
Explainable Port Mapping Inference with Sparse
Performance Counters for AMD’s Zen Architectures

Fabian Ritter
fabian.ritter@cs.uni-saarland.de

Saarland University, Saarland Informatics Campus
Saarbrücken, Germany

Sebastian Hack
hack@cs.uni-saarland.de

Saarland University, Saarland Informatics Campus
Saarbrücken, Germany

Abstract
Performance models are instrumental for optimizing perfor-
mance-sensitive code. When modeling the use of functional
units of out-of-order x86-64 CPUs, data availability varies by
the manufacturer: Instruction-to-port mappings for Intel’s
processors are available, whereas information for AMD’s
designs are lacking. The reason for this disparity is that
standard techniques to infer exact port mappings require
hardware performance counters that AMD does not provide.

In this work, we modify the port mapping inference al-
gorithm of the widely used uops.info project to not rely on
Intel’s performance counters. The modifications are based
on a formal port mapping model with a counter-example-
guided algorithm powered by an SMT solver. We investigate
in how far AMD’s processors comply with this model and
where unexpected performance characteristics prevent an
accurate port mapping. Our results provide valuable insights
for creators of CPU performance models as well as for soft-
ware developers who want to achieve peak performance on
recent AMD CPUs.

ACM Reference Format:
Fabian Ritter and Sebastian Hack. 2024. Explainable Port Mapping
Inference with Sparse Performance Counters for AMD’s Zen Ar-
chitectures. In 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
3 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3620666.3651363

1 Introduction
When optimizing code for peak performance on a processor
microarchitecture, understanding the architecture’s perfor-
mance characteristics is vital. Modern processor designs use
many techniques to improve overall performance that cause

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04
https://doi.org/10.1145/3620666.3651363

complex, irregular performance characteristics. As manufac-
turers rarely provide performance models of their designs,
we need to infer such models via microbenchmarks.

In this work, we consider models for an out-of-order pro-
cessor’s ability to exploit instruction-level parallelism: the
port mapping. The port mapping describes how instructions
are decomposed into smaller operations, so-called “micro-
ops” or µops, and how these µops are executed on the proces-
sor’s execution ports. Port mappings are important compo-
nents in the cost models of compiler backends [19, 26] and
of instruction throughput predictors [3, 4, 10, 25, 27, 30].

Inferring port mappings has been the subject of recent
research: uops.info [1] provides accurate port mappings for
Intel’s microarchitectures with microbenchmarks witnessing
each instruction’s port usage. Their approach however does
not cover other microarchitectures like AMD’s recent Zen
architectures, since uops.info relies on Intel’s per-port hard-
ware performance counters. Other recent port usage infer-
ence techniques have limitations that hinder their adoption
in compilers and throughput predictors: PMEvo’s [29] port
mappings rarely coincide with the actual microarchitecture.
In contrast to the uops.info algorithm, PMEvo’s evolutionary
algorithm cannot provide explanatory microbenchmarks to
bolster confidence in the results. Palmed [14] infers conjunc-
tive resource mappings with good performance prediction
results, but they do not map directly to the microarchitecture
and therefore do not fit into existing tools.

In this paper, we present a novel port-mapping inference
algorithm that does not rely on per-port performance coun-
ters and therefore supports microarchitectures that uops.info
cannot handle. Our algorithm instead uses throughput mea-
surements and a single hardware performance counter to
count the total number of executed µops for a given mi-
crobenchmark. Assuming that the processor behaves accord-
ing to a formal port mapping model, these measurements
are sufficient to infer port mappings with explanatory mi-
crobenchmarks similar to the uops.info algorithm. The core
of our technique is a counter-example-guided algorithm pow-
ered by a satisfiability-modulo-theories (SMT) solver that
directly leverages the formal model.

We evaluate our approach in a case study on AMD’s Zen+
architecture. We report cases where irregular performance
characteristics and undocumented or wrongly documented
cases hinder an accurate performance model of Zen+. Using
our algorithm, we infer the most comprehensive explainable

https://orcid.org/0000-0001-9227-0910
https://orcid.org/0000-0002-3387-2134
https://doi.org/10.1145/3620666.3651363
https://doi.org/10.1145/3620666.3651363

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Fabian Ritter and Sebastian Hack

µop Cache Instruction Decoder

Register Management

Scheduler

Port 0
Int ALU
Vec ALU

DIV

Port 1
Int ALU
Vec ALU

Port 2
Memory
Load &
Store

Port 3
Memory

Load L1
D

Ca
ch

e
L1

IC
ac

he

Figure 1. Simplified overview of a modern processor design
(based on Figure 2-8 in the Intel Software Optimization Man-
ual [22, Section 2.6]).

port mapping for Zen+ to date. Our port mapping outper-
forms the state of the art in terms of throughput prediction
accuracy for the supported instructions.

In summary, we provide the following contributions:
• An explainable inference algorithm for port mappings that

does not require Intel’s per-port performance counters
and
• an implementation that we evaluate on AMD’s Zen+ archi-

tecture, which was previously out of scope for explainable
port mapping inference algorithms.
• The result is, to the best of our knowledge, the most com-

prehensive and accurate port mapping available for Zen+.
• Our case study documents numerous previously undocu-

mented or misdocumented aspects of Zen+.

2 Background
2.1 Out-of-Order Microarchitectures
Modern microarchitectures are complex designs that com-
bine various techniques to improve performance. Typically,
they decode instructions into one or more µops and apply
out-of-order execution: The µops are reordered and executed
in parallel on the processor’s functional units as long as their
read-after-write dependencies are preserved [21, 33].

Figure 1 illustrates such a microarchitecture. Instructions
are loaded from memory via the instruction cache. They are
decoded into µops, which are cached for future re-use. Their
register operands are translated to a larger set of microarchi-
tectural registers. This translation eliminates “false” write-
after-read and write-after-write dependencies that would
otherwise limit reordering. Finally, a scheduler assigns each
µop, once its operands are ready, to a port with the appro-
priate functional unit. Most functional units of modern pro-
cessors are pipelined, allowing the ports to accept one µop
per cycle. To understand how an instruction is executed, we
need to know its µop decomposition and which ports can
execute these µops. This information is the port mapping.

I:

U:

P:

add fma mul

𝑢1 𝑢2

𝑝1 𝑝2

1 2 1 1

(a)

𝑝1 𝑝2

𝑢1 (fma) 𝑢2 (mul)

𝑢2 (fma)

0

1

2

3 𝑡

(b)

Figure 2. Example port mapping (a) and optimal µop distri-
bution for [mul, mul, fma] (b). The processor executes two 𝑢1
µops (for the fma instruction) and three 𝑢2 µops (one for the
fma instruction and one for each mul instruction) for this
instruction sequence. Only port 𝑝2 can handle 𝑢2 while 𝑢1
could be executed on either port.

Processors often provide hardware performance counters:
additional registers to count events in the processor. They
gather statistics on how the processor executes code without
affecting the execution itself. Which events can be counted
depends on the microarchitecture, e.g., executed instructions
and µops or cache misses. The port mapping inference algo-
rithm of uops.info [1] depends on counting the µops that each
individual port executes. Relevant microarchitectures, e.g.,
AMD’s Zen family, do not provide these counters. Tools like
nanoBench [2] and LIKWID [20, 34] can read performance
counters and measure the throughput for microbenchmarks.

2.2 The Port Mapping Model
This work builds on a formal port mapping model intro-
duced in previous work [1, 29]: Port mappings are tripartite
graphs 𝑀 := (I ∪· U ∪· P, 𝐹 ∪· 𝐸) between a set I of instruc-
tion schemes, a set U of µops, and a set P of execution ports.
Instruction schemes (or instruction forms) abstract sets of
concrete instructions that differ in their operands. The x86-
64 instruction set contains thousands of instruction schemes.
E.g., the following scheme represents a 64-bit addition with
two general purpose register operands:

add ⟨GPR[64]⟩, ⟨GPR[64]⟩

In a port mapping, the labeled edges 𝐹 ⊆ I×N×U describe
how many µops of a specific kind the instruction schemes
require. The unlabeled edges 𝐸 ⊆ U × P between µops and
ports capture where each µop can be executed.

For an example, consider the port mapping in Figure 2a for
the instruction schemes add, mul, and fma (“fused multiply
and add”) of a simplified microarchitecture. add and mul are
each decomposed into a single µop: 𝑢1 and 𝑢2. 𝑢2 has one
execution port whereas 𝑢1 can be executed on either 𝑝1 or
𝑝2. Executing the fma instruction requires processing two 𝑢1
µops and one 𝑢2 µop.

Explainable Port Mapping Inference with Sparse Performance Counters ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

The port mapping model links a processor’s port map-
ping and the throughput of dependency-free instruction se-
quences 𝑒 via the following linear program (LP):

min. 𝑡

s.t.
∑︁
𝑘∈P

𝑥𝑢𝑘 =
∑︁

(𝑖,𝑛,𝑢) ∈𝐹
𝑒 (𝑖) · 𝑛 for all µops 𝑢 ∈ U (A)∑︁

𝑢∈U
𝑥𝑢𝑘 = 𝑝𝑘 for all ports 𝑘 ∈ P (B)

𝑝𝑘 ≤ 𝑡 for all ports 𝑘 ∈ P (C)

𝑥𝑢𝑘 ≥ 0
for all µops 𝑢 ∈ U,

ports 𝑘 ∈ P (D)

𝑥𝑢𝑘 = 0 if (𝑢, 𝑘) ∉ 𝐸 (E)

The optimal objective value of this linear program is the
inverse throughput tp−1

𝑀

(
𝑒
)

of 𝑒 with the port mapping 𝑀 ,
i.e., the average number of processor cycles required for an
instance of 𝑒 when it is executed indefinitely in a steady
state.

Intuitively, each µop of the executed instructions con-
tributes a share of “mass” corresponding to one cycle of uti-
lization of a port. The non-negative real-valued 𝑥𝑢𝑘 variables
represent the mass contributed by 𝑢 µops that is executed
on port 𝑘 . 𝑒 (𝑖) denotes how often the instruction scheme 𝑖
occurs in 𝑒 . Constraint A therefore ensures that all mass
is distributed to the 𝑥𝑢𝑘 variables. Constraint B establishes
real-valued 𝑝𝑘 variables for the total mass assigned to each
port 𝑘 and constraint C introduces 𝑡 as an upper bound to the
total masses of every port. Lastly, constraint E ensures that
µops are only assigned to compatible ports. The requirement
to minimize the upper bound 𝑡 guarantees that the µop mass
is distributed as evenly as possible with the port mapping,
achieving peak throughput. Solutions that assign non-integer
µop masses to ports correspond to steady-state executions
where µops go to different ports in different repetitions of
the instruction sequence. This model assumes that the port
mapping is the only source of throughput bottlenecks.

Figure 2b visualizes an optimal LP solution for the port
mapping from Figure 2a and the instruction sequence [mul,
mul, fma]. The mass for each port is collected in a correspond-
ing bucket. The objective value 𝑡 is the mass of the highest
bucket: three cycles. This mass is caused by the two 𝑢2 µops
of the mul instructions and the 𝑢2 µop of the fma instruction.
While the 𝑢1 µops could also be executed on 𝑝2, they need
to be handled by port 𝑝1 for an optimal distribution.

2.3 The uops.info Algorithm
Our work follows prior approaches [1, 29] with the goal to
infer a processor’s port mapping from microbenchmarks. We
base our approach on a port mapping inference algorithm
by Abel and Reineke [1, Section 5.1], which relies on block-
ing instructions: An instruction blocks a port subset pu if it
executes as a single µop that can use exactly the ports in pu.

The algorithm needs blocking instructions for the port sets
of every µop. Abel and Reineke find blocking instructions
by executing each instruction scheme in a steady state while
counting the µops executed per port via performance coun-
ters. If there are as many µops as instructions, 𝑖 is a blocking
instruction for the ports where its µops can be observed.

For an example, consider a 32-bit integer addition with
register operands on the Intel Skylake microarchitecture:

add ⟨GPR[32]⟩, ⟨GPR[32]⟩
When we benchmark this instruction scheme in a steady
state, Skylake’s performance counters show that
1. an add instruction requires 0.25 cycles on average, i.e.,

four of them can execute in a single cycle,
2. the processor executes one µop per add instruction, and
3. the µops are executed in equal parts on ports 0, 1, 5, and

6 of the microarchitecture (which has a total of 8 ports).
This add instruction scheme therefore blocks the port set{

0, 1, 5, 6
}
. Observation 3 requires per-port µop counters that

are not available in AMD’s processors.

Input: instruction under investigation 𝑖

1 blkInsns← pairs of (blocking insn, blocked ports),
sorted by ascending number of blocked ports

2 foundUops← {}
3 for (𝐵, pu) ∈ blkInsns do
4 𝑘 ← # blocking insns 𝐵 sufficient to flood pu
5 uops← measureUopsOnPorts([𝑘 × 𝐵, 𝑖], pu)
6 surplusUops← uops − 𝑘
7 for pu′, 𝑛 ∈ foundUops do
8 if pu′ ⊂ pu then
9 surplusUops← surplusUops − 𝑛

10 if surplusUops > 0 then
11 foundUops[pu] ← surplusUops
12 return foundUops

Algorithm 1. Port mapping inference for uops.info [1].

Abel and Reineke select one blocking instruction for each
occurring port set and apply Algorithm 1 for each instruc-
tion scheme 𝑖 . The multiset foundUops of µops, which are
represented by their sets of admissible ports, for 𝑖 is filled
throughout a run of the algorithm. The algorithm bench-
marks 𝑖 with each blocking instruction 𝐵 for a set pu of
ports, starting with the smallest port sets and proceeding to
increasing port set sizes. Each microbenchmark contains 𝑖
and enough copies of the considered blocking instruction 𝐵

such that any µop that can be executed on ports outside of pu
is executed on these alternative ports (ll. 4, 5). The number 𝑘
of blocking instruction copies must ensure that each blocked
port in pu receives at least as many µops as 𝑖 uses:

𝑘 ≥ |pu| · 𝜇opsOf (𝑖) (1)

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Fabian Ritter and Sebastian Hack

Otherwise, ports in pu might be unoccupied while µops of 𝑖
are issued, allowing µops of 𝑖 on pu even though they could
be executed on other ports.

When running this microbenchmark, Abel and Reineke
count executed µops on ports in pu via per-port performance
counters. The result is the sum of 𝑘 and the number of µops
of 𝑖 that only use ports in pu. These surplus µops include not
only µops that use all ports of pu but also those that have
only a subset of pu available. Because we assume a block-
ing instruction for the port set of each occurring µop and
because the blocking instructions are sorted by ascending
number of blocked ports, all µops for proper subsets of pu
were characterized in previous iterations of the loop. We can
therefore subtract these previously characterized µops from
the surplus µops (ll. 7–9) to obtain the µops of 𝑖 that can use
any port in pu (l. 11). The port usage of 𝑖 is fully characterized
once every blocking instruction has been considered.

For example, consider a processor with the port mapping
in Figure 2a. There are two blocking instructions: mul for the
port set

{
𝑝2
}

and add for
{
𝑝1, 𝑝2

}
. For this example, to char-

acterize the fma instruction, we use 𝑘 := |pu| · 𝜇opsOf (𝑖) =
|pu| · 3 blocking instructions per benchmark.

The algorithm first benchmarks fma with blocking instruc-
tions for port sets of size 1, i.e., mul, with 𝑘 = 3. Figure 3a
shows the distribution of µops in a steady state execution:
Four µops execute on the blocked port set

{
𝑝2
}
. Since no

µops were characterized for smaller port sets, we conclude
that fma uses 4 − 𝑘 = 1 µop that can be executed on

{
𝑝2
}
.

Next, fma is benchmarked with the add instruction, which
blocks a port set of size 2 (i.e., 𝑘 = 6). As shown in Figure 3b,
we count nine µops on the ports

{
𝑝1, 𝑝2

}
. Subtracting six

blocking instructions, three surplus µops remain. One of
these is explained by the

{
𝑝2
}

µop found previously. The two
remaining µops have the entire port set

{
𝑝1, 𝑝2

}
available.

With no more blocking instructions remaining, we obtain
the port usage for fma:

{
2 ×

{
𝑝1, 𝑝2

}
, 1 ×

{
𝑝2
}}

In practice, the uops.info implementation1 computes the
number 𝑘 of blocking instructions (l. 4) as follows:

𝑘 ← min
(
100,max

(
10, |pu| · 𝜇opsOf (𝑖),

2 · |pu| ·max(1, ⌊tp−1 ([𝑖])⌋)
))

The resulting 𝑘 ∈ [10, 100] depends on the number |pu| of
blocked ports, the cycles tp−1 ([𝑖]) required to execute 𝑖 in a
steady state, and 𝑖’s number 𝜇opsOf (𝑖) of µops. This term ful-
fills constraint 1 for reasonable numbers of µops. Compared
to an implementation that satifisies constraint 1 tightly, we
expect more resilience against measurement errors from the
larger number of blocking instructions.

A key benefit of this port mapping inference algorithm is
that the performed microbenchmarks serve as witnesses for

1https://github.com/andreas-abel/nanoBench/blob/faf75236cade57f7927f
9ee949ebc679fc7864b7/tools/cpuBench/cpuBench.py#L3393

𝑝1 𝑝2

𝑢1 (fma)
𝑢2 (mul)

𝑢2 (fma)

0

1

2

3

4

(a)

𝑝1 𝑝2

𝑢1 (add) 𝑢1 (add)

𝑢1 (fma)
𝑢2 (fma)
𝑢1 (fma)

0

1

2

3

4

(b)

Figure 3. Possible steady-state distributions of µops per port
in benchmarks of fma with (a) 3 mul and (b) 6 add blocking
instructions, using the port mapping from Figure 2a.

the result: For each instruction 𝑖 and each port set pu, there
is an experiment explaining if 𝑖 uses a µop for pu.

3 Inferring Port Mappings Without
Per-Port µop Counters

For AMD’s Zen microarchitectures and several ARM designs,
the uops.info algorithm is not applicable as they lack perfor-
mance counters for executed µops per port. The key insight
of our work is that the problems requiring per-port µop coun-
ters in the uops.info algorithm can be solved without them
if we assume that the processor follows the port mapping
model for some (unknown) port mapping. In the following,
we provide alternatives that do not use per-port µop coun-
ters for the relevant parts of the uops.info algorithm. The
only performance counter used, besides time measurements,
counts the total number of µops executed for a microbench-
mark.

3.1 Counting µops that Cannot Avoid Blocked Ports
To determine how many µops run on ports that are flooded
with blocking instructions, consider two experiments:
• 𝑒 := [𝑘 × 𝐵, 𝑖] consist of an instruction 𝑖 under investiga-

tion and 𝑘 blocking instructions 𝐵 for a port set pu.
• 𝑒′ := [𝑘 × 𝐵] contains only the blocking instructions.
If all µops of 𝑖 can use unblocked ports, tp−1 (𝑒) = tp−1 (𝑒′)
holds. Otherwise, each µop of 𝑖 that needs a port in pu utilizes
a flooded port for one cycle per iteration. Each such µop
therefore adds 1/|pu | to the observed inverse throughput, i.e.:

tp−1 (𝑒) = tp−1 (𝑒′) + 1/|pu | · µops of 𝑖 executed on pu

⇔ µops of 𝑖 executed on pu =
(
tp−1 (𝑒) − tp−1 (𝑒′)

)
· |pu|

For example, reconsider Figure 3a. The 𝑢2 µop of the fma
instruction cannot evade from the blocked port 𝑝2. Compared
to an execution of only the blocking instructions (3 cycles),
the inverse throughput is increased by 1/|pu | = 1 cycle.

3.2 Identifying Unique Blocking Instructions
We find and characterize blocking instructions as follows:

https://github.com/andreas-abel/nanoBench/blob/faf75236cade57f7927f9ee949ebc679fc7864b7/tools/cpuBench/cpuBench.py#L3393
https://github.com/andreas-abel/nanoBench/blob/faf75236cade57f7927f9ee949ebc679fc7864b7/tools/cpuBench/cpuBench.py#L3393

Explainable Port Mapping Inference with Sparse Performance Counters ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

1. Count the µops when executing each instruction individu-
ally. Each instruction with only a single µop is a candidate.

2. Determine for each candidate 𝑖 the number of ports on
which its µop can be executed, i.e., the number of instances
of 𝑖 that can be executed per cycle. We measure this as
the (non-inverse) throughput of 𝑖: 1/tp−1 ([𝑖]).

3. Filter redundant candidates, leaving one blocking instruc-
tion per port set. Two candidates cannot be redundant if
their port sets have different sizes. For two candidates 𝑖
and 𝑗 with equally sized port sets, we check for redun-
dancy by measuring if their inverse throughputs are addi-
tive: The port sets of 𝑖 and 𝑗 are equal if

tp−1 ([𝑖, 𝑗]) = tp−1 ([𝑖]) + tp−1 ([𝑗])

4. Infer the port mapping of the remaining blocking instruc-
tions. Compared to the full inference problem, this con-
cerns only few instruction schemes – e.g., the uops.info
port mapping for Intel’s Skylake has 12 distinct port sets
that require blocking instructions – and every scheme
uses only a single µop with a known number of ports.
This makes the computationally expensive algorithm de-
scribed in the following section practical.

3.3 Counter-Example Guided Port Mapping
Inference

The port mapping model relates the throughput achieved for
given instruction sequences with the processor’s port map-
ping. We exploit this relation with inspiration from counter-
example-guided abstraction refinement [12] and counter-
example-guided inductive synthesis [31].

1 Exps←
{}

2 while true do
3 𝑚1← findMapping(Exps)
4 if 𝑚1 = None then return None
5 𝑚2, newExp← findOtherMapping(Exps,𝑚1)
6 if 𝑚2 = None then return m1
7 cycles← measureCycles(newExp)
8 Exps← Exps ∪ {(newExp, cycles)}

Algorithm 2. Counter-example-guided inference.

Algorithm 2 shows the high-level structure of our counter-
example-guided port mapping inference algorithm. It is cen-
tered around a set Exps of microbenchmarks annotated with
the inverse throughput measured on the processor under
investigation. In each iteration, we search a port mapping𝑚1
that leads to the measured inverse throughputs in Exps (l. 3).
If no mapping is found, the observations do not match the
model: the algorithm terminates unsuccessfully (l. 4). Oth-
erwise, we search for a different port mapping 𝑚2 that is
also consistent with the measurements in Exps, but that is
distinguished from𝑚1 by an experiment newExp (l. 5). This

I:

U:

P:

𝑖𝐴 𝑖𝐵

𝑢𝐴 𝑢𝐵

𝑝1 𝑝2

1 1

(a)

I:

U:

P:

𝑖𝐴 𝑖𝐵

𝑢𝐴 𝑢𝐵

𝑝1 𝑝2

1 1

(b)

Figure 4. Port mappings that satisfy
{
([𝑖𝐴], 1.0), ([𝑖𝐵], 1.0)

}
.

means that 𝑚1 and 𝑚2 yield the same throughputs for Exps,
but different throughputs for newExp. If no such mapping
and experiment exist,𝑚1 is indistinguishable by throughput
measurements from the processor’s actual port mapping (l. 6).
Otherwise, we measure the inverse throughput of newExp,
add it to Exps (ll. 7-8), and continue with the next iteration.

For example, assume an architecture with two instructions
𝑖𝐴, 𝑖𝐵 , each with a single µop, and two ports 𝑝1, 𝑝2. So far, we
have the following measurements:

Exps =
{
([𝑖𝐴], 1.0), ([𝑖𝐵], 1.0)

}
findMapping(Exps) might find Figure 4a as port mapping𝑚1.
However, this is not the only viable port mapping for these
measurements: findOtherMapping(Exps,𝑚1) returns a port
mapping 𝑚2, e.g., Figure 4b. A distinguishing experiment
newExp is [𝑖𝐴, 𝑖𝐵]: With 𝑚1, its inverse throughput is 1.0
cycles per experiment execution while it is 2.0 cycles for 𝑚2.

The algorithm is guaranteed to terminate as at least one
found port mapping is rejected in each iteration: No two
findOtherMapping calls in a run can yield the same port map-
ping. Since there are only finitely many port mappings with
only one µop per instruction, the algorithm only takes a
finite number of steps. In practice, experiments usually rule
out more than just a single candidate port mapping.

In the following, we derive SMT-solver-powered imple-
mentations of findMapping and findOtherMapping from the
linear program in Section 2.2. The idea is to augment the LP
such that the port mapping is no longer coded into the con-
straints, but rather represented in LP variables. We can then
encode findMapping and findOtherMapping as constraints
on the LP variables. An off-the-shelf solver can produce a
satisfying model for the variables, from which we decode
the result. Specifically, we formulate a constraint system

relateThroughput [enc𝑀 , enc𝑒 , enc𝑡]
parametrized with collections enc𝑀 , enc𝑒 , enc𝑡 of variables
that represent a port mapping, an experiment, and the experi-
ment’s inverse throughput. We design these constraints such
that a model encoding a port mapping 𝑀 , an experiment 𝑒 ,
and a number 𝑡 satisfies them if and only if tp−1

𝑀

(
𝑒
)
= 𝑡 .

3.3.1 Encoding port mappings and experiments. Ex-
periments are effectively multisets of instruction schemes
since their order is irrelevant in the port mapping model. We
represent an experiment as a set enc𝑒 :=

{
exp[𝑖]

�� 𝑖 ∈ I} of

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Fabian Ritter and Sebastian Hack

integer-valued variables. The value of a variable exp[𝑖] is the
number of occurrences of the instruction 𝑖 in the experiment.
We constrain these variables to be non-negative.

To represent port mappings, we need variables that en-
code tripartite graphs between instruction schemes I, ports P,
and an unknown set U of µops. Since every considered in-
struction scheme uses only a single µop, we chose U such
that every instruction 𝑖 has its own µop 𝑢 (𝑖) .2 A set enc𝑀 :={
m[𝑢 (𝑖) , 𝑘]

�� 𝑖 ∈ I, 𝑘 ∈ P} of boolean variables therefore en-
codes a port mapping. When a variable m[𝑢 (𝑖) , 𝑘] is True in
a model, edges connect instruction 𝑖 via µop 𝑢 (𝑖) to port 𝑘 in
the port mapping, i.e., the µop of 𝑖 can be executed on 𝑘 . E.g.,
the port mapping from Figure 4b corresponds to a model
where m[𝑢 (𝑖𝐴) , 𝑝1] and m[𝑢 (𝑖𝐵) , 𝑝1] are set to True while
m[𝑢 (𝑖𝐴) , 𝑝2] and m[𝑢 (𝑖𝐵) , 𝑝2] are set to False.

We add constraints so that each µop’s number of ports fits
the previous throughput measurements.

3.3.2 Relating port mapping and throughput para-
metrically. We adjust the linear program from Section 2.2
so that the inverse throughput 𝑡 , the experiment 𝑒 , and the
port mapping 𝑀 occur only as free variables in the program.

Inverse Throughput. The inverse throughput is present
as a variable 𝑡 in the LP, but it is not free: Constraints A-E
of the LP only assert that the experiment can be executed
according to the port mapping within at most 𝑡 cycles and
the minimization objective ensures that 𝑡 corresponds to
an optimal µop distribution. If the value of 𝑡 was fixed by
a constraint, the minimization objective would effectively
be disabled. We therefore replace the optimization objective
of the LP with more constraints that ensure optimality of
the execution. We use SMT formulas in the theory of linear
integer and real arithmetic (LIRA) to obtain a more intuitive
formulation with logical disjunctions and implications:3∨

𝑘∈P
𝑞𝑘 (F)

𝑞𝑘 ↔ (𝑝𝑘 = 𝑡) for all ports 𝑘 ∈ P (G)
𝑗𝑢 → 𝑞𝑘 if (𝑢, 𝑘) ∈ 𝐸 (H)∑︁
𝑢∈U

𝑗𝑢 ·
∑︁

(𝑖,𝑛,𝑢) ∈𝐹
𝑒 (𝑖) · 𝑛 =

∑︁
𝑘∈P

𝑞𝑘 · 𝑡 (I)

These constraints are based on a result by Ritter and
Hack [29, Section 4.5]: A distribution to ports is optimal
if and only if there is a non-empty set 𝑄 of bottleneck ports
that are all utilized for the full number of cycles with µops
that can only be executed on ports in 𝑄 . In the formulas,
a port 𝑘 is in the set 𝑄 of bottleneck ports iff the boolean
variable 𝑞𝑘 is True. Constraint F asserts that 𝑄 is not empty.
With constraint G, we ensure that each bottleneck port is
2We can relax this requirement of the algorithm to arbitrary but fixed
numbers of µops by introducing more µops.
3The multiplications in constraint I all involve either a boolean variable or
a constant and are therefore encodable without undecidable theories.

utilized for the full 𝑡 cycles. The boolean 𝑗𝑢 variables encode
a set 𝐽 of µops 𝑢 that can only be executed on bottleneck
ports in 𝑄 , as enforced by constraint H. Lastly, constraint I
ensures that only µops from 𝐽 contribute to the utilization
of the ports in 𝑄 .

Experiment and Port Mapping. To introduce the exper-
iment encoding, we use the exp[𝑖] variables instead of the
fixed numbers 𝑒 (𝑖) of occurrences for each instruction 𝑖 . We
replace the constraints E and I to integrate the port mapping
encoding into the constraints with logical implications:

𝑥𝑢𝑘 = 0 if (𝑢, 𝑘) ∉ 𝐸 (𝐸)
{ ¬m[𝑢, 𝑘] → 𝑥𝑢𝑘 = 0 for all 𝑢 ∈ U, 𝑘 ∈ P

𝑗𝑢 → 𝑞𝑘 if (𝑢, 𝑘) ∈ 𝐸 (𝐼)
{ m[𝑢, 𝑘] → (𝑗𝑢 → 𝑞𝑘) for all 𝑢 ∈ U, 𝑘 ∈ P

The resulting constraints form relateThroughput, with in-
verse throughput, experiment, and port mapping as free
variables.

3.3.3 findMapping and findOtherMapping. The paramet-
ric relateThroughput [enc𝑀 , enc𝑒 , enc𝑡] constraints make the
functions from Algorithm 2 straightforward to implement:

findMapping(Exps) uses a single free port mapping encod-
ing 𝑀free. For each experiment 𝑒 with inverse throughput
𝑡𝑒 , we assert relateThroughput constraints for 𝑀free and fresh
experiment and throughput encodings that are hardwired to
𝑒 and 𝑡𝑒 , respectively:

𝜑findMapping :=
∧

(𝑒,𝑡𝑒) ∈Exps
relateThroughput [𝑀free, 𝑒, 𝑡𝑒]

The resulting conjunction ensures that the port mapping
encoded in a satisfying model yields the observed inverse
throughput for all experiments. We use an off-the-shelf SMT
solver to check for satisfiability. If the constraints are unsat-
isfiable, the observed throughputs cannot be explained in
the model and we find no mapping. Otherwise, we extract
and return the port mapping from the values of the encoding
variables in the satisfying model produced by the solver.

findOtherMapping(𝑀1, Exps) also uses these constraints
to require that the found port mapping satisfies the experi-
ments, and adds more: Another mapping encoding is hard-
wired to the input port mapping𝑀1. For a free experiment en-
coding 𝑒free , we use two more instances of the relateThrough-
put constraints to encode the inverse throughputs of both
port mapping encodings in two variables 𝑡1, 𝑡2. Lastly, we
assert that 𝑡1 ≠ 𝑡2, i.e., the experiment distinguishes the
hard-wired and the free port mapping:

𝜑findOther := 𝑡1 ≠ 𝑡2 ∧ relateThroughput [𝑀1, 𝑒free, 𝑡1]
∧ relateThroughput [𝑀free, 𝑒free, 𝑡2] ∧ 𝜑findMapping

3.3.4 Addressing Benchmarking Limitations. When
benchmarking modern processors, inexact measurements
due to noise and errors are inevitable. We therefore adapt

Explainable Port Mapping Inference with Sparse Performance Counters ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

the constraints: A parameter 𝜀 constrains the maximal differ-
ence between measured and modeled cycles per instruction
(CPI) of the experiments.4 The following constraint encodes
equality of the measured and modeled inverse throughputs
𝑡𝑒 and enc𝑡 :

|enc𝑡 − 𝑡𝑒 | < 𝜀 · |exp |

When asserting that the modeled inverse throughputs of
the two port mappings in findOtherMapping are different,
no observed value may be considered equal to both modeled
inverse throughputs. Otherwise a found experiment might
not rule out any of the candidate mappings. This can be
guaranteed if the modeled CPIs differ by at least 2 · 𝜀:

|𝑡1 − 𝑡2 | > 2 · 𝜀 · |exp |

Moreover, findOtherMapping can produce excessively large
microbenchmarks that hit bottlenecks outside the port map-
ping, e.g., the cache boundaries. We therefore follow a strati-
fied approach: First, we only search distinguishing experi-
ments with a single instruction and increase this bound once
no more experiments are found. If increasing the bound
yields no experiments, we run findOtherMapping without
bound. If this produces no experiment either, the algorithm
terminates; otherwise it continues with a larger bound. As a
result, the benchmark experiments have minimal size with-
out sacrificing the completeness of the algorithm.

3.4 Handling Pipeline Bottlenecks
The port mapping model assumes that throughput is only
limited by the availability of functional units. In practice, that
is not the case. All modern processors that we are aware of,
including recent designs by Intel and AMD, cannot sustain a
full utilization of all ports. The culprit is often the decoding
frontend (including the caches) or the instruction retirement
rate. When a bottleneck limits the execution to at most 𝑅max
instructions per cycle, experiments that are faster according
to the port mapping model are slowed to meet the limit.

Such bottlenecks can affect the correctness of our algo-
rithm. The checks for equivalence of blocking instructions
(Section 3.2) and for evading µops (Section 3.1) measure if an
experiment utilizes more than a certain number 𝑛 of ports.
These checks fail if there is no gap between 𝑅max and the
largest such 𝑛, i.e., the maximal port set size of any µop. We
need to check this requirement when applying the algorithm.

The counter-example-guided inference algorithm in Sec-
tion 3.3 needs an adjustment for such bottlenecks: We change
relateThroughput [enc𝑀 , enc𝑒 , enc𝑡] such that enc𝑡 is the max-
imum of the number tp−1

𝑀

(
𝑒
)

of cycles according to the model
and the peak inverse throughput |𝑒 |/𝑅max at the bottleneck.
Some theoretically distinguishable port mappings become
indistinguishable with this adjustment.

4i.e., inverse throughput divided by the length of the experiment.

3.5 Supported Microarchitectures
Our algorithm has the following requirements:
• We need to measure the number of cycles required to

execute a piece of code. Such functionality is commonplace
in contemporary Intel, AMD, and ARM microarchitectures.
• There needs to be a counter for the total number of µops

executed for a piece of code. Recent Intel Core architec-
tures support this, and AMD’s Zen, Zen+, and Zen2 are
documented to support this as well.5
• The processor’s throughput bottleneck should not be hit

when executing only instructions of the same kind. AMD’s
Zen-family microarchitectures (up to Zen4) satisfy this
requirement [15], most Intel Core architectures violate it.

According to available documentation, examples of contem-
porary microarchitectures as of 2024 that satisfy these re-
quirements include:
• AMD’s Zen, Zen+, and Zen2 microarchitectures: They sus-

tain a throughput of 5 instructions per cycle (IPC) [15,
Chapter 22] and individual µops have up to 4 ports avail-
able. The “Retired Uops” counter [6, Section 2.1.15.4.5] is
documented to count µops.6
• Intel’s Golden Cove microarchitecture, which is used in

their Sapphire Rapids and Alder Lake processors: It sus-
tains 6 IPC [15, Section 13.1] and its µops have up to 5 ports
available [1]. Golden Cove has a UOPS_EXECUTED.THREAD
performance counter [23].
• Fujitsu’s A64FX microarchitecture: Its decoder can issue 4

instructions per cycle and µops can use up to 3 ports [17,
Chapter 2]. This architecture provides a UOP_SPEC perfor-
mance counter [18, p. 16].
• ARM’s Neoverse V2: Its decoder sustains a throughput of

8 IPC while µops can use up to 6 ports [8, Section 2.1]. Its
OP_RETIRED counter [9, Table 18-1] counts executed µops.
• Apple’s M1: According to results by Dougall Johnson [24],

its performance core sustains 8 IPC and each µop has up
to 6 ports available. Johnson uses an an undocumented
performance counter to count µops.
Additionally, as in the original uops.info algorithm, we

assume that there is a blocking instruction for most µops of
the microarchitecture. Where this requirement is not met, re-
placement instructions with a throughput dominated by the
respective µop need to be specified manually. In the following
case study, we show that, contrary to official documentation,
such µops occur in AMD’s Zen+ microarchitecture.

4 Case Study: The AMD Zen+ Architecture
We evaluate our port mapping inference algorithm with
the AMD Zen+ microarchitecture. This allows us to use
5See Section 4.1 for more on this and subsequent Zen microarchitectures.
6Our experiments indicate that this performance counter behaves like the
“Retired Ops” counter of Zen3 and Zen4 [7, Section 2.1.15.4.5]. With a
throughput of 6 IPC and up to 4 ports per µop [15, Chapters 23–24], Zen3 and
Zen4 could therefore be handled similarly as the previous Zen generations.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Fabian Ritter and Sebastian Hack

PMEvo [29] and Palmed [14] as points of comparison in Sec-
tion 4.5. Since Zen+ does not have full per-port µop counters,
the original uops.info algorithm is not applicable. We also
compare our results to the available documentation for Zen+:
• AMD’s Software Optimization Guide (SOG) [5] describes

the microarchitecture and documents instruction latencies
and throughputs, if they are microcoded, and, for simple
instructions, their execution units.
• Agner Fog’s microarchitecture guide [15] analyzes the sim-

ilar Zen architecture based on manual microbenchmarks.
• Fog [16] and uops.info [1] provide tables with measured

latencies, throughputs, and numbers of µops of individ-
ual instructions. They include the port usage of floating
point (FP)/vector instructions since per-port performance
counters for these units are available [6, Section 2.1.15.4.1].
• WikiChip collects information on Zen and Zen+, in part

from AMD’s marketing resources [35, 36].
Our test system has an AMD Ryzen 5 2600X processor

and 32 GB of RAM. It runs the port mapping inference algo-
rithm and automatically performs microbenchmarks when
required. Simultaneous multi-threading and frequency scal-
ing are disabled. We measure inverse throughput and retired
µops with a technique similar to nanoBench [2], taking the
median over 11 repeated microbenchmark runs.7 We con-
sider two throughput measurements equal if the implied
cycles per instruction (CPI) differ by at most 𝜀 = 0.02. This
value allows us to distinguish if experiments use five ports
(0.20 CPI) or four ports (0.25 CPI). Zen+ meets our bottleneck
requirement: Five blocking instructions can be executed per
cycle [15, Section 22.21] and µops have at most four ports.

We take the x86-64 instruction schemes from uops.info
and remove control flow and system instructions as well as
instructions with known input-dependent performance char-
acteristics. For FP and vector operations, we only consider
instructions from the AVX and AVX2 instruction set exten-
sions. This gives us 2,980 instruction schemes. We further
reduce this set of instruction schemes when the need arises
throughout the stages of the algorithm.

4.1 Identifying Blocking Instruction Candidates
The first algorithm stage benchmarks every single instruc-
tion under investigation individually. Instructions that are
executed with a single µop are blocking instructions.

4.1.1 Counting µops. Compared to AMD’s documenta-
tion, we measure unexpected numbers of µops, e.g., for this
instruction scheme:

add ⟨GPR[32]⟩, ⟨MEM[32]⟩
It loads a value from memory, adds it to the value of a regis-
ter, and writes the result into the same register. According to
AMD’s SOG [5, Table 1], this instruction uses two µops: one
that loads and one that adds. However, the “Retired Uops”
7We use the PMCx0C1 (“Retired Uops”) counter [6, Section 2.1.15.4.5].

counter only increases by one. We observe the same for any
instruction with memory operands. uops.info and Fog’s ta-
bles, which also rely on this performance counter, agree with
our observations. While our inquiry with AMD’s support re-
mains unanswered, there is evidence that the “Retired Uops”
performance counter, PMCx0C1, counts macro-ops instead of
µops: The observed values are consistent with the SOG’s
macro-op numbers and AMD’s documentation for the more
recent Zen 3 and 4 microarchitectures [7, Section 2.1.15.4.5]
documents this identifier for counting macro-ops.

AMD’s macro-ops are a representation between x86-64
instructions and the µops that are executed by the execution
units [5, Section 2.3]. Many instructions are implemented
with a single macro-op, whereas, e.g., 256-bit-wide vector op-
erations use two narrower macro-ops. Complex instructions
are microcoded with a greater number of macro-ops.

To the best of our knowledge, there is no detailed pub-
lished information on how macro-ops are decomposed into
µops and no suitable performance counter for experimental
characterization. Since our algorithm requires a count of
µops, we postulate a macro-op-to-µop correspondence in the
Zen+ microarchitecture, based on AMD’s SOG [5, Section
2.3]: Let 𝑛 be the number of macro-ops observed when exe-
cuting a basic block bb. We obtain the µop count by adding
• 1 for each memory operand with a width of at most 128 bits

(excluding “load effective address” and loading movs),
• 2 for each memory operand with a width of 256 bits (as

they are implemented as two 128-bit operations).
For one case, we deviate from the SOG: It claims that movs

which store to memory do not require an additional µop. This
contradicts our observations:
• A store-mov together with four simple register-additions

takes 1.25 cycles. Therefore, it has a µop that is restricted
to the four ALU ports.
• A vmovapd vector-register-to-memory store (documented

with a store µop and one to deliver the stored data) together
with the four additions takes only 1.0 cycles. Hence, no
µops of this instruction are restricted to the ALU ports.
• A storing mov with a storing vmovapd leads to an inverse

throughput of 2 cycles. These instructions therefore inter-
fere, i.e., a µop of the mov instruction uses a port that the
vmovapd instruction also needs.

Hence, the storing mov instruction has a µop that is restricted
to one or more ALU ports and one for a non-ALU port. There-
fore, similar to Intel architectures [1, Section 5.1.1], there is
no proper blocking instruction for memory store µops.

4.1.2 Problematic Instructions. For several instruction
schemes, we observe breaks in the algorithm’s assumptions:
• nops and 32 or 64-bit-wide register-to-register movs use

no ports: The processor resolves such movs via register
renaming [15, Section 22.13] and implements nops without
µops. No port mapping is necessary for these cases.

Explainable Port Mapping Inference with Sparse Performance Counters ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

• Some FP instructions execute slower than the port map-
ping model permits, e.g., divisions, square-root computa-
tions and approximate reciprocals.
• A mov of a 64-bit immediate into a GPR causes unreliable

measurements. As these constants are unusual in the ISA,
they use special handling in the hardware [5, Section 2.9].
• We cannot measure instructions that modify operands

that are hardwired or restricted to ah–dh registers without
observing effects of data dependencies.

We exclude all these instruction schemes, leaving 2,323 re-
maining schemes. Of these, 691 are identified as blocking
instruction candidates.

4.2 Filtering Equivalent Blocking Instructions
Next, we run microbenchmarks for pairs of blocking instruc-
tion candidates with equally-sized port sets to check if they
are equivalent. We encounter further problematic instruc-
tions in these experiments: Conditional move instructions,
AES de/encryption operations, numerical conversions of the
vcvt* family, and double-precision FP multiplications cause
unstable measurements when benchmarked with other in-
structions. FP/vector operations with three read operands,
like fused multiply-and-add instructions and some vector
blending operations, do not fit the port mapping model ei-
ther in Zen+. While these operations can execute on two of
the four ports of the FP unit, they use data lines of a third
port [5, Section 2.11]. This third port meanwhile has to idle,
which we observe as contradicting equivalence information.
We exclude these instructions from the following steps.

This leaves us with 1,887 instruction schemes in total, with
563 blocking instruction candidates. Of these candidates, 13
are identified as unique blocking instructions. Table 1 shows
them with the number of candidates per equivalence class.

This selection is consistent with uops.info: If we found two
candidates equivalent and if they are covered by uops.info,
then their reported port usages are equal. uops.info does
not cover 266 of our 563 candidates. AMD’s tables do not
agree for 33 instruction schemes. E.g., they document the
following xmm vector comparisons with the same two ports:

vpcmpgtq vpcmpeqq vpcmpgtb

In our measurements, only the second (testing equality for
2× 64-bit integers) has two ports, whereas the first and third
have one and three ports available (greater-than tests for
2 × 64-bit and 16 × 8-bit integers, respectively). Fog’s table
and uops.info agree with our measurements; this appears to
be an error in AMD’s documentation.

4.3 Computing a Mapping for the Blocking
Instructions

Here, we compute a port mapping for the blocking instruc-
tions with the counter-example-guided inference algorithm.
We use z3 [13] (V.4.12.1) as SMT solver and select 𝜀 = 0.02.
Following the SOG [5], we use a set of 10 ports.

Table 1. Identified blocking instruction classes for AMD
Zen+. Representants were selected manually for clarity.

Ports Instruction Scheme # Equiv. Description
4 add ⟨GPR[32]⟩, ⟨GPR[32]⟩ 242 ALU ops

vpor ⟨XMM⟩, ⟨XMM⟩, ⟨XMM⟩ 21 logical vector ops

3 vpaddd ⟨XMM⟩, ⟨XMM⟩, ⟨XMM⟩ 30 vector int. arith.

2 vminps ⟨XMM⟩, ⟨XMM⟩, ⟨XMM⟩ 143 FP compare, mul.
vbroadcastss ⟨XMM⟩, ⟨XMM⟩ 50 vector layouting
vpaddsw ⟨XMM⟩, ⟨XMM⟩, ⟨XMM⟩ 17 saturating vec. ops
vaddps ⟨XMM⟩, ⟨XMM⟩, ⟨XMM⟩ 10 FP additions
mov ⟨GPR[32]⟩, ⟨MEM[32]⟩ 6 memory loads

1 vpslld ⟨XMM⟩, ⟨XMM⟩, ⟨XMM⟩ 27 vector shifts
vpmuldq ⟨XMM⟩, ⟨XMM⟩, ⟨XMM⟩ 10 elaborate vec. mul.
imul ⟨GPR[32]⟩, ⟨GPR[32]⟩ 9 integer mul.

vroundps ⟨XMM⟩, ⟨XMM⟩, ⟨IMM[8]⟩ 4 vector rounding
vmovd ⟨XMM⟩, ⟨GPR[32]⟩ 2 vector-to-GPR mov

As there are no proper blocking instructions for store op-
erations, we add “improper” blocking instructions manually:
• mov ⟨MEM[32]⟩, ⟨GPR[32]⟩, which stores a 32-bit value from

a general purpose register into memory, and
• vmovapd ⟨MEM[128]⟩, ⟨XMM⟩, which stores a 128-bit value

from a vector register into memory.
While we expect to use only the mov instruction in place of
a blocking instruction for the store µop, both are required to
infer that the store µop does not use an ALU instruction, cf.
Section 4.1. We augment the SMT formulas such that the im-
proper blocking instructions use exactly two µops and one of
their µops is equal to one with a proper blocking instruction.
These constraints avoid prohibitively long execution times.

For three blocking instructions, the generated experiments
exhibit throughputs outside of the port mapping model:
• The imul scheme for scalar integer multiplications, e.g.,

when combined with four additions:
4× add ⟨GPR[32]⟩, ⟨GPR[32]⟩

1× imul ⟨GPR[32]⟩, ⟨GPR[32]⟩
Since add has four ports and imul is restricted to one,
two inverse throughputs are possible in the port mapping
model: 1.25 cycles, if imul uses a port of the add instruc-
tion or 1.0 cycles, if their ports are disjoint. While AMD’s
SOG [5, Section 2.10.2] indicates the former, we measure
ca. 1.5 cycles for this experiment, matching neither case.
• vpmuldq, which represents uncommon vector multipli-

cation operations,8 leads to experiments that run slower
than their port usage would imply. This deviation from the
modeled throughputs would require a larger 𝜀, reducing
the accuracy for other instructions.

8This specific instruction multiplies the 32-bit integers at even-numbered
lanes in the source registers without overflows into a vector of 64-bit
integers.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Fabian Ritter and Sebastian Hack

Table 2. Documented and inferred port usage of the blocking
instructions for Zen+. Inferred ports were renamed to ease
comparison.

Instruction Scheme Doc. Ports Inferred Ports
add ⟨GPR[32]⟩, ⟨GPR[32]⟩ ALU [6,7,8,9]
vpor ⟨XMM⟩, ⟨XMM⟩, ⟨XMM⟩ FP 0,1,2,3 [0,1,2,3]

vpaddd ⟨XMM⟩, ⟨XMM⟩, ⟨XMM⟩ FP 0,1,3 [0,1,3]

vminps ⟨XMM⟩, ⟨XMM⟩, ⟨XMM⟩ FP 0,1 [0,1]
vbroadcastss ⟨XMM⟩, ⟨XMM⟩ FP 1,2 [1,2]
vpaddsw ⟨XMM⟩, ⟨XMM⟩, ⟨XMM⟩ FP 0,3 [0,3]
vaddps ⟨XMM⟩, ⟨XMM⟩, ⟨XMM⟩ FP 2,3 [2,3]
mov ⟨GPR[32]⟩, ⟨MEM[32]⟩ AGU [4,5]

vpslld ⟨XMM⟩, ⟨XMM⟩, ⟨XMM⟩ FP 2 [2]
vroundps ⟨XMM⟩, ⟨XMM⟩, ⟨IMM[8]⟩ FP 3 [3]

mov ⟨MEM[32]⟩, ⟨GPR[32]⟩ AGU [5] + [6,7,8,9]
vmovapd ⟨MEM[128]⟩, ⟨XMM⟩ FP 2 [5] + [2]

• For vmovd, we observe inconsistent resource conflicts when
combined with different instructions. As this instruction
scheme is untypical in that it transfers data between vector
registers and the GPRs, its throughput might depend on
resources outside of the port mapping model.

These instructions cause UNSAT results in the findMapping
method. We exclude them and instructions with the same
mnemonics (as we expect them to share aspects of the prob-
lematic instructions) from this investigation.

In three runs with the remaining blocking instructions,
the algorithm terminated within 12–20 hours after generat-
ing 55–59 experiments with up to five instructions. Table 2
shows the inferred port mapping and the documented port
usage. For vector and FP instructions, where documented
port usages are available, our port mapping is equivalent.

Results for the add blocking instruction differ across re-
peated algorithm runs in whether a port is shared with the FP
instructions: Besides the mapping in Table 2, “[6,7,8,9]”, vari-
ants like “[0,6,7,8]” and “[1,6,7,8]” that use FP ports are possi-
ble. These variants are indistinguishable with the throughput
bottleneck of five instructions per cycle. Which result we
get depends on choices of the SMT solver. This ambiguity
would be resolved with a less tight bottleneck or with block-
ing instructions for the individual FP ports or fine-grained
subsets of the ALU ports. We use “[6,7,8,9]” in the rest of the
algorithm as it is consistent with the documentation.

The results for the improper blocking instructions (at the
bottom of the table) are consistent with the expectations:
They have a µop (presumably for storing to memory) for
port 5 in common. vmovapd has an additional µop for port 2,
which uops.info reports as its port usage. For mov, the addi-
tional µop is an ALU µop, matching our observations from
Section 4.1.

4.4 Computing the Remaining Port Mapping
Finally, the algorithm benchmarks the remaining instruc-
tions against the suite of blocking instructions. To combat un-
stable measurements, we run this part of the algorithm three
times and only report the port usage for an instruction if at
least two of the runs agree. We use mov ⟨MEM[32]⟩, ⟨GPR[32]⟩
to block the store port 5.

The results follow regular patterns for most instructions:
• 256-bit wide AVX instructions use µops of the same kinds

as the 128-bit variants, only with twice the number, e.g.:
vpcmpeqq ⟨XMM⟩, ⟨XMM⟩, ⟨XMM⟩ { 1 × [0, 3]
vpcmpeqq ⟨YMM⟩, ⟨YMM⟩, ⟨YMM⟩ { 2 × [0, 3]

• Instruction schemes with a read memory operand differ
from their register-only counterparts by one load µop (two
for double-pumped 256-bit AVX instructions), e.g.:

add ⟨GPR[32]⟩, ⟨GPR[32]⟩ { [6, 7, 8, 9]
add ⟨GPR[32]⟩, ⟨MEM[32]⟩ { [6, 7, 8, 9] + [4, 5]

This follows our postulated macro-op decomposition.
• Simple scalar instructions with a read and written memory

operand use an ALU µop and a store µop:
add ⟨GPR[32]⟩, ⟨GPR[32]⟩ { [6, 7, 8, 9]
add ⟨MEM[32]⟩, ⟨GPR[32]⟩ { [6, 7, 8, 9] + [5]

In contrast to Intel architectures, Zen+ has no separate
µops for the two memory operations in read-modify-write
instructions. As an exception, operations on ≤ 32 bit use
an additional µop on the address generation units [4,5].

Overall, 70% of the remaining 1,819 considered instruction
schemes fall into this category.

For complex instructions, we find unexpected results, e.g.:

bsf ⟨GPR[64]⟩, ⟨MEM[64]⟩
{ 9 × [6, 7, 8, 9] + [4, 5] + 9 × [0, 1, 2, 3]

vphaddw ⟨XMM⟩, ⟨XMM⟩, ⟨XMM⟩
{ [0, 1, 2, 3] + [0, 1, 3] + 2 × [1, 2] + 4 × [6, 7, 8, 9]

The former is a bit scan forward instruction, which finds the
position of the least significant bit set in its read (memory)
operand. The latter is a horizontal vector addition. Their in-
ferred port usages are unexpected in two ways: They contain
more µops than reported by the performance counter (8+1
counted and adjusted for a memory operand for bsf and
4 counted for vphaddw) and they include µops for unlikely
ports. For the scalar integer operation bsf, we do not ex-
pect vector/FP ports [0, 1, 2, 3], whereas the vector operation
vphaddw is unlikely to use the scalar ALU ports [6, 7, 8, 9].
We suspect these to be spurious observations caused by the
processor’s microcode sequencer (MS). For instructions with
many µops, the processor’s instruction decoder only emits
an entry point address for the MS ROM. The MS then emits
the relevant operations. Our observations match a MS that
emits four operations per cycle while stalling the remaining
frontend. Rather than µops that cannot execute on unblocked

Explainable Port Mapping Inference with Sparse Performance Counters ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

MAPE PCC 𝜏𝐾

PMEvo 28.0% 0.83 0.72
Palmed 35.2% 0.79 0.66

Ours 6.6% 0.96 0.90

(a) Accuracy Metrics

0 1 2 3 4 5 6
measured IPC

0
1
2
3
4
5
6
7
8
9

pr
ed

ic
te

d
IP

C

100

101

102

103

(b) PMEvo

0 1 2 3 4 5 6
measured IPC

0
1
2
3
4
5
6
7
8
9

pr
ed

ic
te

d
IP

C

100

101

102

103

(c) Palmed

0 1 2 3 4 5 6
measured IPC

0
1
2
3
4
5
6
7
8
9

pr
ed

ic
te

d
IP

C

100

101

102

103

(d) ours

Figure 5. IPC prediction accuracy for Zen+ in metrics (a) and as heatmaps of predicted vs. measured IPC per model (b-d).

ports, we measure the overhead of this bottleneck. This oc-
curs for 8% of the 1,819 considered instruction schemes.

For 7% of the instruction schemes, e.g., for bit shift opera-
tions on vector registers, the experiments yield throughputs
that are unstable or outside the port mapping model.

This last stage of the algorithm takes 8–10 hours. The last
two stages of the algorithm dominate the running time of
the algorithm, with a total of 20–28 hours. Overall, we in-
ferred a port mapping for 1,700 of the initial 2,980 instruction
schemes. uops.info has no port mapping for 1,142 (67%) of
these 1,700 supported instruction schemes.

4.5 Prediction Accuracy – Port Mapping
We evaluate our Zen+ port mapping quantitatively by com-
paring its throughput prediction accuracy against PMEvo [29]
and Palmed [14].9 As port mappings model only the use of
functional units, we focus on instruction sequences whose
throughput is not limited by data dependencies.

To predict the throughput of an experiment 𝑒 with our
mapping, we solve the LP from Section 2.2 for the number 𝑡
of cycles of an optimal execution w.r.t. the port mapping. If
this number is faster than the bottleneck of 5 IPC allows,
we report an inverse throughput of 5/|𝑒 | cycles, and 𝑡 oth-
erwise. For PMEvo, we combine the available implementa-
tion with the measurement setup used for our case study
and infer a new port mapping. We seed the population of
its evolutionary algorithm with 50,000 random port map-
pings and let it run until evolution converges after ca. 59
hours.10 For Palmed, we use the most recent available model
for the Zen architecture. To keep benchmarking times for
PMEvo manageable, we restrict this evaluation to instruc-
tion schemes that occur in compiled binaries for the SPEC

9See Section 5 for a conceptual comparison to these approaches.
10Following the paper, we do not adjust PMEvo’s predictions for the IPC
bottleneck. Adjusting only causes minor differences in the metrics.

CPU2017 benchmarks [11] and are covered by our map-
ping.11 From the resulting 577 instruction schemes, we gen-
erate 5,000 dependency-free basic blocks, each consisting
of five randomly sampled instructions. We benchmark their
throughput in instructions per cycles (IPC) on the Zen+ hard-
ware.

Figure 5a shows the IPC prediction accuracy in terms of
mean absolute percentage error (MAPE), Pearson’s corre-
lation coefficient (PCC), and Kendall’s 𝜏𝐾 for each tool. A
high PCC indicates a linear correlation of predictions and
measurements whereas a high 𝜏𝐾 implies that sorting the
instruction sequences by predicted or measured IPC leads to
similar rankings. Both metrics can range between -1 and 1.

The predictions of PMEvo and Palmed share a similar
level of accuracy, with significant correlations but rather
high errors of 28–35%. Our model is substantially more ac-
curate with an error of 6.7% and very strong linear and rank
correlations. The heatmaps in Figure 5 quantify each tool’s
prediction accuracy in more detail. They group the basic
blocks into buckets based on the IPC we observed in the
benchmarks and the predictions of each model. Buckets are
displayed darker the more basic blocks they contain; the
closer the darker buckets are to the diagonal line (orange)
the closer are predictions and observations. The heatmap for
our model, Figure 5d, is notably closer to the diagonal than
PMEvo’s and Palmed’s.

The structure of PMEvo’s mapping differs substantially
from ours: There, most instructions have only a single kind of
µop in their port usage. Our explainable approach captures
structures of the microarchitecture that PMEvo does not
resolve. As shown in Figure 5c, Palmed’s resource model
usually predicts slower executions than what we measure
in microbenchmarks. As Palmed depends on assumptions in
its measurement infrastructure, we cannot evaluate whether

11The Palmed model includes data for almost all of the instruction schemes
we extracted from uops.info.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Fabian Ritter and Sebastian Hack

its model would be more consistent with our throughput
measurements if it used our microbenchmarking setup.

5 Related Work
Aside from uops.info [1], which the previous sections discuss
extensively, two other works in the field of port mapping in-
ference are comparable. PMEvo [29] has even weaker require-
ments on performance counters than this approach, using
only time measurements. This flexibility comes at the cost
of explainability: PMEvo uses an evolutionary algorithm to
optimize candidate port mappings such that they accurately
model the performance of a fixed set of microbenchmarks.
In contrast to our approach, there is no tangible justification
for the entries of port mappings found by PMEvo. PMEvo
uses a heuristically chosen set of benchmarks where complex
interactions between instructions might not be represented.

Like our approach, Palmed [14] takes inspiration from
the uops.info algorithm: They proceed in two phases, first
finding a core mapping for a small instruction set and then
inferring models for all other instructions based on the core
mapping. Rather than identifying blocking instructions with
a µop counter, they select basic instructions for their core
mapping heuristically based on throughput benchmarks. In-
stead of a traditional port mapping, this core mapping (as
well as the final result of Palmed) is a conjunctive mapping
that captures the stress that each instruction puts on various
abstract resources of the processor. Palmed uses (integer) lin-
ear programming to construct a set of abstract resources that
represent possible bottlenecks in the execution of core map-
ping instructions. They further generate for each resource a
kernel of basic instructions that saturates the resource, simi-
lar to how blocking instructions flood their corresponding
set of ports. Palmed then benchmarks every instruction that
is not in the core mapping individually with the saturating
kernels and uses a linear program to compute the pressure
the instruction puts on the corresponding abstract resources.

Besides port sets, Palmed’s resource model inherently rep-
resents other potential bottlenecks like the maximal execu-
tion rate of the frontend, which our approach needs to treat
explicitly. However, conjunctive mappings are challenging
to integrate with existing performance models since the in-
ferred abstract resources have no clear correspondence to
documented aspects of the microarchitecture.

Approaches like Ithemal [28] and Granite [32] use ma-
chine learning to infer instruction-level throughput models.
Among other factors, they model effects of the utilization
of the processor’s functional units. However, as black-box
models, they provide less insight into how instructions are
executed compared to throughput predictors like CQA [30],
llvm-mca [10, 27], OSACA [25], uiCA [3], or Facile [4] with
an explicit port mapping as we infer it.

6 Conclusion
We have shown that per-port µop counters are not necessary
for a uops.info-style port mapping inference algorithm. If
the processor under investigation follows the port mapping
model, we can infer the port usage of instructions efficiently.

Our study of AMD’s Zen+ microarchitecture indicates that
the approach is practical for a large portion of the processor’s
instructions. However, there are practical hindrances like
throughput bottlenecks in parts of the processor, misdoc-
umented performance counters, and complex micro-coded
or non-pipelined instructions. Nevertheless, we uncovered
details of the Zen+ microarchitecture that have, to the best
of our knowledge, not been previously documented. We
inferred the first explainable port mapping for over 1,000
instruction schemes on Zen+ that were out of scope for pre-
vious work and demonstrated its ability to accurately model
performance characteristics of the microarchitecture.

A Artifact
A.1 Abstract
This work is accompanied by an artifact that includes our
prototype implmentation of the proposed port mapping in-
ference algorithm as well as the data sets and results of the
case study in Section 4. In particular, the provided results
include human-readable and machine-readable representa-
tions of the inferred Zen+ port mapping, the PMEvo and
Palmed models used as points of comparison, and the raw
data for Figure 5. We provide the artifact as a public repos-
itory on Github and as an archived virtual machine image
bundled with all software dependencies that can be run using
Vagrant and VirtualBox.

A.2 Artifact check-list (meta-information)
• Algorithm: Port Mapping Inference
• Run-time environment: Python 3, Linux, VirtualBox
• Hardware: x86-64
• Disk space required: less than 10 GB
• Publicly available: https://github.com/cdl-saarland/pmtestb

ench
• Code licenses: MIT
• Archived: https://zenodo.org/doi/10.5281/zenodo.10794887

A.3 Description
A.3.1 How to access. The artifact can be accessed from
the URLs listed in the above check-list. The source code and
data is available via the Github URL whereas the virtual
machine image that bundles source code and data with the
necessary dependencies is available at the archive URL.

A.3.2 Hardware dependencies. The virtual machine im-
age is built for x86-64 processors.

https://github.com/cdl-saarland/pmtestbench
https://github.com/cdl-saarland/pmtestbench
https://zenodo.org/doi/10.5281/zenodo.10794887

Explainable Port Mapping Inference with Sparse Performance Counters ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

A.4 Installation
The virtual machine image comes with installation instruc-
tions in the artifact_usage.md file. The source code has in-
stallation instructions in its README.md file.

A.5 Evaluation and expected results
The virtual machine image comes with a suggested workflow
for evaluating the artifact in the artifact_usage.md file. This
workflow includes reproducing the heatmaps of Figure 5.

References
[1] Andreas Abel and Jan Reineke. uops.info: Characterizing latency,

throughput, and port usage of instructions on intel microarchitectures.
In Iris Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck,
editors, Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, pages 673–686.
ACM, 2019.

[2] Andreas Abel and Jan Reineke. nanobench: A low-overhead tool for
running microbenchmarks on x86 systems. In 2020 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 34–46. IEEE, 2020.

[3] Andreas Abel and Jan Reineke. uiCA: Accurate throughput prediction
of basic blocks on recent intel microarchitectures. In Lawrence Rauch-
werger, Kirk W. Cameron, Dimitrios S. Nikolopoulos, and Dionisios N.
Pnevmatikatos, editors, ICS ’22: 2022 International Conference on Su-
percomputing, Virtual Event, June 28 - 30, 2022, pages 33:1–33:14. ACM,
2022.

[4] Andreas Abel, Shrey Sharma, and Jan Reineke. Facile: Fast, accurate,
and interpretable basic-block throughput prediction. In IEEE Interna-
tional Symposium on Workload Characterization, IISWC 2023, Ghent,
Belgium, October 1-3, 2023, pages 87–99. IEEE, 2023.

[5] AMD. Software Optimization Guide for AMD Family 17h Processors.
2017.

[6] AMD. Processor Programming Reference for AMD Family 17h Models
01h,08h, Revision B2 Processors. 2019.

[7] AMD. Processor Programming Reference (PPR) for AMD Family 19h
Model 21h, Revision B0 Processors. 2021.

[8] ARM. ARM Neoverse V2 core software optimization guide. https://de
veloper.arm.com/documentation/PJDOC-466751330-593177/r0p2/,
2022. Revision r0p2, Accessed: March 1, 2024.

[9] ARM. ARM Neoverse V2 core technical reference manual. https:
//developer.arm.com/documentation/102375/0002/, 2022. Revision
r0p2, Accessed: March 1, 2024.

[10] Andrea Di Biagio. llvm-mca: A static performance analysis tool. https:
//lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html, 2018.
Accessed: 2023-08-22.

[11] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. Spec
cpu2017: Next-generation compute benchmark. In Companion of the
2018 ACM/SPEC International Conference on Performance Engineering,
ICPE ’18, pages 41–42. ACM, 2018.

[12] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In E. Allen
Emerson and A. Prasad Sistla, editors, Computer Aided Verification,
12th International Conference, CAV 2000, Chicago, IL, USA, July 15-19,
2000, Proceedings, volume 1855 of Lecture Notes in Computer Science,
pages 154–169. Springer, 2000.

[13] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient
SMT solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 14th In-
ternational Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,

Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer, 2008.

[14] Nicolas Derumigny, Théophile Bastian, Fabian Gruber, Guillaume
Iooss, Christophe Guillon, Louis-Noël Pouchet, and Fabrice Rastello.
PALMED: throughput characterization for superscalar architectures. In
Jae W. Lee, Sebastian Hack, and Tatiana Shpeisman, editors, IEEE/ACM
International Symposium on Code Generation and Optimization, CGO
2022, Seoul, Korea, Republic of, April 2-6, 2022, pages 106–117. IEEE,
2022.

[15] Agner Fog. The microarchitecture of Intel, AMD, and VIA CPUs.
https://www.agner.org/optimize/microarchitecture.pdf, 2022.
Accessed: 2023-08-22.

[16] Agner Fog. Instruction tables: Lists of instruction latencies, through-
puts and micro-operation breakdowns for Intel, AMD and VIA CPUs.
https://www.agner.org/optimize/instruction_tables.pdf, 2023.
Accessed: 2023-08-22.

[17] Fujitsu. A64FX microarchitecture manual. https://github.com/fujitsu
/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.8
.1.pdf, 2022. Version 1.8.1, Accessed: March 1, 2024.

[18] Fujitsu. A64FX pmu events. https://github.com/fujitsu/A64FX/b
lob/master/doc/A64FX_PMU_Events_v1.3.pdf, 2022. Version 1.3,
Accessed: March 1, 2024.

[19] GCC. GCC - scheduling model for AMD Zen microarchitectures.
https://github.com/gcc-mirror/gcc/blob/15b83b69ca99d9764307
5776ba94f2dd1f05b46e/gcc/config/i386/znver.md, 2023. Accessed:
2023-08-22.

[20] Thomas Gruber, Jan Eitzinger, Georg Hager, and Gerhard Wellein.
LIKWID, November 2023. https://doi.org/10.5281/zenodo.10105559.

[21] John L Hennessy and David A Patterson. Computer Architecture: A
Quantitative Approach – 6th Edition. Elsevier, 2017.

[22] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual.
2023.

[23] Intel. Performance monitoring events for 12th and 13th generation
intel core processors. https://perfmon-events.intel.com/ahybrid.html,
2024. Accessed: March 1, 2024.

[24] Dougall Johnson. Apple M1 microarchitecture research. https://doug
allj.github.io/applecpu/firestorm.html, 2021. Accessed: 2023-08-22.

[25] Jan Laukemann, Julian Hammer, Johannes Hofmann, Georg Hager, and
Gerhard Wellein. Automated instruction stream throughput prediction
for Intel and AMD microarchitectures. In 2018 IEEE/ACM Performance
Modeling, Benchmarking and Simulation of High Performance Computer
Systems (PMBS), pages 121–131. IEEE, 2018.

[26] LLVM. LLVM - scheduling model for AMD Zen microarchitectures.
https://github.com/llvm/llvm-project/blob/4eb1f1fab35d0f386b458
bf1da4396bbeb00b04f/llvm/lib/Target/X86/X86ScheduleZnver1.td,
2023. Accessed: 2023-08-22.

[27] LLVM. llvm-mca - LLVM machine code analyzer (command guide). ht
tps://llvm.org/docs/CommandGuide/llvm-mca.html, 2023. Accessed:
2023-08-22.

[28] Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin.
Ithemal: Accurate, portable and fast basic block throughput estimation
using deep neural networks. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 4505–4515, Long Beach, California, USA, 09–15 Jun
2019. PMLR.

[29] Fabian Ritter and Sebastian Hack. PMEvo: Portable inference of port
mappings for out-of-order processors by evolutionary optimization. In
Alastair F. Donaldson and Emina Torlak, editors, Proceedings of the 41st
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020,
pages 608–622. ACM, 2020.

[30] Andres Charif Rubial, Emmanuel Oseret, Jose Noudohouenou, William
Jalby, and Ghislain Lartigue. CQA: A code quality analyzer tool at

https://github.com/cdl-saarland/pmtestbench/blob/main/vagrant-setup/artifact_usage.md
https://github.com/cdl-saarland/pmtestbench/blob/main/README.md
https://github.com/cdl-saarland/pmtestbench/blob/main/vagrant-setup/artifact_usage.md
https://developer.arm.com/documentation/PJDOC-466751330-593177/r0p2/
https://developer.arm.com/documentation/PJDOC-466751330-593177/r0p2/
https://developer.arm.com/documentation/102375/0002/
https://developer.arm.com/documentation/102375/0002/
https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.8.1.pdf
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.8.1.pdf
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_Microarchitecture_Manual_en_1.8.1.pdf
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_PMU_Events_v1.3.pdf
https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_PMU_Events_v1.3.pdf
https://github.com/gcc-mirror/gcc/blob/15b83b69ca99d97643075776ba94f2dd1f05b46e/gcc/config/i386/znver.md
https://github.com/gcc-mirror/gcc/blob/15b83b69ca99d97643075776ba94f2dd1f05b46e/gcc/config/i386/znver.md
https://perfmon-events.intel.com/ahybrid.html
https://dougallj.github.io/applecpu/firestorm.html
https://dougallj.github.io/applecpu/firestorm.html
https://github.com/llvm/llvm-project/blob/4eb1f1fab35d0f386b458bf1da4396bbeb00b04f/llvm/lib/Target/X86/X86ScheduleZnver1.td
https://github.com/llvm/llvm-project/blob/4eb1f1fab35d0f386b458bf1da4396bbeb00b04f/llvm/lib/Target/X86/X86ScheduleZnver1.td
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://llvm.org/docs/CommandGuide/llvm-mca.html

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Fabian Ritter and Sebastian Hack

binary level. In 21st International Conference on High Performance
Computing, HiPC 2014, Goa, India, December 17-20, 2014, pages 1–10.
IEEE Computer Society, 2014.

[31] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia,
and Vijay A. Saraswat. Combinatorial sketching for finite programs.
In John Paul Shen and Margaret Martonosi, editors, Proceedings of the
12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA,
October 21-25, 2006, pages 404–415. ACM, 2006.

[32] Ondrej Sýkora, Phitchaya Mangpo Phothilimthana, Charith Mendis,
and Amir Yazdanbakhsh. GRANITE: A graph neural network model
for basic block throughput estimation. pages 14–26, 2022.

[33] Robert M Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units. IBM Journal of Research and Development, 11(1):25–33,
1967.

[34] Jan Treibig, Georg Hager, and Gerhard Wellein. LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environments. In
Wang-Chien Lee and Xin Yuan, editors, 39th International Conference
on Parallel Processing, ICPP Workshops 2010, San Diego, California, USA,
13-16 September 2010, pages 207–216. IEEE Computer Society, 2010.

[35] WikiChip. Zen - microarchitectures - AMD. https://en.wikichip.org/
wiki/amd/microarchitectures/zen, 2023. Accessed: 2023-08-22.

[36] WikiChip. Zen+ - microarchitectures - AMD. https://en.wikichip.org/
wiki/amd/microarchitectures/zen%2B, 2023. Accessed: 2023-08-22.

https://en.wikichip.org/wiki/amd/microarchitectures/zen
https://en.wikichip.org/wiki/amd/microarchitectures/zen
https://en.wikichip.org/wiki/amd/microarchitectures/zen%2B
https://en.wikichip.org/wiki/amd/microarchitectures/zen%2B

	Abstract
	1 Introduction
	2 Background
	2.1 Out-of-Order Microarchitectures
	2.2 The Port Mapping Model
	2.3 The uops.info Algorithm

	3 Inferring Port Mappings Without Per-Port µop Counters
	3.1 Counting µops that Cannot Avoid Blocked Ports
	3.2 Identifying Unique Blocking Instructions
	3.3 Counter-Example Guided Port Mapping Inference
	3.4 Handling Pipeline Bottlenecks
	3.5 Supported Microarchitectures

	4 Case Study: The AMD Zen+ Architecture
	4.1 Identifying Blocking Instruction Candidates
	4.2 Filtering Equivalent Blocking Instructions
	4.3 Computing a Mapping for the Blocking Instructions
	4.4 Computing the Remaining Port Mapping
	4.5 Prediction Accuracy – Port Mapping

	5 Related Work
	6 Conclusion
	A Artifact
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results

	References

