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Abstract

Achieving peak performance in a computer system requires

optimizations in every layer of the system, be it hardware or

software. A detailed understanding of the underlying hard-

ware, and especially the processor, is crucial to optimize

software. One key criterion for the performance of a proces-

sor is its ability to exploit instruction-level parallelism. This

ability is determined by the port mapping of the processor,

which describes the execution units of the processor for each

instruction.

Processor manufacturers usually do not share the port

mappings of their microarchitectures. While approaches to

automatically infer port mappings from experiments exist,

they are based on processor-specific hardware performance

counters that are not available on every platform.

We present PMEvo, a framework to automatically infer

port mappings solely based on the measurement of the exe-

cution time of short instruction sequences. PMEvo uses an

evolutionary algorithm that evaluates the fitness of candidate

mappings with an analytical throughput model formulated

as a linear program. Our prototype implementation infers a

port mapping for Intel’s Skylake architecture that predicts

measured instruction throughput with an accuracy that is

competitive to existing work. Furthermore, it finds port map-

pings for AMD’s Zen+ architecture and the ARMCortex-A72

architecture, which are out of scope of existing techniques.

CCSConcepts: ·Computer systems organization→Re-

duced instruction set computing;Complex instruction

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’20, June 15ś20, 2020, London, UK

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00

https://doi.org/10.1145/3385412.3385995

set computing; · General and reference → Measure-

ment;Experimentation;Performance;Estimation;Met-
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putation→ Evolutionary algorithms.
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1 Introduction

Accurately estimating the time required to execute a given

program has become increasingly complex. While advances

in hardware design enable faster execution times, they make

it difficult to optimize programs such that they utilize the

available resources to the best possible extent. A particular

cause of unforeseen performance characteristics is the ex-

ploitation of instruction level parallelism via out-of-order

execution [23]. This technique enables the processor to dy-

namically re-order the instructions of a sequential program

and execute them in parallel on a set of execution ports.

Therefore, optimizing a program to achieve peak perfor-

mance on a processor requires knowledge of the ports that

can be used by each instruction. However, the instruction-

to-port mapping, or port mapping, is usually only known

to hardware manufacturers and may vary with each new

hardware generation.

While approaches towards understanding the performance

characteristics of processors without full insight into their

internals exist, they suffer from shortcomings: Some ap-

proaches require significant manual effort [7, 12] or are re-

stricted to validating existing port mappings [19]. Others

are closely tied to microarchitecture-specific performance

counters [1, 12, 13] that prevent their applicability to a wide
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range of practically-relevant processors. Another line of

research [20] uses machine learning to train a neural net-

work that estimates instruction throughput. This approach is

portable among microarchitectures, but the resulting black

box model is hard to use for identifying concrete perfor-

mance bottlenecks.

This paper proposes a solution that comes without any of

these drawbacks: Experiments are automatically generated

from a description of the available instructions. Performing

the experiments requires only measuring the time taken for

executing an instruction sequence. The result is a concise

and interpretable port mapping model that existing tools

can use to identify bottlenecks and to guide optimization

decisions.

We achieve this with PMEvo, a framework that uses an

evolutionary algorithm to find a port mapping that excels in

explaining measured throughputs for automatically gener-

ated instruction sequences. These instruction sequences are

designed to reveal conflicting resource requirements for pairs

of instructions while exhibiting as few data dependencies

as possible. For these instruction sequences, the throughput

is only limited by constrained ports and therefore carries

information about the port mapping.

A key component of the evolutionary algorithm is a novel

bottleneck simulation algorithm to evaluate the fitness of

candidate port mappings. This algorithm efficiently com-

putes the solution of a linear program that models an optimal

instruction scheduler for a given port mapping. Our novel

bottleneck simulation algorithm outperforms solving the

corresponding linear program for realistic port mappings by

two orders of magnitude.

We evaluate PMEvo by the throughput prediction accu-

racy of its inferred port mappings on port-mapping-bound

basic blocks for microarchitectures by Intel, AMD and ARM.

PMEvo’s prediction accuracy for the Intel Skylake archi-

tecture is close to existing approaches like IACA [17] and

uops.info [1] that rely on stronger knowledge about the mi-

croarchitecture. For AMD and ARM, PMEvo outclasses the

state-of-the-art port mapping model of llvm-mca [7].

In summary, we make the following contributions:

• An evolutionary algorithm that infers port mappings

from specifically designed experiments with measured

throughputs without relying on microarchitecture-

specific features.

• A bottleneck simulation algorithm that allows to ef-

ficiently evaluate the fitness of port mappings for a

given set of experiments.

• A prototype implementation that finds a port mapping

that is competitive to related work for Intel’s Skylake

architecture and that is the first one to automatically

find port mappings for the AMD Zen+ and the ARM

Cortex-A72 microarchitectures.

L1 ICache

𝜇op Cache Decoder

Register Management

Scheduler

Port 0

Int ALU

Vec ALU

DIV

Port 1

Int ALU

Vec ALU

Port 2

LD/ST

Port 3

ST

L1 DCache

Figure 1. Simplified overview of a modern processor de-

sign (based on Figure 2-3 in the Intel Software Optimization

Manual [16])

2 Background: Processor Design

Modern processors apply out-of-order execution [23].1 This

concept is based on the observation that instructions can be

executed in any order as long as the results are the same as if

they were executed in program order. Therefore, a processor

may execute instructions in parallel and reorder them to

any extent that preserves the read-after-write dependencies

between the operations and the externally-visible effects.

Out-of-order execution is often combined with a scheme

to decompose instructions into simpler microarchitecture-

specific operations. These so-called micro-ops or 𝜇ops are

then subject to reordering.

Figure 1 shows the relevant parts of a microarchitecture

that employs out-of-order execution and 𝜇op decomposition.

Instructions are fetched and decoded from the instruction

cache in program order. The decoder produces 𝜇ops, which

are cached for future re-use. The registermanagement engine

resolves false (write-after-read or write-after-write) depen-

dencies by mapping the operand registers of each operation

to a larger number of physical registers. A scheduler decides

based on operand dependencies and resource availability

when and where to execute the 𝜇ops. The execution units

(e.g. arithmetical units and load/store units), which execute

the 𝜇ops, are grouped behind ports. Often, execution units

are pipelined, allowing the ports to start processing a new

instruction in every cycle. Several instances of the same kind

of execution unit can exist at different ports.

A key factor to the running time of a given piece of code

on a processor is therefore the port mapping. It specifies how

1A contemporary introduction to the topic can be found e.g. in Chapter 3

of the textbook by Hennessy and Patterson [15].
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instructions are decomposed into 𝜇ops and which 𝜇ops can

be executed on which ports.2

Some microarchitectures, particularly those designed by

Intel, provide fine-grained hardware performance counters

that count the number of executed 𝜇ops per port. While these

greatly help at inferring port mappings, relying on them

excludes all microarchitectures that do not provide similar

performance counters. Therefore, we base our approach on

the more portable observation of throughputs as defined in

the following.3

Definition 1. The throughput 𝑡∗ (𝑒) of an instruction se-

quence (or experiment) 𝑒 on a given processor is the average

number of processor cycles required to execute 𝑒 in a steady

state.

The execution of an experiment in an infinite loop is con-

sidered to have reached a steady state when the average

number of required cycles per iteration stays constant for

the remaining execution.

3 Analytical Throughput Model

Since our goal is to infer a port mapping from throughput

measurements, we need to understand the connection be-

tween the port mapping of the processor and the throughput

that is achieved for an experiment. The precise inner work-

ings of processors are well-kept secrets of the manufacturers,

therefore we postulate a model of how processors execute

instructions with respect to a port mapping. In this section,

we present a model that is supported by information pro-

vided by hardware manufacturers [2, 4, 16, 17] and related

research [1, 12]. The linear programs we use in this section

to define the throughput for a given port mapping are exten-

sions of work presented by Abel and Reineke [1].

3.1 Out-of-Order Throughput Model

We start by defining a simple out-of-order execution model

that does not consider the decomposition of instructions into

𝜇ops. We refer to it as the two-level model (mapping only

instructions to ports). Section 3.2 extends this model to the

three-level model, which additionally supports decomposing

instructions into 𝜇ops.

Our throughput model is based on the notion of a port

mapping, as defined in the following.

Definition 2. A port mapping in the two-level model is a

bipartite graph (I∪· P, 𝑀) with the nodes split disjointly into

a set I of instructions and a set P of ports and edges𝑀 ⊆ I×P

between these.

An edge between instruction 𝑖 and port 𝑘 indicates that

instruction 𝑖 can be executed on port 𝑘 .

2This is called port usage in the work by Abel and Reineke [1].
3This definition is equivalent to the one by Mendis et al. [20], an extension

of the instruction-wise throughput definition used by Fog [12] and Abel

and Reineke [1].

Consider the port mapping shown in Figure 2. There are

four instructions mul, add, sub, and store that are mapped

to the three ports 𝑃1, 𝑃2, and 𝑃3. The two instructions add

and sub can both be executed on the same two ports 𝑃1 and

𝑃2, mul can use only one of them, 𝑃1, and store has to be

executed on a separate port 𝑃3.

I:

P:

mul add sub store

𝑃1 𝑃2 𝑃3

Figure 2. Example of a port mapping in the two-level model

In this model, an experiment is represented as a multiset of

instructions, i.e. a function 𝑒 : I → N that maps instructions

to their number of occurrences. We abstract from the order

of the instructions since we only use experiments that can

be reordered freely by the scheduler. The throughput of an

experiment with a given port mapping is characterized by

the following definiton.

Definition 3. Given a port mapping 𝑚 := (I ∪· P, 𝑀) in

the two-level setting, the throughput 𝑡∗𝑚 (𝑒) under𝑚 for an

experiment 𝑒 : I → N is the objective value of an optimal

solution to the following linear program:

minimize 𝑡

subject to
∑

𝑘∈P

𝑥𝑖𝑘 = 𝑒 (𝑖) for all 𝑖 ∈ I (A)

∑

𝑖∈I

𝑥𝑖𝑘 ≤ 𝑡 for all 𝑘 ∈ P (B)

𝑥𝑖𝑘 ≥ 0 for all (𝑖, 𝑘) ∈ 𝑀 (C)

𝑥𝑖𝑘 = 0 for all (𝑖, 𝑘) ∉ 𝑀 (D)

The intuition for this linear program is that each instruc-

tion 𝑖 in the experiment has the mass 𝑒 (𝑖). This mass is

distributed among the ports that can execute 𝑖 , as required

by constraint (A). The 𝑥𝑖𝑘 are real-valued variables that rep-

resent the share of the mass 𝑒 (𝑖) that is executed on port 𝑘

in the experiment. Constraint (B) establishes the objective 𝑡

as an upper bound of the sums of mass shares on each port.

The constraints (C) and (D) guarantee that the mass of an

instruction 𝑖 is distributed to ports that can execute 𝑖 . The

throughput is the maximal mass associated to any port if all

mass is distributed as evenly as possible.

Example 1. Figure 3 displays a graphical interpretation of

an optimal solution of the linear program for the experiment

𝑒 := {add ↦→ 2,mul ↦→ 1, store ↦→ 1}

under the mapping given in Figure 2.

The mass allocated to each port 𝑃𝑘 is drawn in the corre-

sponding bucket. The throughput of 1.5 cycles is the mass

of the most occupied ports 𝑃1 and 𝑃2. Note that the mass
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𝑃1 𝑃2 𝑃3

mul

add

add
store

0

1

2

1.5

Figure 3. Visualization of an example port allocation

of the two add instructions is split unevenly among two

ports. While these non-integer instruction portions might

seem counter-intuitive, they assort with the definition of

throughput as the average number of cycles to execute an

experiment.

Such a throughput can be realized by executing one add

instruction on port 𝑃1 in every second iteration, yielding an

average of 0.5 add instructions on 𝑃1 per execution of the

experiment.

Definition 3 relies on several assumptions:

1. The processor schedules the instructions optimally.

2. Operational units are fully pipelined, i.e. every instruc-

tion blocks exactly one port for exactly one cycle.

3. The fetch and decode units do not impose a bottleneck

for the experiment.

4. There are no relevant (read-after-write) data depen-

dencies among the instructions of the experiment.

The validity of assumptions (1) and (2) depends on the pro-

cessor under test. We found these to be usually fulfilled

by modern microarchitectures. An exception are complex

instructions like divisions, which can block a port or an

operational unit for multiple cycles.

We ensure the validity of assumptions (3) and (4) by select-

ing our experiments appropriately: Only sufficiently short

experiments that do not hit bottlenecks in the fetch/decode

stages are considered. The operands of the experiments are

furthermore chosen such that writing instructions can be

retired before their output register is read for the next time.

3.2 Micro-Operation Decomposition

To represent the decomposition of instructions into 𝜇ops, we

extend the definition of a port mapping by a layer of 𝜇ops

as follows.

Definition 4. A port mapping in the three-level model is

a tripartite graph (I ∪· U ∪· P, 𝑁 ∪· 𝑀) with labeled edges

𝑁 ⊆ I × N × U between instructions and 𝜇ops as well as

unlabeled edges𝑀 ⊆ U × P between 𝜇ops and ports.

A labeled edge (𝑖, 𝑛,𝑢) ∈ 𝑁 means that there are 𝑛 in-

stances of the 𝜇op 𝑢 in the 𝜇op decomposition of instruc-

tion 𝑖 .

An example is displayed in Figure 4. Here, add and sub

are implemented as one 𝜇op 𝑈2 that can be executed on two

ports 𝑃1 and 𝑃2. The mul and store instructions are decom-

posed into two 𝜇ops, the former in two of the same kind,𝑈1,

and the latter into two different ones,𝑈2 and𝑈3. The store in-

struction has a partial conflict with add and sub that cannot

be represented in the two-level model.

I:

U:

P:

mul add sub store

𝑈1 𝑈2 𝑈3

𝑃1 𝑃2 𝑃3

2 1 1 1 1

Figure 4. Example of a three-level port mapping

It is important to notice the different semantics of the

layers of edges: For each instance of an instruction 𝑖 , all cor-

responding 𝜇ops 𝑢 such that (𝑖, ·, 𝑢) ∈ 𝑁 have to be executed

whereas a 𝜇op 𝑢 is executed on exactly one of the allowed

ports 𝑘 such that (𝑢, 𝑘) ∈ 𝑀 . The linear program from Sec-

tion 3.1 can be slightly modified to compute the throughput

𝑡∗𝑚 (𝑒) of an experiment 𝑒 : I → N under the three-level port

mapping𝑚 := (I ∪· U ∪· P, 𝑁 ∪· 𝑀):

minimize 𝑡

subject to
∑

𝑘∈P

𝑥𝑢𝑘 =

∑

(𝑖,𝑛,𝑢) ∈𝑁

𝑒 (𝑖) · 𝑛 for all 𝑢 ∈ U (A)

∑

𝑢∈U

𝑥𝑢𝑘 ≤ 𝑡 for all 𝑘 ∈ P (B)

𝑥𝑢𝑘 ≥ 0 for all (𝑢, 𝑘) ∈ 𝑀 (C)

𝑥𝑢𝑘 = 0 for all (𝑢, 𝑘) ∉ 𝑀 (D)

All previous occurrences of instructions are replaced by

occurrences of 𝜇ops except for the right-hand side of con-

straint (A). The right-hand side of (A) ensures that a 𝜇op 𝑢

that occurs 𝑛 times in the decomposition of instruction 𝑖 is

taken into account with its appropriate mass.

A valuable observation is that computing the through-

put of an experiment 𝑒 : I → N with a port mapping

(I∪· U∪· P, 𝑁 ∪· 𝑀) in the three-level model can be reduced to

computing throughput in the simpler two-level model: We

instead compute the throughput of the experiment

𝑒 ′ =

{

𝑢 ↦→
∑

(𝑖,𝑛,𝑢) ∈𝑁

𝑒 (𝑖) · 𝑛

}

with the two-level mapping (U ∪· P, 𝑀). The multiset 𝑒 ′ con-

tains the 𝜇ops that are needed to execute 𝑒 according to 𝑁 .

These 𝜇ops are used as instructions for the two-level model.

This construction allows us to use an algorithm for the

simpler two-level model to compute throughput in the three-

level model.
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4 The PMEvo Framework

We propose the PMEvo framework to automatically infer

port mappings from throughput experiments. An overview

of this framework is given in Figure 5.

ISA

# ports
Experiment

Generation

Throughput

Measurement

Congruence

Filtering

Evolutionary

Optimization

port mapping

Figure 5. PMEvo framework overview

PMEvo consists of four main stages, which we describe

in the following subsections: Generating relevant experi-

ments (4.1), measuring the throughput of the experiments

on a given processor (4.2), a preprocessing step that identi-

fies congruent instructions (4.3), and evolutionary optimiza-

tion (4.4).

4.1 Experiment Generation

The input of the first stage of PMEvo is a description of

the instruction set architecture under test. This description

is a set of instruction forms, i.e. instructions with typed

placeholders for their operands. The type of the placeholder

specifies the operand kind (e.g. memory operand, general

purpose or vector register) and the width of the respective

operand. There can be multiple instruction forms for the

same operation with different operand types.

PMEvo constructs a set of experiments from this informa-

tion with the following components:

1. for each instruction form 𝑖 , an experiment {𝑖 ↦→ 1}

measuring its individual throughput 𝑡∗ (𝑖)

2. for each pair (𝑖𝐴, 𝑖𝐵) of instruction forms, an experi-

ment {𝑖𝐴 ↦→ 1, 𝑖𝐵 ↦→ 1}

3. for each pair (𝑖𝐴, 𝑖𝐵) of instruction forms with 𝑡∗ (𝑖𝐴) >

𝑡∗ (𝑖𝐵), an experiment {𝑖𝐴 ↦→ 1, 𝑖𝐵 ↦→ 𝑛} where

𝑛 = ⌈𝑡∗ (𝑖𝐴)/𝑡
∗ (𝑖𝐵)⌉

Experiments with this structure lead to different outcomes

depending on the port mapping: If the 𝜇ops of two instruc-

tion forms 𝑖𝐴 and 𝑖𝐵 require the same resources, experiment

(2) will result in a throughput that is the sum of the individ-

ual throughputs of 𝑖𝐴 and 𝑖𝐵 . In case the 𝜇ops of 𝑖𝐴 and 𝑖𝐵
are executed by disjoint execution units, the throughput of

experiment (3) will be 𝑛 · 𝑡∗ (𝑖𝐵). More complex partial re-

source conflicts will lead to measured throughputs for these

experiments that are harder to interpret manually. It is the

task of the evolutionary algorithm to find a mapping that

explains these throughputs.

The evolutionary algorithm is not restricted to experi-

ments of this structure. In theory, longer experiments that

combine instances of more than two different instruction

forms can unveil resource conflicts that cannot be covered

by these experiments. However, when exploring the exper-

iment design space experimentally for existing processors,

we did not observe benefits in port mapping quality from

more complex experiments.

4.2 Throughput Measurement

The goal of this stage is to measure the throughput of the

generated experiments. Our measurement method follows

Definition 1: The instruction forms of the experiment are

instantiatedwith operandswhile avoiding data dependencies.

The resulting instruction sequence is executed in a loop such

that the execution reaches a steady state.

PMEvo uses a register allocator that assigns a register

from the appropriate register class to each register operand

of the instruction forms. To avoid harmful dependencies,

written operands are instantiated with most recently read

registers and read operands with least recently written reg-

isters. Using as many different registers as available, this

ensures that instructions with long latencies have enough

time to complete before their results are read.

Memory operands are instantiated with a separate register

containing a valid base pointer and one of several different

constant offsets to avoid data dependencies on the memory.

Before operand allocation, we unroll several loop iter-

ations. This has several benefits: It further increases the

dependence distance by allowing more registers to be allo-

cated and it avoids loop-carried dependencies. Additionally,

it reduces the influence of the loop code on our time mea-

surements. The range of loop body lengths that achieve an

optimal throughput depends on the microarchitecture. We

found a length of 50 instructions to be in the appropriate

range for all of our evaluated architectures. With this length,

the loop body will be resident in the 𝜇op cache (if the ar-

chitecture has one). This avoids performance bottlenecks

due to restrictions on the number of concurrently fetched

and decoded instructions. The loop bound is automatically

chosen to ensure that the loop runs for a specific time that

guarantees steady-state execution. This time is estimated

empirically for the processor under test by comparing the

measurement stability for different times. For the evaluated

platforms, we found a time of 10ms to be appropriate.

To measure the throughput, we emit the instantiated loop

as inline assembly into a C program wrapped with calls to

gettimeofday() and setup code. The resulting program is

compiled with a C compiler for the platform under test and

executed. We compute the throughput of the experiment

with the following formula:

𝑡∗ (𝑒) =
measured time × frequency

#executed instances of 𝑒
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The reported throughput for an experiment is the median

over multiple such measurements to accommodate for occa-

sional fluctuations in the processor’s clock frequency.

4.3 Congruence Filtering

In a processor microarchitecture, we expect that groups of

instruction forms require the same execution resources. In-

struction forms whose operations are implemented similarly

in the processor, e.g. addition and subtraction, often lead to

such groups.

PMEvo exploits these patterns to reduce the search space

of the evolutionary algorithm. It partitions the set of instruc-

tion forms into congruence classes of instruction forms that

are not distinguishable with the generated experiment set.

In this partitioning, two instruction forms 𝑖𝐴 and 𝑖𝐵 are in

the same class if and only if the following conditions hold:

• 𝑖𝐴 and 𝑖𝐵 exhibit equal individual throughputs.

• Any two experiments {𝑖𝐴 ↦→ 𝑚, 𝑖𝐶 ↦→ 𝑛} and {𝑖𝐵 ↦→

𝑚, 𝑖𝐶 ↦→ 𝑛} that combine these instruction forms with

any other instruction form 𝑖𝐶 exhibit equal through-

puts.

For this purpose, we consider throughputs 𝑡1 and 𝑡2 equal (up

to measurement errors) if their symmetric relative difference

is limited by a user-specified constant 𝜀, i.e. if

|𝑡1 − 𝑡2 |

|𝑡1 + 𝑡2 |/2
< 𝜀

For each congruence class, PMEvo selects a representative

to be included in the instruction set for the evolutionary

algorithm. The evolutionary algorithm then only needs to

consider experiments that consist of these representatives.

4.4 Evolving Port Mappings

The core of PMEvo is an evolutionary algorithm that searches

for a port mapping that accurately explains the observed

throughputs for a given set of experiments. Evolutionary al-

gorithms are a well-proven technique to approach optimiza-

tion problems. They mimic concepts from natural evolution

to approximatively optimize complex metrics in non-linear

problem settings. We refer to the textbook by De Jong [11]

for a comprehensive treatment.

Every evolutionary algorithm is centered around a rep-

resentation scheme that characterizes the space of possible

solutions of the optimization problem. Naturally, the scheme

that we use is that of port mappings with 𝜇op decomposition

as described in Section 3.2. The sets I of Instructions and P

of Ports are given by the user. We identify each 𝜇op with

the set of ports that can execute it and allow all non-empty

subsets of P as 𝜇ops. The width |𝑢 | = |{𝑘 | (𝑢, 𝑘) ∈ 𝑀}| of a

𝜇op 𝑢 is the number of ports that can execute 𝑢.

PMEvo’s evolutionary algorithm follows the structure in

Algorithm 1. Initially, a set of 𝑝 port mappings is sampled

randomly to form a population. This population is iteratively

refined through evolution steps. In each such step, 𝑝 child

initialize population randomly

while not done do
apply evolutionary operators

evaluate fitness

select new population
end

perform local search

return fittest individual

Algorithm 1. Structure of the evolutionary algorithm

mappings are generated via evolutionary operators. The

resulting population of 2𝑝 port mappings is sorted according

to the fitness metric and the best-performing 𝑝 mappings

are selected as the new population. The evolution terminates

once the fitness of the population has converged to a single

value or an iteration limit is exceeded. By selecting a value

for 𝑝 , the user can find a trade-off between inference time

and quality of the inferred port mapping.

After the evolution terminates, PMEvo employs a greedy

hill-climbing algorithm to move from the found solutions

to a local optimum in the space of possible port mappings.

It incrementally adjusts the number 𝑛 of 𝜇op occurrences

for each edge (𝑖, 𝑛,𝑢) ∈ 𝑁 and keeps the changes to the port

mapping if it is fitter than before.

In the following, we describe the components that consti-

tute the evolutionary algorithm in detail.

Initialization. Each member of the initial population is

sampled randomly from the set of possible port mappings as

follows. For each instruction 𝑖 , a random set of 1 to |P| many

different 𝜇ops is sampled. The number of occurrences for

each of these 𝜇ops𝑢 in the mapping for 𝑖 is sampled from the

interval [1, ⌈𝑡∗ (𝑖) · |𝑢 |⌉]. The upper bound of this interval

is an implication of the throughput model: An instruction

with ⌈𝑡 · |𝑢 |⌉ instances of a 𝜇op 𝑢 in its decomposition can

achieve no throughput smaller than 𝑡 .

Evolutionary Operators. Evolutionary operators create

new individuals from existing individuals in the population.

The most common operators in evolutionary algorithms are

recombination and mutation.

We employ a binary recombination operator that mixes

the information of two parent mappings to generate two

child mappings. For each instruction 𝑖 , the set of occurring

𝜇ops with multiplicities is divided randomly into two parts

that form the corresponding assignments for the children.

This operator is applied to individuals that are sampled uni-

formly at random from the population.

When designing the evolutionary algorithm, we tried var-

ious random mutation strategies. Experiments showed little

to no benefit over a design without a mutation operator

while contributing substantial numbers of fitness computa-

tions. Therefore, we eliminated mutation operators from our
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design to explore larger populations more effectively in the

same execution time.

Fitness Metric. PMEvo’s evolutionary algorithm approxi-

mately solves a multiobjective optimization problem (MOP)

with the goal of minimizing twometrics: The average relative

prediction error 𝐷𝑎𝑣𝑔 and the 𝜇op volume 𝑉 . These metrics

describe the quality of a port mapping𝑚 = (I∪· U∪· P, 𝑁 ∪· 𝑀)

for a set 𝐸 ⊆ (I → N) × R of experiments with measured

throughputs as follows:

𝐷𝑎𝑣𝑔 (𝑚) =
1

|𝐸 |

∑

(𝑒,𝑡 ) ∈𝐸

|𝑡∗𝑚 (𝑒) − 𝑡 |

𝑡

𝑉 (𝑚) =
∑

(𝑖,𝑛,𝑢) ∈𝑁

𝑛 · |𝑢 |

A low value for 𝐷𝑎𝑣𝑔 (𝑚) ensures an accurate prediction

whereas a smaller 𝜇op volume indicates a more compact and

therefore more interpretable mapping.

We solve the MOP through a priori scalarization, as de-

scribed e.g. in Chapter 4.1 of the textbook by Miettinen [21]:

We combine the objectives into a single one that is inter-

preted as the fitness function 𝐹 (𝑚) as follows:

𝐹 (𝑚) = Λ1 (𝐷𝑎𝑣𝑔 (𝑚)) + Λ2 (𝑉 (𝑚))

Λ1 and Λ2 are affine transformations that are chosen in every

iteration to normalize both objective metrics to the range

[0, 1000]. They ensure that the extremal objective values of

the current population are mapped to 0 and 1000, respec-

tively, with all other objective values in between.

Combining the accuracy metric 𝐷𝑎𝑣𝑔 with a compactness

metric is necessary because throughput measurements usu-

ally do not uniquely identify a single port mapping. The

port mapping model is flexible enough to allow for a wide

range of well-performing mappings with different character-

istics. While the found compact mappings are not necessarily

identical to the port mappings that are really used in the pro-

cessor, they still capture the performance characteristics of

the hardware as they are observable from the outside.

4.5 Efficient Bottleneck Simulation Algorithm

Practical applicability of evolutionary algorithms depends

on evaluating the fitness of many candidates in as little time

as possible. For a given time budget, fitness evaluation speed

directly corresponds to the quality of the obtained solution.

With faster fitness evaluation, more candidates for survival

can be considered, resulting in superior solutions.

Therefore, a critical component of our approach is the

efficient simulation of experiments under a given port map-

ping. Instead of directly solving the linear program from

Section 3.1, we use a bottleneck simulation algorithm that

computes the optimal solution of the linear program. We re-

strict our presentation here to port mappings in the two-level

model for a more concise description. As we have observed

in Section 3.2, this extends to the three-level model straight-

forwardly.

The bottleneck simulation algorithm implements the fol-

lowing characterization of the throughput 𝑡∗𝑚 (𝑒) of an exper-

iment 𝑒 under the port mapping𝑚 := (I ∪· P, 𝑀):

𝑡∗𝑚 (𝑒) = max
𝑄⊆P

∑

{𝑒 (𝑖) | Ports(𝑚, 𝑖) ⊆ 𝑄}

|𝑄 |
(1)

Ports(𝑚, 𝑖) := {𝑘 | (𝑖, 𝑘) ∈ 𝑀} denotes the set of ports that

can execute an instruction 𝑖 under𝑚. This characterization is

based on the observation that the throughput 𝑡∗𝑚 (𝑒) has to be

determined by a non-empty set 𝑄∗ of bottleneck ports. Each

of the ports in𝑄∗ has to execute a mass of instructions that is

equal to 𝑡∗𝑚 (𝑒). In other words, 𝑡∗𝑚 (𝑒) is equal to the total mass

of instructions that need to be executed on ports from 𝑄∗,

divided by the size of 𝑄∗. An optimal scheduler will assign

instructions that do not need to be executed on ports from𝑄∗

to less utilized ports. For each 𝑄 , the maximized term from

Equation 1 is a lower bound to 𝑡∗𝑚 (𝑒). Consequentially, find-

ing a maximal term gives us precisely the throughput 𝑡∗𝑚 (𝑒).

A formal proof for this equation is given in Appendix A.

Example 2. For the execution in Figure 3, 𝑄∗ is the set

{𝑃1, 𝑃2}. Trying to move mass from one of these ports to any

other ports is either not possible (for mul) or causes another

port from 𝑄∗ to execute more mass. 𝑃3 on the other hand is

irrelevant for the throughput of the experiment.

Our algorithmic implementation of this characterization

computes the max operation in Equation 1 by enumerating

all subsets of the set of ports and evaluating the correspond-

ing term. The run-time of this algorithm is in Θ(2 |P |), which

is substantially more expensive than the polynomial run-

time of LP solving [6] from a complexity-theoretic point of

view. Nevertheless, this algorithm is considerably faster for

practical problems, as we show in Section 5.4. On the one

hand, this is due to the small number of execution ports

available in modern systems. Typical systems have eight

(e.g. Intel Skylake [16] and ARM A72 [4]) or ten (e.g. AMD

Ryzen [2]) ports available. On the other hand, thanks to the

simplicity of the above algorithm, it is amenable to aggres-

sive performance optimizations such as vectorization.

5 Evaluation

This section evaluates three aspects of our work:

• The appropriateness of the processor model as de-

scribed in Section 3 and our mechanism for measuring

throughput (Section 5.2).

• The quality of the inferred port mappings for three

microarchitectures from different manufacturers (Sec-

tion 5.3).

• The performance characteristics of the bottleneck sim-

ulation algorithm (Section 5.4).
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Table 1. Evaluated processors

SKL ZEN A72

Manufact. Intel AMD RockChip

Processor Core i7 6700 Ryzen 5 2600X RK3399

Microarch. Skylake Zen+ Cortex-A72

# Ports 8 + DIV 10 7 + BR

Instr. Set x86-64 x86-64 ARMv8-A

Clock Freq. 3.4 GHz 3.6 GHz 1.8 GHz

RAM 32 GB 32GB 4GB

5.1 Setup

5.1.1 Evaluated Processors. We use three devices with

processors of distinct manufacturers for our evaluation, de-

noted as SKL, ZEN, and A72 in the following. Relevant pa-

rameters are listed in Table 1. SKL has a separate pipeline

of long-running operations, marked as DIV, that has to be

modeled as an additional port. One port of A72 is only used

for processing branch instructions (BR). It is omitted in our

model as we do not consider instructions that alter con-

trol flow. All evaluated systems have frequency scaling and

flexible overclocking mechanisms (e.g. Intel Turbo Boost)

disabled to facilitate reliable measurements.

A72 and ZEN are of particular interest since they do not

provide the per-port performance counters that other ap-

proaches rely on [3, 5] whereas SKL gives means for a com-

parison to related work.

5.1.2 Considered Instructions. We select for each in-

struction set architecture (ISA) under test a relevant set of

instruction forms. These sets are derived from the instruc-

tions that compilers emit when compiling the SPEC CPU

2017 benchmarks[8]. Our instruction forms for the ARMv8-A

ISA are extracted from the instructions that GCC (version

4.9.4, flags: -O3) emits. For x86-64, we only extract the used

instruction mnemonics from the output of Clang (version

8.0, flags: -O3 -mavx2) and use the machine-readable in-

puts of Abel and Reineke [1] to generate the corresponding

instruction forms.

We exclude the following instructions from these sets:

• Branch and jump instructions, since their throughput

heavily depends on the branch predictor.

• Instructions with implicitly read operands, since these

cause dependencies that cannot be resolved through

register allocation. Throughput for these could be mea-

sured by introducing additional dependency-breaking

instructions as done by Abel and Reineke [1].

• x86 SSE instructions, since these add transition penal-

ties when benchmarked together with AVX instruc-

tions.

• All instruction variants that operate on subregisters,

to keep the run time of the evaluation bearable.

• x86 instructions that are not supported by Ithemal [20],

to have a common baseline for all comparisons.

The resulting instruction descriptions contain 310 x86-64

instruction forms and 390 ARMv8-A instruction forms.

5.2 Processor Model and Measurements

In this section, we validate the practicality of the throughput

model and the measurement mechanism. We compare mea-

sured throughputs with the results of a simulation according

to the processor model with a ground truth port mapping

from the work by Abel and Reineke [1]. Since this work

only provides port usage for Intel architectures, we compare

their Intel Skylake port mapping to our measurements on

SKL. When performing this evaluation, we discovered two

bugs in their port mapping that were acknowledged by the

authors. We fixed these in the port mapping that is used for

our evaluation.
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Figure 6. Mean absolute percentage error (MAPE) of sim-

ulation with the port mapping from Abel and Reineke [1]

and with IACA [17] with respect to our measurements for

experiments of varying length

Figure 6 shows the mean absolute percentage error for the

simulation with the port mapping from Abel and Reineke

with respect to our measurements for varying experiment

length. For length 1, we use the set of all supported x86-64

instructions, whereas for larger lengths, we randomly sample

2,000 experiments from the set of all instruction multi-sets

of the appropriate size.

For small experiment lengths, we can see a low error show-

ing that the experiments behave as predicted by the processor

model. With increasing length of experiments, the accuracy

degrades. The lower prediction error of IACA [17] in Fig-

ure 6 indicates that with longer experiments, the influence

of factors such as non-optimal scheduling decisions that are

not covered in the throughput model (but by IACA) rises.

Overall, the error is small enough to justify the use of

measurement mechanism and throughput model.
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5.3 Model Predictions

Directly measuring the quality of a port mapping is hindered

by the lack of ground truth for most processors. We therefore

assess the inferred port mappings by their ability to accu-

rately predict the measured throughput of port-mapping-

bound experiments. For each microarchitecture, we use a

different benchmark set of 40,000 experiments, which we in-

stantiate with operands and whose throughput we measure

as described in Section 4.2. These experiments are sampled

uniformly at random from the set of all instruction multi-sets

of size 5.

One major use case of PMEvo is to provide port mappings

for performance estimation tools. Therefore, we compare the

prediction accuracy of PMEvo’s mappings to the modeling

of port mappings in state-of-the-art performance prediction

tools. To this end, we use the same benchmark sets to evalu-

ate IACA [17] (version 3.0), llvm-mca [7] (from LLVM ver-

sion 8.0.14), Ithemal [20], and the port mapping provided by

uops.info [1] for their respective supported platforms. Note

that these benchmarks specifically stress the port-mapping

aspect of these prediction tools because they do not contain

any data dependencies. They are therefore not representa-

tive to evaluate the overall prediction quality of these tools

on compiler-generated code.5 Section 6 discusses the perfor-

mance estimation tools we evaluate in further detail.

Of these four related approaches, only the port mapping

from uops.info is directly comparable to PMEvo’s results

because it can only predict the throughput of instruction

sequences without data dependencies. The other approaches

are more general in that they can predict the throughput of

arbitrary instruction sequences, but might not be attempt-

ing to provide good accuracy for dependency-free code. For

example, Ithemal uses a neural network model trained via

supervised learning rather than an explicit port mapping

model. Being trained on collected basic blocks from entire

programs where dependencies are to be expected, accurate

predictions for dependency-free code might be outside of

the scope of Ithemal.

For all three platforms, we ran our PMEvo prototype with

a population size of 100,000 and an 𝜀 of 0.05 for congru-

ence filtering. Table 2 gives numbers on the time required to

benchmark throughputs for experiments and to infer a port

mapping for all considered platforms. It further shows that

the effectiveness of congruence filtering is considerable: The

relevant instructions are reduced by 53% to 69%. The low

number of different 𝜇ops used in the inferred port mappings

indicates that PMEvo developed compact representations for

4Initially, we performed these experiments on the more recent LLVM ver-

sion 9.0.1 but found a severe regression in prediction accuracy on our

experiments compared to version 8.0.1.
5We refer to the BHive project [10] for an evaluation of their accuracy

for instruction sequences extracted from code generated for common

benchmarks.

all three platforms. The uops.info port mapping for SKL uses

12 different 𝜇ops for the same set of instructions.

Table 2. PMEvo mapping characteristics

SKL ZEN A72

benchmarking time 20h 27h 74h

inference time 5h 21h 12h

insns found congruent 69% 53% 56%

number of 𝜇ops 17 15 9

To provide a broad comparison of prediction accuracy,

we give results for the following commonly used accuracy

metrics:

• The Mean Absolute Percentage Error (MAPE) is a mea-

sure of the relative error of the simulation over mea-

surements.

• The Pearson Correlation Coefficient (PCC) describes

how closely the relation between simulation and mea-

surements can be described by a linear equation.

• The Spearman Correlation Coefficient (SCC) is a mea-

sure of rank correlation. A high rank correlation in-

dicates that if the measurement for one experiment

is smaller than for another experiment, its simulated

value is likely to be smaller as well.

The value range for PCC and SCC is [−1, 1], ranging from

negative correlation (−1) over no correlation (0) to maximal

correlation (1).

Additionally, we visualize the prediction accuracy of our

approach in comparison to related work in Figure 7 with a

heat map for each pair of architecture and prediction mecha-

nism. For each heat map, the experiments are considered as

data points with measured and predicted throughput. The

heat map shows the space of possible pairs of measured and

predicted throughput, split into 35 × 35 equally sized bins.

Each bin’s shade represents the number of experiments that

lie in it. Ideally, measurement and prediction agree, leading

to experiments close to the marked diagonal line. Experi-

ments below the diagonal indicate an under-estimation of

the throughput, those above are over-estimated by the pre-

dictor.

We discuss the represented data in detail in the following

sections.

5.3.1 SKL. For the Intel Skylake platform, we compare

the prediction accuracy of PMEvo to all afformentioned ap-

proaches: the port mapping from uops.info, IACA, llvm-mca,

and Ithemal using its publicly-available pre-trained network

for the Skylake microarchitecture.

The inputs for IACA, llvm-mca, and Ithemal consist of

the loop body of the experiments, unrolled to a length of

ten instructions so that operand allocation can avoid loop-

carried dependencies. For the entire set of experiments, we
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Figure 7. Prediction accuracy on port-mapping-bound experiments. Each heat map relates predicted and measured throughput

in cycles per experiment. Points closer to the diagonal line indicate better predictions. The gray boxes group heat maps for the

same platform. The experiments were set up and measured as described in Section 4.2.

report the results of the tools for this input, divided by the

number of experiments in the unrolled loop body.

The accuracy metrics for the five tools under comparison

are listed in Table 3.

Table 3. Prediction accuracy measures for port-mapping-

bound experiments on SKL

MAPE Pearson CC Spearman CC

PMEvo 14.7% 0.98 0.85

uops.info 9.3% 0.92 0.88

IACA 8.0% 0.86 0.79

llvm-mca 9.7% 0.87 0.82

Ithemal 60.6% 0.35 0.54

IACA, llvm-mca, and uops.info all predict with an average

error of less than 10% with high correlation values. This

impression is confirmed by the corresponding heat maps

in Figure 7: Most of the experiments are close to the ideal

line. They also all show a cluster of experiments below the

diagonal line. These can be attributed to the family of bit

test instructions (BTx), for which the measurable throughput

does not agree with the throughput implied by the port usage

as confirmed by the measurements of Abel and Reineke [1].

Our approach, PMEvo, has a slightly higher relative error

than IACA, llvm-mca, and and uops.info, but comparable

correlation coefficients. The corresponding heat map in Fig-

ure 7 shows a distribution close to the diagonal line. The

BTx instructions that caused inaccuracies for the other ap-

proaches have a representation as multiple 𝜇ops that map to

the same ports. While differing from the real port mapping,

this fits better to the observable throughputs.

For Ithemal, we observe lower correlations and a high

error rate. This differs from the evaluation by Mendis et al.

[20] where Ithemal exhibits superior results in these metrics

in comparison to IACA.6 As already noted, the difference in

6Their findings for the accuracy of IACA are consistent with the ones

presented here.
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Figure 8. Execution time comparison of the bottleneck simulation algorithm and the LP solver with varying port numbers

with experiments of length 4 (a) and with varying length of experiments with 10 ports (b). Both have their vertical axis in a

logarithmic scale.

Table 4. Prediction accuracy measures for port-mapping-

bound experiments on ZEN and A72

MAPE Pearson CC Spearman CC

PMEvo (ZEN) 13.5% 0.94 0.87

llvm-mca (ZEN) 50.8% 0.86 0.54

PMEvo (A72) 21.4% 0.68 0.77

llvm-mca (A72) 65.3% 0.67 0.68

performance is likely a consequence of the different charac-

teristics of the experiments used here and in the experimental

evaluation of their paper: Ithemal is trained and validated

on basic blocks emitted from a compiler for entire programs,

which exhibit substantially more data dependencies than our

experiments.

However, an appropriate interpretation of these results

needs to be judicious: A high prediction accuracy for our

experiments could have indicated a generalization of Ithemal

to dependency-free code. Yet, the observed low prediction

accuracy for our inputs does not allow conclusions about

Ithemal’s performance across real-world programs.

5.3.2 ZEN and A72. For the AMD and ARM microarchi-

tectures, we compare PMEvo’s results only to llvm-mca since

the other approaches are only available for Intel architec-

tures.

The metrics for both architectures in Table 4 show a com-

mon trend: PMEvo exhibits a considerably smaller prediction

error than llvm-mca.

For ZEN, PMEvo inferred a port mapping that predicts

with close to equal accuracy as its SKL mapping. With 21.4%,

the prediction error of the PMEvo mapping for A72 is no-

tably higher while correlations are lower. This observation

is confirmed by the corresponding heat maps in Figure 7.

PMEvo on A72 is prone to under-estimating experiments

with longer running times. We attribute this to A72’s less

advanced out-of-order execution engine (according to the

respective optimization guides [2, 4, 16]), which renders the

experiments less representative for the port mapping.

In contrast to its results for SKL, llvm-mca has substan-

tially larger prediction errors. The heat maps indicate a sig-

nificant over-estimation of the throughput. One possible

explanation is that these architectures are less in the focus

of the developers than SKL and the respective port mapping

models might not yet be as elaborate and accurate as the one

for SKL. Especially for these two architectures, the models

derived with PMEvo may significantly increase the accuracy

of llvm-mca’s throughput prediction.

5.4 Performance of the Simulation Algorithm

This section explores the performance behavior of the bot-

tleneck simulation algorithm as presented in Section 4.5. For

this purpose, we compare our optimized implementation

of the bottleneck simulation algorithm to a realization of

the linear program from Section 3.2 in the state-of-the-art

LP solver Gurobi [14] (version 7.5.2). The running times re-

ported for the LP version include model construction via the

Gurobi C++ API as well as the actual solving.

There are two significant parameters that influence the ex-

ecution time of both simulationmethods: the number of ports

in the microarchitecture and the length of the experiments.7

We evaluate these parameters with randomly generated mi-

croarchitectures with the appropriate number of ports for

an artificial instruction set architecture of 100 instructions.

For each (number of ports, length of experiments) configu-

ration, 128 randomly sampled experiments were simulated

with each of 8 randomly sampled three-level mappings. The

resulting seconds per experiment value for each pair of ex-

periment and mapping is the arithmetic mean over 1000

7The number of instructions in the instruction set architecture is not rele-

vant, since both implementations ignore instructions that do not occur in

the experiment.
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simulations. The points in the graph mark the median of

these values for each (number of ports, length of experi-

ments) configuration.

Influence of the Number of Ports. Figure 8a shows the

results for experiments consisting of 4 instructions with a

varying number of ports. For port numbers up to 10 as they

occur in contemporary platforms, the bottleneck simulation

algorithm outperforms the linear program by two orders of

magnitude. Starting from 12 ports, the simulation time with

the bottleneck simulation algorithm rises with a stronger

incline. The bottleneck simulation algorithm reaches the

simulation time of the LP implementation at about 18 ports.

With the same inputs, the simulation time via the LP solver

grows substantially slower with the number of ports. We

conclude that the exponential run-time behavior of the bot-

tleneck simulation algorithm, as explained in Section 4.5, has

a negligible impact for inputs of interest.

Influence of the Length of Experiments. The experi-

ments we use for the evolutionary algorithm are of very

limited length to allow reliable execution on actual proces-

sors. Nevertheless, exploring the behavior with different

lengths of experiments is worthwhile for the discussion of

the bottleneck simulation algorithm. The results for varying

lengths of experiments in an architecture with 10 ports are

displayed in Figure 8b. Here, the bottleneck simulation algo-

rithm consistently outperforms the LP solver by two orders

of magnitude. The execution time for both methods grows

sub-exponentially with the length of experiments, with an

almost identical incline in the log-scale plot. This indicates

that the rate at which the execution time rises with growing

experiment length for the LP solver is considerably higher

than for the bottleneck simulation algorithm.

6 Related Work

We divide related work into two categories: Approaches

to find port mappings and work on predicting instruction

throughput.

6.1 Inferring Port Mappings from Experiments

The instruction tables by Fog [12] used to be the only avail-

able source for experimentally validated information on in-

struction latency, throughput, and port usage. They are ob-

tained with hand-crafted microbenchmarks that use hard-

ware performance counters to count the number of executed

cycles and the number of executed 𝜇ops per port. Abel and

Reineke [1] show that the reported port usage by Fog is only

an under-approximation of the usable ports.

For the case that these counters are not available, Fog

uses experiments that execute instructions with unknown

port usage together with instructions whose port usage is

known from some other resource. Observing the running

time allows to identify interfering instruction combinations.

The tables include such information for a wide range of

x86 microarchitectures by Intel, AMD, and VIA. The require-

ment to construct suitable microbenchmarks for each mi-

croarchitecture makes this approach very work-intensive.

Abel and Reineke [1] automated the process of designing

microbenchmarks to measure latency, throughput, and port

usage. Their algorithm to estimate port usage overcomes the

imprecision of Fog’s approach by using blocking instructions.

The processor decomposes these instructions each into a

single 𝜇op that can only be executed on a known set of ports.

When executing the instruction under test with a sufficient

number of blocking instructions to fully saturate a set 𝑃 of

ports, 𝜇ops of the instruction under test will be executed on

ports not in 𝑃 if possible. For observing this as well as for

identifying blocking instructions, they use per-port hardware

performance counters as they are used by Fog [12]. While

they provide throughput and latency measurements for x86

microarchitectures by Intel and AMD, they only give port

mappings for the Intel platforms as only these provide all

required performance counters.

Two further approaches initiated by Google are collected

under the name EXEgesis. One is the EXEgesis project [13]

that extracts latencies, throughputs, and port usage for Intel

architectures from vendor-provided documentation. This re-

quires automatically parsing documents that were intended

for human readers: a fragile and work-intensive process.

Since the provided documentation does not include all rele-

vant information, the EXEgesis developers also created tools

to infer the missing information via experiments. This led

to the second project under this name, llvm-exegesis [9],

a tool inside the LLVM framework [18] that automatically

generates benchmarks similar to those used by Fog [12]. For

measuring port usage, llvm-exegesis depends on per-port

performance counters just as the two previously discussed

approaches.

All of these works compare to ours in a similar way: Since

they use precise hardware performance counters, they can

obtain more accurate port mappings than our approach.

However, our approach does not suffer from the restriction

to platforms that have these performance counters, allowing

us to automatically infer port mappings for x86 platforms by

AMD, as well as for ARM platforms.

6.2 Work on Instruction Throughput Prediction

As port mappings are commonly used for throughput predic-

tion, it is instructive to set the presented results in context

to work from this field.

The Intel Architecture Code Analyzer (IACA) [17] mod-

els the execution of a sequence of instructions, considering

factors such as port usage, operand dependencies, and in-

struction decoding bottlenecks. The output of IACA for a

given instruction sequence includes a throughput estima-

tion, a bottleneck resource, and the distribution of 𝜇ops to

ports. It is a closed-source tool provided by the processor
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manufacturer Intel for some of its microarchitectures. As a

consequence, IACA can make use of unpublished internal

information to achieve an accurate performance prediction.

Nevertheless, previous research (e.g. [1]) has shown cases

where the prediction of IACA differs from the observable

behavior. Since April 2019, IACA is no longer under active

development.

OSACA [19] is an attempt to provide the same features as

IACA, but with a non-proprietary system. They use informa-

tion from port mappings for their supported architectures, a

range of Intel microarchitectures as well as AMD’s Zen archi-

tecture. These port mappings are extracted from sources like

the tables by Fog [12] and material provided by the manufac-

turers. They implement means of experimentally validating

this known port model via experiments, noting that experi-

ments with multiple different instructions can uncover new

details of the port mapping. Our approach systematically

extends this line of work to derive new port mappings.

The llvm-mca tool [7] is also inspired by IACA. It uses

knowledge from the LLVM [18] instruction scheduling mod-

els, including port usage if available, for performance pre-

diction. These scheduling models are the result of human

fine-tuning effort, proprietary knowledge contributed by

processor designers, and experiments via llvm-exegesis [9].

Both, llvm-mca and OSACA, can benefit from port map-

pings by PMEvo for microarchitectures without available

port mapping.

Ithemal [20] uses machine learning techniques for instruc-

tion throughput prediction. Similar to our approach, it only

needs a specification of the instruction set architecture under

test and a set of experiments labeled with measured through-

puts as an input. These labeled inputs are used as training

data for a hierarchical recurrent neural network based on

long short-term memory (LSTM) cells.

Ithemal is trained and validated on basic blocks that are

extracted from compiled benchmark programs. As a result,

Ithemal captures different aspects than our approach: PMEvo

focuses on experiments whose outcome is solely determined

by the port mapping whereas the predictions of Ithemal are

shaped by other factors such as data dependencies.

A drawback of the Ithemal approach is that the resulting

processor model can only be interpreted by evaluating it on

an instruction sequence. This is sufficient for certain appli-

cations like stochastic superoptimization [22]. However, in

applications like the backend of an optimizing compiler, enu-

merating and evaluating a large set of possible instruction se-

quences is prohibitively expensive. A compact port mapping

is more easily interpreted for constructing well-performing

instruction sequences as it clearly indicates which instruc-

tions have conflicting resource requirements.

7 Conclusion

This paper presents PMEvo, a framework to infer port map-

pings, i.e. compact and interpretable representations of a

modern processor’s ability to exploit instruction-level paral-

lelism. The inference is done by an evolutionary algorithm

that optimizes port mappings to explain the instruction

throughputs measured for specifically designed instruction

sequences. Using a novel bottleneck simulation algorithm

to evaluate the fitness of port mappings, PMEvo can explore

the large search space of possible mappings effectively.

We demonstrate PMEvo’s portability by inferring port

mappings for three differentmicroarchitectures, two ofwhich

are out of scope for previous automatic approaches. The high

prediction accuracy of the inferred port mappings shows that

PMEvo can make performance engineering tools more reli-

able for a wide range of hardware platforms.

A Correctness of the Bottleneck
Simulation Algorithm

The proof of correctness of the bottleneck simulation algo-

rithm presented here uses basic results from linear optimiza-

tion theory. For background and proofs on these results, we

refer to the textbook by Bertsimas and Tsitsiklis [6].

Let 𝑆 (𝑚, 𝑒) be defined as follows:

𝑆 (𝑚, 𝑒) :=

{

∑

{𝑒 (𝑖) | Ports(𝑚, 𝑖) ⊆ 𝑄}

|𝑄 |

�

�

� 𝑄 ⊆ 𝑃

}

With this notation, Equation 1 can be written as 𝑡𝑚 (𝑒) =

max 𝑆 (𝑚, 𝑒). The proof proceeds by showing that the result

𝑡𝑚 (𝑒) of the bottleneck simulation algorithm is equal to the

throughput 𝑡∗𝑚 (𝑒) according to Definition 3 for any exper-

iment 𝑒 and any (two-level) port mapping𝑚 := (I ∪· P, 𝑀).

We do so by showing that (I) 𝑡∗𝑚 (𝑒) is included in 𝑆 (𝑚, 𝑒) and

that (II) each element of 𝑆 (𝑚, 𝑒) is upper-bounded by 𝑡∗𝑚 (𝑒).

I. Let 𝑠 be an optimal feasible solution of the linear pro-

gram. We denote the value of a variable 𝑥 chosen in 𝑠 by

𝑠 [𝑥]. Since 𝑠 is optimal, there is a non-empty maximal set

𝑄 ⊆ 𝑃 such that for all 𝑘 ∈ 𝑄 holds that
∑

𝑖∈I

𝑠 [𝑥𝑖𝑘 ] = 𝑠 [𝑡] = 𝑡∗𝑚 (𝑒) (2)

Without loss of generality, we assume that each instruction

that 𝑠 executes on a port in 𝑄 can only be executed on ports

in 𝑄 , that is:

𝑘 ∈ 𝑄 ∧ 𝑠 [𝑥𝑖𝑘 ] > 0 ⇒ Ports(𝑚, 𝑖) ⊆ 𝑄 (3)

If this is not the case for 𝑠 , we can find a different solu-

tion 𝑠 ′ with identical objective value that fulfills this con-

straint as follows: For every (𝑖, 𝑘) such that 𝑠 [𝑥𝑖𝑘 ] > 0,
∑

𝑖∈I 𝑠 [𝑥𝑖𝑘 ] = 𝑠 [𝑡], and 𝑄 ′ := Ports(𝑚, 𝑖) ∩ (𝑃\𝑄) ≠ ∅, we

remove a sufficiently small part of the value for 𝑥𝑖𝑘 and add
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it to the value of some 𝑥𝑖𝑘′ with 𝑘
′ ∈ 𝑄 ′ such that constraint

(B) is tight for neither of 𝑘 and 𝑘 ′.8

By defining 𝐽 := {𝑖 | Ports(𝑚, 𝑖) ⊆ 𝑄}, we identify the

following equalities:

∑

𝑖∈𝐽

𝑒 (𝑖)
(𝐴)
=

∑

𝑖∈𝐽

∑

𝑘∈P

𝑠 [𝑥𝑖𝑘 ]
(𝐷)
=

∑

𝑖∈𝐽

∑

𝑘∈𝑄

𝑠 [𝑥𝑖𝑘 ] =
∑

𝑘∈𝑄

∑

𝑖∈𝐽

𝑠 [𝑥𝑖𝑘 ]

(3)
=

∑

𝑘∈𝑄

∑

𝑖∈I

𝑠 [𝑥𝑖𝑘 ]
(2)
=

∑

𝑘∈𝑄

𝑠 [𝑡] = 𝑡∗𝑚 (𝑒) · |𝑄 |

The equality of the leftmost term and the rightmost term

proves that 𝑡∗𝑚 (𝑒) ∈ 𝑆 (𝑚, 𝑒).

II. Let𝑄 ′ ⊆ P and 𝑡 ′ :=
∑

{𝑒 (𝑖) | Ports(𝑚, 𝑖) ⊆ 𝑄}/|𝑄 |.We

assume 𝑡 ′ > 𝑡∗𝑚 (𝑒) and show that this leads to a contradiction,

proving that 𝑡∗𝑚 (𝑒) is an upper bound to each element of

𝑆 (𝑚, 𝑒).

For this argument, we form the dual of the linear program:

maximize
∑

𝑖∈I

𝑒 (𝑖) · 𝑦𝑖

subject to 𝑦𝑖 − 𝑧𝑘 ≤ 𝑚𝑖𝑘 for all 𝑖 ∈ I, 𝑘 ∈ P
∑

𝑘∈P

𝑧𝑘 = 1

𝑧𝑘 ≥ 0 for all 𝑘 ∈ P

𝑦𝑖 ≥ 0 for all 𝑖 ∈ I

Here, the 𝑦𝑖 and 𝑧𝑘 are real-valued variables and𝑚𝑖𝑘 = 1 ⇔

(𝑖, 𝑘) ∉ 𝑀 .

By the strong duality theorem for linear programs, an

optimal solution for this dual linear program has the same

objective 𝑡∗𝑚 (𝑒) as an optimal solution for the primal linear

program.

Given the assumption that 𝑡 ′ > 𝑡∗𝑚 (𝑒), we construct a

solution 𝑠 ′ for the dual with a higher objective value, which

contradicts the strong duality theorem or the optimality of

𝑡∗𝑚 (𝑒). The construction of 𝑠 ′ is as follows for each 𝑖 ∈ I and

𝑘 ∈ P:

𝑠 ′[𝑧𝑘 ] = 1/|𝑄 ′ | if 𝑘 ∈ 𝑄 ′

𝑠 ′[𝑦𝑖 ] = 1/|𝑄 ′ | if Ports(𝑚, 𝑖) ⊆ 𝑄 ′

All other variables are set to 0. This solution fulfills all con-

straints and has the following objective value:

∑

𝑖∈I

𝑒 (𝑖) · 𝑦𝑖 =

∑

{𝑒 (𝑖) | Ports(𝑚, 𝑖) ⊆ 𝑄}

|𝑄 |
= 𝑡 ′ > 𝑡∗𝑚 (𝑒)

This proves the correctness of the bottleneck simulation

algorithm. □

8If this was possible for all 𝑘 ∈ 𝑄 , 𝑠 could not be optimal.
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