different amount of
lines to express the same intention. A much better approximation of
the effort required to write a piece of code is Halstead’s well-known
software complexity measure [Halstead 1977], based on the number
of operators and operands in the program. We list Halstead’s effort
along with numbers of LoC in Table 3. Note that we only include
the relevant parts of each renderer, so that the comparison is fair:
For instance, the scene loader has been omitted for both reference
renderers. The numbers are separated between the core library and
the devices for a better comparison with the reference renderers.
Even though Rodent is more generic, has more features, and

allows scenes that are not supported by the reference renderers—we
even provide a wavefront-based GPU implementation not provided
by OptiX—the effort required to code Rodent and all its devices is
lower than the effort required to write the two references.
It is also worth noting that every renderer written with Rodent

uses the same core concepts. For the reference renderers, everything
had to be reimplemented from scratch: Even though both CUDA and
ispc use a C-based language, they are too different—syntax-wise
and semantics-wise—to allow sharing parts of the implementation.

Finally, remember that none of our references uses specialization.
The only tools available with ispc or the CUDA compiler are macros
and template metaprogramming. These are completely impractical
in our setting: Dynamic (run-time) and static (compile-time) data
should be represented in the same language because the scene may
be only partially known.

5.6 Compilation and Specialization Time
Since we produce a new renderer for every scene, the time taken
to generate a renderer is also important, depending on the use case.
Over all the tested scenes, the Impala compiler takes between tens
of seconds to 2min, depending on the number of shaders in the
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(a) Living Room (b) Bathroom

(c) Bedroom (d) Dining Room

(e) Kitchen (f) Staircase

Fig. 6. Scenes used in the performance evaluation.

scene, and the device used (see Figure 5). In particular, the CPU
device takes the longest to compile due to the larger code base and
code transformations triggered by calls to vectorize. Additionally,
the Impala compiler is not particularly well-optimized itself, and is
only single-threaded. As a consequence, the approach presented in
the result section is only valid when render times dominate.

Nevertheless, our library does not forbid partial specialization of
a scene: Indeed, we already do not specialize camera parameters, so
that the user can move interactively within the scene. If the set of
shaders that are going to be used is known in advance, the renderer
can be specialized with only that knowledge, and can therefore be
reused without recompilation for all scenes sharing that property.

6 CONCLUSION
Rodent defines every component of a renderer individually using
a functional and declarative API. The entire library is written in
one unified, general purpose language; There is neither a dedicated

shading language nor a shader specialization engine. The rendering
components—abstractions—of the library are composable and do not
contain any scheduling or execution decision. Such decisions are
left to another layer of the library that combines every component
to form the final renderer.
This layer takes advantage of the compile-time knowledge of

the scene to optimize the rendering abstractions away, and choos-
ing the most appropriate execution schedule in order to maximize
performance. Instead of implementing a custom compiler for ren-
derers, this layer uses partial evaluation, a well-studied compilation
technique, to specialize computations. The partial evaluator itself
is driven using simple code annotations that specify when to in-
line a function: Most of these annotations are trivially forcing code
execution, and require little knowledge of the compiler technology.
Using this strategy, Rodent generates renderers that are special-

ized for both a particular scene and a specific target hardware. The
performance evaluation shows that the generated renderers are
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faster and require less effort than reference renderers written with
state-of-the-art libraries designed by hardware vendors.
Future work could focus on extensions of the library to define

more advanced renderers than the ones described in the article.
There are also avenues for research in the partial evaluator itself,
since the compilation times currently prevent changing the appear-
ance of objects interactively. The entire source code of this paper is
released as Open Source and is available on GitHub2.
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