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ABSTRACT

A straightforward implementation of an algorithm in a general-purpose programming
language does usually not deliver peak performance: Compilers often fail to automatically
tune the code for certain hardware peculiarities like memory hierarchy or vector execution
units. Manually tuning the code is firstly error-prone as well as time-consuming and
secondly taints the code by exposing those peculiarities to the implementation. A popular
method to avoid these problems is to implement the algorithm in a Domain-Specific
Language (DSL). A DSL compiler can then automatically tune the code for the target
platform.

In this article we show how to embed a DSL for stencil codes in another language.
In contrast to prior approaches we only use a single language for this task which offers
explicit control over code refinement. This is used to specialize stencils for particular
scenarios. Our results show that our specialized programs achieve competitive perfor-
mance compared to hand-tuned CUDA programs while maintaining a convenient coding
experience.

Keywords: Stencil Codes; Partial Evaluation; Domain-Specific Language

1. Introduction

Many scientific codes, including stencil codes, require careful tuning to run efficiently
on modern computing systems. Specific hardware features like vector execution units
require architecture-aware transformations. Moreover, special-case variants of codes
often boost the performance. Usually, compilers for general-purpose languages fail to
perform the desired transformations automatically for various reasons: First, many
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transformations are not compatible with the semantics of languages like C++ or
Fortran. Second, the hardware models the compiler uses to steer its optimizations,
are far too simple. Lastly, the static analysis problems that arise when justifying
such transformations are often too hard.

Therefore, programmers often optimize their code manually, use meta program-
ming techniques to automate manual tuning or create a compiler for a DSL. A
prominent example for meta programming is the C++ template language that is
evaluated at compile time and produces a program in the C++ core language. A
DSL compiler has the advantage of custom code transformations and code genera-
tion. However, implementing a compiler is a cumbersome, time-consuming endeavor.
Hence, many programmers embed a DSL in a host language via staging. In DSL
staging, a program in a host language A is used to construct another program in
another language B. A compiler written in A then compiles the B program.

Both approaches have significant limitations concerning the productivity of the
programmer: Very often, languages with meta programming capabilities and DSL
staging frameworks involve more than one language. One language is usually eval-
uated at compile time while the other is evaluated during the actual runtime of the
program. This requires the programmer to decide which part of the program runs in
which stage before he starts implementing. For example, compare the implementa-
tion of a simple function, say factorial, in the C++ template language and the core
language. Another significant disadvantage of the two-languages approach is that
the type systems of the two languages need to cooperate which is often only rudi-
mentarily supported or not the case at all. C++’s template language, for instance,
is dynamically typed: C++ type checks the program after template instantiation.

Many code transformations that are relevant for high-performance codes and
stencil codes in particular can, however, be expressed by partial evaluation of code
written in one single language. Take for example the handling of the boundary con-
dition of a stencil operation, an example we will go through in more detail later.
Using a simple conditional the program can test if the stencil overlaps with the bor-
der of the field and execute specialized code that handles this situation. However,
evaluating this conditional during runtime imposes a significant performance over-
head. Partially evaluating the program at compile time can specialize the program
in a way that a particular case of boundary handling is applied to the corresponding
region of the field which eliminates unnecessary checks at runtime.

In this article we investigate the implementation and the evaluation of several
stencil codes via DSL embedding in our research language Impala [1] (Section 2)—
a dialect of Rusta. Impala supports imperative as well as functional idioms and
extends Rust by a partial evaluator that the programmer can control via annota-
tions (Section 3). Partial evaluation in Impala is realized in a way that erasing the
partial evaluation operators from the program does not change the semantics of
the program. This is often not possible in existing languages which support meta
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programming. Finally, Impala provides Graphics Processing Unit (GPU) code gen-
eration capabilities for arbitrary parts of the input program. We show that partially
evaluated stencils written in Impala reach a competitive performance to hand-tuned
CUDA code on different stencils and different platforms (Section 5).

2. Stencil Codes in Impala

In this section we present our approach for the realization of stencil codes in Impala.
Consider the following C program that applies an 1D stencil to an array:

for (int i=0; i<size; ++i)
out[i] = 0.25f * arr[i -1] + 0.50f * arr[i] + 0.25f * arr[i+1];

The loop iterates over the array and applies a fixed stencil to each element in
the array. The stencil computation is specialized in the example for a given kernel.
However, this coding style has two problems: First, the stencil is hard-coded. The
code has to be rewritten for a different stencil. Furthermore, an extension to 2D or
3D makes the code even harder to maintain and to understand. Second, the logic
iterating over the array and the computation are tightly coupled which makes it
harder to adapt it to different hardware architectures which might require specific
transformations in order to use the underlying hardware efficiently. This, in turn,
means that the whole computation needs to be rewritten for different platforms.

To tackle this dilemma, Impala supports code specialization and decoupling of
algorithms from its iteration logic. Specialization of the following generic stencil
function synthesizes code akin to the optimized code shown above:

fn apply_stencil (arr: &[ float], stencil : [ float], i: int) -> float {
let mut sum = 0.0f; // sum is changed afterwards so declare i t mutable
let offset = stencil .size / 2;

for j in indices ( stencil ) {
sum += arr(i + j - offset ) * stencil (j);

}

sum // return the sum
}

The specialization of this function can be triggered at a call site which is shown in
Section 3.

The desired decoupling of the algorithm from its iteration logic is realized by
higher-order functions. A custom iteration function field_indices, applies the
kernel body passed as function to all indices of the elements in a passed array. For
example, the following code applies stencil to all indices of arr:

let stencil = [ /∗ . . . ∗/ ];

field_indices (arr , |i| {
out(i) = apply_stencil (arr , stencil , i);

});

Like in Ruby or Rust bars indicate a lambda function. Alternatively, Impala offers
the possibility to call this function with the syntax of a for construct which passes
the body of the for loop as last argument. Thus, the following syntax is semantically
equivalent:
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let stencil = [ /∗ . . . ∗/ ];

for i in field_indices (arr) {
out(i) = apply_stencil (arr , stencil , i);

}

Note that the parameter i of the former lambda function now becomes the iteration
variable of our for construct. This mechanism allows to overload for constructs
which is particularly attractive for DSL developers. DSL programmers can then call
field_indices in a convenient way.

In our approach the iteration function can be provided in form of a library.
The stencil code remains unchanged while the iteration logic can be exchanged by
just linking a different target library or just calling a specific library function. The
required hardware-specific and cache-aware implementations can then be written
separately.

3. Code Refinement

In this section we describe our refinement approach of algorithms. One of the main
reasons for refinement in our setting is to improve performance at runtime. An
improvement can be achieved by partially evaluating the program at compile time.
Especially, a platform-specific mapping of stencil codes can be realized with this
approach.

3.1. Partial Evaluation

Partial evaluation is a concept for evaluating parts of the program at compile time.
Compilers perform partial evaluation during transformation phases by applying
techniques such as constant propagation, loop unrolling, loop peeling, or inlining.
However, this is completely opaque to the programmer. That is, programmers can-
not control which parts of a program should be partially evaluated with which
values. Furthermore, a compiler will usually only apply a transformation, if the
compiler can guarantee the termination of the transformation. For this reason, Im-
pala delegates the termination problem to the programmer. He can explicitly trigger
partial evaluation by annotating code with @expr. If the annotated code diverges,
the compiler will also diverge. However, this is not a problem in practice as the
divergence would otherwise occur at runtime. On the other hand, partial evalua-
tion goes far beyond classic compiler optimizations or unroll-pragmas because the
compiler really executes the annotated part of the program.

Partially evaluating the input program can lead to larger code compared to the
input program which may cause performance problems later on. This can be caused
by unrolling of loops, for instance. In such cases the programmer can explicitly pro-
hibit partial evaluation via a special annotation. This ensures that certain parts of
the program remain untouched while the surrounding parts are partially evaluated.
However, in our experience programmers want to fully specialize a particular func-
tion without forbidding specialization of a particular part of that function in most
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cases (see also Section 3.3).
In the following example, we trigger partial evaluation of the apply_stencil

function introduced in the previous section by annotating the call site of the func-
tion:

for i in field_indices (arr) {
out(i) = @apply_stencil (arr , stencil , i);

}

During specialization of apply_stencil, the compiler evaluates expressions and
constructs that are known to be constant and replaces them by the corresponding
results of the evaluation. In our example, the for loop which iterates over the stencil
is unrolled and the constants from the stencil are loaded and inserted into the code
for each iteration. The elements of the arr field, however, are unknown at compile
time. Hence, accesses to arr remain in the code, but the indices for the accesses are
updated and adjusted due to partial evaluation: The variables j and offset are
replaced by constants in the index computation.

3.2. Platform-Specific Mapping

Impala provides built-in functions to trigger code generation for different tar-
get types. For example, consider the implementation of the aforementioned
field_indices function for CUDA-capable GPUs:

fn field_indices (arr: &[ float], body: fn(int) -> ()) -> () {
let dim = (arr.size , 1, 1); // setup dimension
let block = (128 , 1, 1); // default blocking in this case
nvvm(dim , block , || {

let index = nvvm_read_tid_x () + nvvm_read_ntid_x () * nvvm_read_ctaid_x ();
body(index);

});
}

The compiler-known nvvm function (Section 5) executes the passed program on a
CUDA grid. Its dimensions are set in dim. A more sophisticated approach could also
take the dimensions of the stencil into account, for instance. Note that the function
passed to nvvm is allowed to use further target-specific functionality, like resolving
the current thread index or the number of threads per group. Memory allocations
on the target device are automatically managed by the generated code of the Impala
compiler. Required data transfer from the host device to the GPU (and vice versa)
is also performed automatically. However, developers can explicitly control memory
mapping to target-specific memory regions like texturing memory by the provided
functions mmap and munmap. The following variant of the field_indices function
maps the input array arr to texturing memory.
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fn field_indices (arr: &[ float], body: fn(int , &[ float ]) -> ()) -> () {
let dim = (arr.size , 1, 1); // setup dimension
let block = (128 , 1, 1); // default blocking in this case
let texMapped = mmap <Tex >( arr);
nvvm(dim , block , || {

let index = nvvm_read_tid_x () + nvvm_read_ntid_x () * nvvm_read_ctaid_x ();
body(index , texMapped );

});
munmap ( texMapped );

}

By introducing this concept, we are able to conveniently support unified-memory
architectures, as well as architectures which require explicit memory transfer.

So far we have discussed three different implementations of field_indices:
a straightforward CPU implementation, a CUDA-capable implementation and
a CUDA-capable implementation supporting texture memory. A call to
field_indices as introduced in Section 2 does not require any tweaking. Each
variant acts as drop-in replacement of another one.

3.3. Boundary handling

In the code from Section 2, we ignore the fact that the arr field is accessed out of
bounds at the left and right border when the stencil is applied. One possibility to
handle out of bounds memory accesses is to apply boundary handling whenever the
field is accessed: For instance, the index can be clamped to the last valid entry at
the extremes of the field. Therefore, we use two functions: One for the left border
(bh_clamp_lower) and one for the right border (bh_clamp_upper):

fn bh_clamp_lower (idx: int , lower: int) -> int {
if idx < lower { lower } else { idx }

}

fn bh_clamp_upper (idx: int , upper: int) -> int {
if idx >= upper { upper - 1 } else { idx }

}

for j in indices ( stencil ) {
// clamp the index for arr
let mut idx = i + j - offset ;
idx = bh_clamp_lower (idx , 0);
idx = bh_clamp_upper (idx , arr.size);
sum += arr(idx) * stencil (j);

}

These checks ensure that the field is not accessed out of range, but at the same
time they are applied for each element of the field whether required or not. Applying
the check for each memory access comes at the cost of performance when executed
on platforms such as GPU accelerators. If we specialize the code in a way that
checks are only executed at the left and right border, there will be no performance
loss.

This could be achieved by manually peeling off stencil.size / 2 iterations
of the loop iterating over the field and applying boundary handling only for those
iterations. However, doing this results in an implementation that cannot be used
for different stencils and different scenarios.
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Specializing the apply_stencil implementation to consider boundary handling
of different field regions, allows us to write reusable code. Hence, we create a function
apply_stencil_bh that applies a stencil to a field. It takes two additional functions
for boundary handling as arguments. To specialize on the different field regions,
we create a loop that iterates over these regions. Applying boundary handling is
delegated to the access function that applies boundary handling for the left border
only in case of the left field region and for the right border only in case of the right
field region:

fn access (arr: &[ float], region : int , i: int , j: int ,
bh_lower : fn(int , int) -> int ,
bh_upper : fn(int , int) -> int

) -> float {
let mut idx = i + j;
if region == 0 { idx = bh_lower (idx , 0) } // adjust for l e f t region
if region == 1 { idx = bh_upper (idx , arr.size) } // adjust for right region
arr(idx) // return element

}

In order to specialize the internals of apply_stencil_bh function to the different
regions, the iteration over the different values of region needs to be annotated. The
call to access will automatically be specialized to the known values of region since
we enforce specialization over the region variable. In addition, we also want the
stencil computation to be specialized, and thus, also annotate the stencil iteration
over the different indices:

fn apply_stencil_bh (arr: &[ float ], stencil : [ float ],
bh_lower : fn(int , int) -> int ,
bh_upper : fn(int , int) -> int

) -> () {
let offset = stencil .size / 2;
// lower bound of regions
let L = [0, offset , arr.size - offset ];
// upper bound of regions
let U = [offset , arr.size - offset , arr.size ];

// iterate over f i e l d regions
for region in @range (0 ,3) {

// iterate over a single f i e l d region
for i in range(L( region ), U( region )) {

let mut sum = 0;
for j in @indices ( stencil )

// access function applies boundary handling depending on the region
sum += access (arr , region , i, j+offset ,

bh_lower , bh_upper ) * stencil (j);
arr(i) = sum;

}
}

}

From a different point of view, the apply_stencil_bh function is an interpreter
for stencils which realizes the domain-specific convolution. This interpreter can be
specialized to a particular stencil via partial evaluation. The synthesized code then
performs the actual computation of a specific stencil while the imposed overhead by
the interpreter is completely removed according to the first Futamura projection [2,
3].

Now consider the case of partially evaluating the presented interpreter. This
yields three distinct loops that iterate over the corresponding regions of the input
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field. Each loop now only contains region-specific boundary handling checks. Map-
ping the stencil computation to the GPU results in three distinct compute kernels
that operate on the different field regions.

The following code listing shows an application of the previously introduced
apply_stencil_bh function and applies it to a specific stencil and boundary han-
dling methods:

let stencil = [ 0.25f, 0.50f, 0.25f ];
@apply_stencil_bh (arr , stencil , bh_clamp_lower , bh_clamp_upper )

As previously described, this will result in a specialized version of
apply_stencil_bh for this scenario:

// iterate over the l e f t f i e l d region
for i in range (0, 1) {

let mut sum = 0;
sum += arr( bh_clamp_lower (i - 1, 0)) * 0.25f;
sum += arr( bh_clamp_lower (i, 0)) * 0.50f;
sum += arr( bh_clamp_lower (i + 1, 0)) * 0.25f;
arr(i) = sum;

}
... // iterate over the right f i e l d region

Further specialization of the left field region eliminates the loop iteration and spe-
cializes the boundary-handling calls to bh_clamp_lower. This in turn evaluates the
if-conditions of the boundary checks and the following code emerges:

// iterate over the l e f t f i e l d region
let mut sum = 0.0f;
sum += arr (0) * 0.25f;
sum += arr (0) * 0.50f;
sum += arr (1) * 0.25f;
arr (0) = sum;
... // iterate over the right f i e l d region

In this way, the platform-specific mapping of the whole computation is transpar-
ent to the user of our stencil DSL. A machine expert can provide a platform-specific
implementation of the stencil-computation functionality and the iteration logic over
the elements. Moreover, such an implementation could take the dimensions of the
stencil into account and can, for instance, schedule the iterations over the boundary-
handling regions to the CPU and the center part to the GPU asynchronously.

While we have shown the refinement approach for 1D examples only, the concept
can be applied to the multi-dimensional case by introducing a generic index type.
This type encapsulates the index handling for an arbitrary number of dimensions.
Consequently, further changes in the code can be minimized which may typically
be required during an adaption to another number of dimensions.

4. Applications

In this section we present two example applications, one from the field of image pro-
cessing and one from the field of scientific computing. We discuss how specialization
triggers important optimizations opportunities for the compiler.

Consider a bilateral filter [4] from the field of image processing. This filter
smoothes images while preserving the sharp edges of an image. The computation of
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fn main () -> () {
let width = 1024;
let height = 1024;
let sigma_d = 3;
let sigma_r = 5.0f;
let arr = ~[ width* height : float ]; // al locate a f l o a t array
let mut out = ~[ width* height : float ]; // with width∗height many elements

let mask = @precompute (/∗ . . . ∗/);

for i in field_indices (out) {
let c_r = 1.0f/(2.0f* sigma_r * sigma_r );
let mut k = 0.0f;
let mut p = 0.0f;

for yf in @range (-2* sigma_d , 2* sigma_d +1) {
for xf in @range ( -2* sigma_d , 2* sigma_d +1) {

let diff = arr(i + (xf , yf)) - arr(i);
let s = exp(-c_r * diff*diff) *

mask(xf + sigma_d )(yf + sigma_d );
k += s;
p += s * arr(i + (xf , yf));

}
}

out(i) = p/k;
}

}

Listing 1: Bilateral filter description in Impala.

the filter mainly consists of two components: Closeness and similarity. Closeness de-
pends on the distance between pixels and can be precomputed. Similarity depends
on the difference of the pixel values and is evaluated on the fly.

Listing 1 shows an implementation in Impala. The precomputed closeness func-
tion is stored in a mask array. The two inner loops which iterate over the range of
the kernel are annotated, to enforce partial evaluation for a given sigma_d. This
will propagate the constant mask into the computation and will specialize the index
calculation. Another possibility in this context would be a mapping of the mask to
constant memory, in the case of a GPU.

The use of a Jacobi iteration to solve the heat equation can be specialized
similarly (Listing 2). We use the presented apply_stencil function to apply the
stencil for Jacobi in each step of the iteration. Partial evaluation of this call site
propagates the Jacobi stencil into the function. This causes the calculations that
would normally be multiplied with zero at runtime, to be evaluated to zero at
compile time. Hence, these computations will not be performed during execution of
the stencil later on.

5. Evaluation

In this section we discuss the Impala compiler and show performance numbers on
two different GPUs from NVIDIA of compiled Impala programs. Our benchmarks
include generated code with boundary handling and special support for texturing
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fn apply_stencil (arr: &[ float], stencil : [ float], i: int) -> float {
let mut sum = 0.0f;
let offset = stencil .size / 2;
for j in indices ( stencil ) {

sum += arr(i + j - offset ) * stencil (j);
}
sum

}

fn main () -> () {
let mut arr = ~[ width* height : float ];
let mut out = ~[ width* height : float ];
let a = 0.2f;
let b = 1.0f - 4.0f * a;
// stenci l for Jacobi
let stencil = [[0.0f, b, 0.0f],

[ b, a, b],
[0.0f, b, 0.0f]];

while /∗ not converged ∗/ {
for i in field_indices (out) {

out(i) = @apply_stencil (arr , stencil , i);
}

swap(arr , out);
}

}

Listing 2: Jacobi iteration in Impala.

memory while previously published results [1] did not consider boundary handling
and had no support for textures.

5.1. The Impala Compiler

Impala provides back ends for CPUs and GPUs. It uses a higher-order intermedi-
ate representation (IR) to perform code transformations. All transformations and
code refinements described in Section 3 are applied at this level. Finally, Impala
converts its IR to LLVM [5]. For NVIDIA GPUs, the compiler annotates the re-
sulting LLVM IR to conform to the NVVM IR specificationb. The CUDA compiler
SDKc includes a tool to compile NVVM IR to PTX assembly—Nvidia’s abstract
execution format. Alternatively, the Impala compiler can annotate the LLVM IR
to conform to Standard Portable Intermediate Representation (SPIR)d. SPIR is
supported in OpenCL 1.2 via extensions and supports a wide variety of processors
including GPU accelerators from other vendors. Furthermore, the Impala compiler
utilizes Whole-Function Vectorization [6] to automatically vectorize code for the
CPU.

bdocs.nvidia.com/cuda/nvvm-ir-spec/index.html
cdeveloper.nvidia.com/cuda-llvm-compiler
dwww.khronos.org/registry/cl/specs/spir_spec-1.2-provisional.pdf

docs.nvidia.com/cuda/nvvm-ir-spec/index.html
developer.nvidia.com/cuda-llvm-compiler
www.khronos.org/registry/cl/specs/spir_spec-1.2-provisional.pdf
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5.2. Performance

In our experiments, we compare auto-generated variants from an Impala implemen-
tation of a Jacobi and a bilateral filter kernel to hand-tuned CUDA implementa-
tions. All programs ran on two GPU architectures from NVIDIA: The GTX 580
and GTX 680 GPUs. Performance numbers show the median execution time in
milliseconds for seven runs.

Table 1: Theoretical peak and the achievable (memcpy) memory bandwidth in
GB/s for the GTX 580 and GTX 680 GPUs.

GTX 580 GTX 680

Peak 192.4GB/s 192.2GB/s
Memcpy 161.5GB/s 147.6GB/s
Percentage 83.9% 76.8%

5.2.1. Jacobi Iteration

In this experiment we measure the execution time of a single iteration of Listing 2.
Since it is known that stencil codes are usually bandwidth limited, we list the
theoretical peak and the achievable memory bandwidth of the GPUs in Table 1.

For the Jacobi kernel, we have to load one value from main memory (from arr)
and to store one value (out), if we assume that all neighboring memory accesses for
the stencil are in cache. This means for single precision accuracy we have to transfer
4 · 2 = 8 bytes per element. On the GTX 680 with achievable memory bandwidth
of b = 147.6 GB/s and for a problem size N = 2048 × 2048 we thus estimate
N ·8

b ·1000 ≈ 0.23ms for the kernel. This matches quite well to the measured runtime
of our hand-tuned CUDA implementation (0.23ms) for the Jacobi kernel as seen in
Table 2. The table shows results for four different variants of the Jacobi kernel:

• a CUDA implementation where the stencil is hard-coded (“hand-
specialized”) instead of looping over a stencil array,

• a hand-tuned version of that with device-specific optimizations (custom
kernel tiling, unrolling of the iteration space, and usage of texturing hard-
ware),

• an Impala implementation where a generic stencil loop has been automat-
ically specialized to the Jacobi stencil, and

• two variants where loop unrolling is enforced via partial evaluation and
texture memory is used for the GTX 680 (see Section 3.2); additionally,
boundary handling has been automatically specialized
– using different kernels for each image region and boundary handling

variant,
– using one single big kernel that contains all boundary handling vari-

ants.
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Impala’s automatically specialized stencil code is as fast as the corresponding
hand-specialized implementation in CUDA. In the case of boundary handling, we
launch one kernel after another for each of the nine field regions. In the case of the
GTX 580 the total running time is composed as follows:

0.33 = 0.21︸︷︷︸
main region

+ 0.01 + 0.01 + 0.01 + 0.03 + 0.03 + 0.01 + 0.01 + 0.01︸ ︷︷ ︸
boundary handling

In the case of the GTX 680 the total running time is calculated as follows:

0.37 = 0.21︸︷︷︸
main region

+ 0.01 + 0.02 + 0.02 + 0.03 + 0.03 + 0.02 + 0.02 + 0.01︸ ︷︷ ︸
boundary handling

Four of the regions are merely the corners of the field. Kernels in these regions only
execute a few instructions and memory operations. Thus, we conclude that launch-
ing a kernel poses a overhead of roughly 0.01ms – 0.02ms. Instead of launching
different kernels for boundary handling, we can also generate a single big kernel
that includes the different specialized code variants for boundary handling (cf. [7]).
Using a single kernel removes the launch overhead and the performance is almost
the same as for the hand-tuned CUDA implementation on the GTX 680.

Table 2: Execution times in ms for the Jacobi kernel on the GTX 580 and GTX
680 for a field of size 2048 × 2048.

GTX 580 GTX 680

CUDA (hand-specialized) 0.35 0.37
CUDA (hand-tuned) 0.22 0.23

Impala (SS) 0.40 0.36
Impala (SS + BH)† 0.33 0.37
Impala (SS + BH)‡ 0.26 0.24

† These numbers are the sum of the execution time for the main region as well as for all eight
border regions. See Section 5.2.1.

‡ Using one big kernel containing all specialized boundary handling variants (cf. [7]).

5.2.2. Bilateral Filter

For the bilateral filter we further break down our measurements and show the ex-
ecution times when reading the input data from global memory (GMEM) as well
as texture memory (TEX). We compare Impala’s generated bilateral filter imple-
mentations with manual implementations in CUDA. The manual implementation
computes the similarity component using the exponential function and the close-
ness component is precomputed and read from a lookup table stored to constant
memory. The constants of the closeness component are propagated into the program
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instructions in case the stencil computation is unrolled in Impala. Otherwise, the
lookup table will be stored in the program code since Impala does currently not
support constant memory.

Overall, we obtained mixed results as summed up in Table 3 and Table 4. In one
case of specialized boundary handling, the overhead of launching eight additional
kernels is included in the numbers as discussed in the previous section. In the other
case, we use one big kernel which contains all boundary variants.

As previously mentioned, the manual version benefits from constant memory for
the realization of the closeness function, whereas our specialized implementation
propagates the constants during partial evaluation. For bigger kernels we observe
extreme register pressure when generating unrolled code via NVVM: Registers are
spilled to local memory, leading to longer execution times. The NVVM kernels
for a 5 × 5 filter window require already the maximum of 63 registers, while the
corresponding hand-tuned CUDA implementations a require less than 40 registers
per thread, even when loop unrolling is enforced.

Table 3: Execution times in ms for the bilateral filter kernel on the GTX 580 and
GTX 680 for a field of size 1024 × 1024 and a filter window size of 5 × 5 (σd = 1).

GTX 580 GTX 680
GMEM TEX GMEM TEX

CUDA (hand-tuned) 1.05 0.95 1.03 0.66

Impala (SS) 1.60 1.05 0.95 0.70
Impala (SS + BH)† 1.89 1.13 0.92 0.85
Impala (SS + BH)‡ 1.49 1.07 0.85 0.74

† These numbers are the sum of the execution time for the main region as well as for all eight
border regions. See Section 5.2.2.

‡ Using one big kernel containing all specialized boundary handling variants (cf. [7]).

6. Related Work

Stencil codes are an important algorithm class and consequently a considerably high
effort has been spent in the past on tuning stencil codes to target architectures. To
simplify this process, specialized libraries [8, 9], auto tuners [10], and DSLs [11, 12,
13] were developed.

We follow the direction of DSLs in our work, but we give the programmer addi-
tional opportunities to control the optimization process. Existing DSL approaches
such as Liszt [11] and Pochoir [12] focus on providing a simple and concise syntax
to express algorithms. However, they offer no control over the applied optimiza-
tion strategies. An advancement to this is the explicit specification of schedules in
Halide [13]: Target-specific scheduling strategies can be defined by the programmer.
Still it is not possible to trigger code refinement explicitly. Explicit code refinement
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Table 4: Execution times in ms for the bilateral filter kernel on the GTX 580 and
GTX 680 for a field of size 2048 × 2048 and a filter window size of 5 × 5 (σd = 1).

GTX 580 GTX 680
GMEM TEX GMEM TEX

CUDA (hand-tuned) 4.15 3.74 4.06 2.43

Impala (SS) 6.52 4.14 3.75 2.73
Impala (SS + BH)† 6.51 4.21 3.80 2.83
Impala (SS + BH)‡ 5.33 4.20 3.10 2.77

† These numbers are the sum of the execution time for the main region as well as for all eight
border regions. See Section 5.2.2.

‡ Using one big kernel containing all specialized boundary handling variants (cf. [7]).

can be achieved through staging like in Terra [14] and in Spiral in Scala [15]. Terra
is an extension to Lua. Program parts in Lua can be evaluated and used to build
Terra code during the run of the Lua program. However, this technique makes use
of two different languages and type safety of the constructed fragments can only be
checked before executing the constructed Terra code. Spiral in Scala uses the con-
cept of lightweight modular staging [16] to annotate types in Scala. Computations
which make use of these types, are automatically subject to code refinement. Trans-
formations on these computations, however, are performed implicitly, and thus, the
programmer has no further control over the applied transformations.

7. Conclusion

In this article, we present a DSL for stencil codes through language embedding in
Impala. Unique to our approach is our code refinement concept. By partially eval-
uating fragments of the input program it is possible to achieve platform-specific
optimizations. Compared to traditional compilers, code refinement is triggered ex-
plicitly by the programmer through annotations. This allows to achieve traditional
optimizations such as constant propagation and loop unrolling. Moreover, we outline
how to use our concept for domain-specific mapping of stencil codes. As an applica-
tion of domain-specific mapping, we show that we are able to generate specialized
code variants by partial evaluation for different field regions.

Our research compiler is able to generate target code for execution on GPU
accelerators as well as CPUs. The results show that GPU code we generate achieves
competitive performance compared to manual implementations of different stencil
codes. Our next steps include the enhancement of the integrated memory-mapping
techniques in order to offer additional control over constant and shared memory.
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