
Non-interference Preserving Optimising Compilation

JULIAN ROSEMANN, Saarland University, Saarland Informatics Campus, Germany

SEBASTIAN HACK, Saarland University, Saarland Informatics Campus, Germany

DEEPAK GARG,Max Planck Institute for Software Systems, Saarland Informatics Campus, Germany

To protect security-critical applications, secure compilers have to preserve security policies, such as non-

interference, during compilation. The preservation of security policies goes beyond the classical notion of

compiler correctness which only enforces the preservation of the semantics of the source program. Therefore,

several standard compiler optimisations are prone to break standard security policies like non-interference.

Existing approaches to secure compilation are very restrictive with respect to the compiler optimisations that

they permit or to the security policies they support because of conceptual limitations in their formal setup.

In this paper, we present hyperproperty simulations, a novel framework to secure compilation that models

the preservation of arbitrary 𝑘-hyperproperties during compilation and overcomes several limitations of

existing approaches, in particular it is more expressive and more flexible. We demonstrate this by designing

and proving a generic non-interference preserving code transformation that can be applied on different

optimisations and leakage models. This approach reduces the proof burden per optimisation to a minimum. We

instantiate this code transformation on different leakage models with various standard compiler optimisations

that could be handled in a very limited and less modular way (if at all) by existing approaches. Our results are

formally verified in the Rocq theorem prover.

CCS Concepts: • Security and privacy→ Formal methods and theory of security; • Software and its
engineering→ Compilers; • Theory of computation→ Logic and verification.

Additional Key Words and Phrases: non-interference, secure compilation, hyperproperty preservation

ACM Reference Format:
Julian Rosemann, Sebastian Hack, and Deepak Garg. 2025. Non-interference Preserving Optimising Compila-

tion. Proc. ACM Program. Lang. 9, OOPSLA2, Article 323 (October 2025), 26 pages. https://doi.org/10.1145/
3763101

1 Introduction
The preservation of security policies goes beyond the classical notion of compiler correctness

which only enforces the preservation of the program’s semantics. In contrast to the semantics,

which is defined by individual traces, many security properties are characterized by two or more

traces. For example, indistinguishability
1
-based properties like non-interference are characterized

by two traces while robust declassification [Cecchetti et al. 2017] as well as absence of speculative

side-channel leaks [Cheang et al. 2019] are characterized by four traces. Additionally, attacker

models usually allow for more observations than what is considered observable behaviour by the

semantics (e.g. cache accesses, memory addresses, timing information). Thus, if the source program

1
As the term observational equivalence is used for both compiler correctness and specific security policies, we use the term

indistinguishability for the latter to avoid ambiguity.

Authors’ Contact Information: Julian Rosemann, Saarland University, Saarland Informatics Campus, Saarbrücken, Saarland,

Germany, jtrosemann@cs.uni-saarland.de; Sebastian Hack, Saarland University, Saarland Informatics Campus, Saarbrücken,

Saarland, Germany, hack@cs.uni-saarland.de; Deepak Garg, Max Planck Institute for Software Systems, Saarland Informat-

ics Campus, Saarbrücken, Saarland, Germany, dg@mpi-sws.org.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART323

https://doi.org/10.1145/3763101

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

https://orcid.org/0009-0000-7991-8962
https://orcid.org/0000-0002-3387-2134
https://orcid.org/0000-0002-0888-3093
https://doi.org/10.1145/3763101
https://doi.org/10.1145/3763101
https://orcid.org/0009-0000-7991-8962
https://orcid.org/0000-0002-3387-2134
https://orcid.org/0000-0002-0888-3093
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763101

323:2 Julian Rosemann, Sebastian Hack, and Deepak Garg

fulfils some desired security policy, classical compiler correctness is not enough to guarantee the

preservation of this security policy, and indeed several standard compiler optimisations (e.g. dead

code elimination) are prone to break standard security policies. Compilation with the aim to

preserve security policies is called secure compilation.

{𝑎}

𝑎 ¬𝑎

1a: 𝑋 ← 1 rm id
2a: 𝑋 ← 2 id
3a: 𝑎 ← 𝑋

1b: 𝑋 ← 1 id
2b: 𝑎 ← 𝑋

3b: 𝑋 ← 2 rm id

(a) Dead-code elimination can
destroy non-interference in secret
branches.

{𝑎}

𝑍 ¬𝑍

1a: 𝑋 ← 1 rm
2a: 𝑋 ← 2 id
3a: 𝑎 ← 𝑋

1b: 𝑋 ← 1 id
2b: 𝑎 ← 𝑋

3b: 𝑋 ← 2 rm

(b) Dead-code elimination on
a public branch preserves non-
interference.

{𝑎,𝑏}

𝑎 ¬𝑎

1a: 𝑋 ← 1 rm
2a: 𝑌 ← 2 id
3a: 𝑎 ← 𝑌

1b: 𝑋 ← 1 rm
2b: 𝑌 ← 2 id
3b: 𝑏 ← 𝑌

(c) Our approach is able to
prove non-interference preser-
vation for dead-code elimina-
tion on secret branches when
possible.

Fig. 1. Dead-code elimination in three different example programs. The set at the join denotes the live-out
set. Statements marked with rm are eliminated by dead code elimination, and so is their leakage. We use id
to mark statements whose leakage is preserved through compilation. All other statements are not leaky.

Consider the example in Fig. 1a and assume that lower-case letters denote secret and upper-case

letters denote public variables. As a simple example leakage model, we assume that the attacker can

observe the values written to public variables. The program as-is exhibits non-interference which

here means that the attacker cannot deduce the value of the secret input variable 𝑎 from what they

can observe on any two executions with equal public inputs: Regardless of whether 𝑎 or ¬𝑎 holds,

the leakage trace is always (︀𝑋 ← 1, 𝑋 ← 2⌋︀. A correct compiler might soundly eliminate the dead
assignments at lines 1a and 3b. However, the resulting program is not non-interfering: For 𝑎 = true
the leakage trace is (︀𝑋 ← 2⌋︀, while for 𝑎 = false the leakage trace is (︀𝑋 ← 1⌋︀. Thus, the attacker can
deduce the value of 𝑎 which means standard dead code elimination can break non-interference.

Now, assume a different leakage model where the attacker is only capable of observingwhich vari-
able is written but not its value: Here, both the untransformed program (leakage traces are (︀𝑋,𝑋 ⌋︀)
and the transformed program (leakage traces are (︀𝑋 ⌋︀) exhibit non-interference. Consequently, the
choice of the leakage model influences whether a transformation preserves non-interference.

Existing Approaches. One approach to secure compilation is to directly relate source and target

leakage: The Jasmin compiler [Almeida et al. 2017] accompanies any compilation step with a global
2

leakage transformer : a function 𝑓 that takes a source leakage event and returns a target leakage

event. Assuming equal leakage in the source this implies equal leakage in the target, as any target

leakage event 𝑙 ′ equals 𝑓 𝑙 for a corresponding source leakage 𝑙 .

Although sufficient for a non-optimising compiler, this approach is prohibitively strict: Fig. 1b

shows that there is no global leakage transformer for dead code elimination. Dead code elimination

removes 𝑋 ← 1 on the left branch while keeping the assignment to 𝑋 on the right branch. Thus,

there is no target leakage on the left at that point while on the right the target leakage is still the

same as in the source program. This discrepancy cannot be reflected by a global leakage transformer.

2
As we will later introduce local leakage transformer we call the originally proposed leakage transformer global.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

Non-interference Preserving Optimising Compilation 323:3

src

tgt

≈ ≈

. . .

(a)

src1

tgt1

src2

tgt2

≈ ≈

≈ ≈

. . .

. . .

≡ ≡

≡ ≡

(b)

. . .

. . .

. . .

.
.
.

.
.
.

(c)

. . .

. . .

. . .

. . .

(d)

. . .

. . .

. . .

. . .

leak-free

leak-free
leaky

leaky

(e)

Fig. 2. (a) A simulated step between a source and a target trace: Any step in the source trace is simulated
by multiple steps in the target trace, preserving some simulation relation as invariant. (b) A CT-simulation
diagram where a single source step on two source traces is simulated by multiple steps in the two target traces.
(c) A 𝑘-simulation, the dash-dotted boxes denote the sets of related states across 𝑘 traces. (d) A hyperproperty
simulation. (e) An indistinguishability simulation.

But in this example the transformations are preserving non-interference: Since the branch predicate

is public, we know that the two traces considered for non-interference both take the same branch

and thus both target traces exhibit the same leakage. Similar examples exist for all optimisations

that change the leakage based on the location of the modified code.

To support more optimisations, the setup of classical simulation proofs (see Fig. 2a) has been

extended to simulations of source and target trace pairs: Barthe et al. introduce CT-simulations,

allowing for simulation proofs of the preservation of cryptographic constant-time
3
(in short:

CT) [Barthe et al. 2018]. The intuition is visualised in Fig. 2b: Source and target traces are replaced

by two pairs of traces, which correspond to the two traces with public-equal inputs. The CT-

simulation now consists of three simulations: A (lockstep) simulation between the source traces, a

(lockstep) simulation between the target traces, and a (less restricted) simulation between each

source trace and its related target trace with equal inputs—on each computation step one has to

ensure that all these relations are preserved. Several optimisations have been proven to preserve

CT using this technique [Barthe et al. 2020, 2018; Shivakumar et al. 2022].

However, lockstep simulations forbid any branches on secrets, and thus CT-simulations cannot

be used for preserving non-interference in the presence of secret branches (as in Fig. 1c). Although

CT is predominant, recent work has shown that retaining secret branches and using a secure

control flow balancing can be beneficial for performance [Winderix et al. 2024]. To the best of our

knowledge there is no proof of non-interference for a flow-sensitive optimisation on a leakage

model that allows (some) secret branches. Additionally, CT-simulations are complex to work with

because one has to prove a simulation on two source and two target traces. For instance, in prior

work [Barthe et al. 2020] that discusses the implementation of CT-simulations in CompCert, the

authors mention that they use CT-simulations as sparsely as possible.

Our Contribution. In this paper, we present hyperproperty simulations that are more expressive

and more modular than CT-simulations. First, our technique does not require that all branch

predicates are public like CT-simulations. Second, our technique allows for modularising the proofs

such that the proof burden per optimisation is just a specific simulation proof on one source and
one target trace. To this end, we introduce several generalisations of simulations that build on each

other (see Fig. 2). First, we generalise standard stuttering simulations (a)
4
(acting on one source and

one target trace) to 𝑘-simulations acting on an arbitrary number (𝑘) of traces (c). Here, steps are as

3
Note that CT can be interpreted as a special case of non-interference, where in particular any branching decision is leaked.

4
Sometimes also called well-founded or “star” simulations.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

323:4 Julian Rosemann, Sebastian Hack, and Deepak Garg

unrestricted as possible: For every step from a related set of related states to another, any trace

may make an arbitrary number of steps, but there has to be a guarantee of eventual progress on all
traces. As a generalisation to CT-simulations and as a special case of 𝑘-simulations, we introduce

hyperproperty simulations (d): These consist of a (𝑘-)source relation, a (𝑘-)target relation and a

relation between a source and a target trace. Together, these form a 2𝑘-simulation in the above sense.

This combination of different simulations is crucial for the modularisation of the proofs. Finally, to

model indistinguishability properties such as non-interference, we introduce indistinguishability
simulations (e) as another special case of a hyperproperty simulations: We exploit the assumption

of non-interference in the source traces to jump from a pair of related leakage events to the next,

allowing for a concise proof argument. This approach even works in the presence of secret branches,

making hyperproperty simulations more expressive than CT-simulations.

Consider Fig. 1c for an illustration of our non-interference preservation argument: We assume

non-interference on the source traces, thus leakage events always occur in form of pairs. It is

sufficient to show that on every such pair the source leakage equality implies target leakage equality.

At the lines (1𝑎, 1𝑏) the leakage is eliminated in the target traces at both program points, and at the

lines (2𝑎, 2𝑏) the target traces will have the same leakage as the source traces at that point—which is
equal by assumption. Since these are the only occurrences of leakage, the transformation preserves

non-interference. In our approach such an annotation of a local leakage transformer (id or rm in
this case) is the only thing we need for proving non-interference preservation of an optimisation.

Coming up with such local leakage transformers is typically straightforward.

Our approach is general enough to handle CT and simplifies CT proofs significantly: We show

that in the absence of secret branches (which is a prerequisite for CT) any optimisation that adheres

to a local leakage transformer annotation preserves non-interference. Adherence to a local leakage

transformer annotation means that the leakage transformers exactly describe the leakage of the

target trace. Showing the adherence to the local leakage transformers is a source-target simulation

proof which typically is significantly simpler than CT-simulation proofs which involve four traces.

Consider the example program in Fig. 1b. All traces with public-equal inputs will take the same

branch direction. Let us assume they take the one on the right. Then, in the leakage model of

CT which leaks all branch targets, the pairs of leakage events are (0, 0) (0 indicates the branch
predicate, leaking “right”) and (1𝑏, 1𝑏), and (3𝑏, 3𝑏) (both leaking “write on 𝑋 ”). Being at the same

program point implies having the same local leakage transformer which implies CT preservation.

Finally, we introduce NIFTY
5
, a non-interference preserving code transformation framework.

NIFTY provides a generic proof of indistinguishability that is parametrised by an optimisation, a

leakage model, and a proof of consistency of the corresponding local leakage transformers. As

mentioned above, this proof is a simple source-target simulation in contrast to a more complicated

CT-simulation. NIFTY’s core idea is to optimise code inside secret branches aggressively, but

check—using the local leakage transformer annotations—at every control flow rejoin whether

the optimisation violated indistinguishability. If so, NIFTY rewinds the optimisation for this code

section and uses a less-aggressive fallback pass. As it was illustrated in Fig. 1a, it depends on the

leakage model how many branches are backtracked.

We prove NIFTY to be non-interference preserving using an indistinguishability simulation.

The proof holds for any leakage model. The optimisation has to provide data flow transformers

generating a local leakage transformer annotation and a proof that the target leakage indeed adheres

to this annotation. Additionally a fallback pass with a global leakage transformer is required—for

many optimisations this is just the identity function.

5
NIFTY is short for “non-interference facilitating transformations for your optimisations”.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

Non-interference Preserving Optimising Compilation 323:5

0 1 2 3

0

1

2

syncStep (0

0

0

) = (1

0

0

)

syncStep (1

0

0

) = (0

0

1

)

syncStep (1

0

1

) = (2

2

1

)

maxStall (0

0

0

) 0 = 0

maxStall (0

0

0

) 1 = 2

maxStall (0

0

0

) 2 = 1

Fig. 3. Three traces with synchroniser functions acting on it. The states connected by dashed lines are related.

We apply NIFTY on dead code elimination, common branch factorisation, and a linearisation pass.

The latter is similar to the only pass in [Barthe et al. 2020] using a CT-simulation and whose CT

proof was described as a “not especially pleasant” by the authors. Due to the much more expressive

language used there, a direct comparison is not meaningful. Our technique could be used to simplify

the proof in their setup as well: Using local leakage transformers, the simulation on two source and

two target traces could be reduced to just a simulation on a source and a target trace.

To summarise, our contributions are:

● We develop a novel framework for hyperproperty preservation proofs. We exploit that

many relevant hyperproperties can be seen as simulations and introduce the notion of

𝑘-simulations to express simulations on an arbitrary number of traces. We show how to

compose 𝑘-simulations to construct complex simulations from simpler ones. Based on this,

we introduce hyperproperty simulations to compose hyperproperty preservation proofs from

a source-target compilation simulation and a simulation on the source traces.

● We instantiate this general framework to prove the preservation of indistinguishability

properties such as non-interference. We capture this in the notion of indistinguishability
simulation which is a hyperproperty simulation that consists of a source-target leakage

simulation and indistinguishability on the source traces. This way, our approach allows for

separating compilation-specific arguments from security policy specific arguments which

is not directly possible in related work. This setup simplifies cryptographic constant-time

preservation proofs significantly and enables, for the first time, proofs of more general notions

of non-interference.

● Many compiler optimisations are in general not non-interference preserving. To address

this, we present the non-interference preserving code transformation framework NIFTY.
NIFTY can be instantiated with an optimisation and a leakage model. NIFTY checks the

results of the optimisation and undoes them in code regions where the optimisation broke

non-interference. We prove NIFTY correct independent of the concrete optimisation and

leakage model, assuming that a source-target simulation proof for the specific optimisation

and leakage model is given.

Our contributions are formalised and proven correct in the Rocq theorem prover.

2 Key Ideas
This section gives an overview over the key ideas of our approach. First, we give an intuition for

the different simulation notions that we introduce. Based on these notions, we sketch how proofs of

CT-preservation can be reduced to a simple source-target simulation proof. Finally, we explain the

core idea of our code transformation framework NIFTY, allowing for non-interference preservation

even in the presence of secret branches.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

323:6 Julian Rosemann, Sebastian Hack, and Deepak Garg

𝑘-simulations and synchronisers. A standard simulation proof (see Fig. 2a) essentially ensures an

invariant between a source and a target trace with each step. If the simulation at some point kept

stalling on the target trace, we could not prove anything for the remaining trace. Therefore, it is

necessary to guarantee progress in the target. The standard approach is to use a ranking function

that decreases whenever one trace stalls [Namjoshi 1997].

We introduce a new technique to apply this idea to an arbitrary number 𝑘 of traces, where we

have to guarantee progress on all traces. We use lane indices of type N<𝑘 to identify individual traces

and positions of type N𝑘
to point to a specific point in each trace, i.e. the natural number represents

how many steps have been processed since the initial state. We synchronise 𝑘 traces using a pair of

functions (syncStep,maxStall) acting on positions and lane indices: Consider Fig. 3. The function

syncStep ∶N𝑘 → N𝑘
returns for every position the number of steps any individual lane does until

the next synchronised position is reached. For example, at position (1, 0, 0) it returns (0, 0, 1), thus
the next synchronised position is (1, 0, 1). For any specific lane maxStall ∶N𝑘 → N<𝑘 → N denotes

how many synchronised steps the lane is allowed to stall until there is progress. For example,

at position (0, 0, 0) lane 1 is allowed to stall twice, while lane 2 is only allowed to stall once and

lane 0 is not allowed to stall at all. If syncStep observes the restrictions given by maxStall, eventual
progress on all lanes is guaranteed, i.e. there is an infinite stream of synchronised positions. We

then call (syncStep,maxStall) a (𝑘)-synchroniser.
Assuming a𝑘-tuple of traces and a relation ≈, we say ≈ is a𝑘-simulation if there is a𝑘-synchroniser,

such that ≈ holds on the start states (at position 0
𝑘
) and is preserved over any synchronised step

from a synchronised position to another (see Fig. 2c).

Combining 𝑘-simulations to hyperproperty simulations. This definition of a 𝑘-simulation allows

us to combine several 𝑘-simulations, which is crucial for the modularisation of the non-interference

preservation proof. Figures 4a and 4b give the basic intuition for this step (with 𝑘 = 2): We assume

a 𝑘-simulation on the source traces (depicted on top in (a), horizontally) and for any source trace

a simulation to its target trace (depicted below in (a), vertically). The 𝑘-simulation on the source

traces can now be extended to the target traces by matching equal positions on the source traces

and fetching the associated target position from the source-target simulation on the specific trace

(see Fig. 4b), resulting in a 2𝑘-simulation. Existing techniques for hyperproperty simulations need

to consider all 𝑘 traces at once which can complicate proofs significantly. Our approach allows us to

prove the invariant between a source and a target trace and the invariant between two source traces

separately, and then combine them to conclude the invariant on the two target traces, reducing the

proof effort.

Indistinguishability simulations. We apply the idea from the previous paragraph to build indis-
tinguishability simulations from two orthogonal components: The horizontal component is the

indistinguishability of the source traces and the vertical component is the local leakage transformer

simulation between a source and a target trace.

We say two traces 𝑡0, 𝑡1 are indistinguishable if for any finite prefix of 𝑡0 there is a finite prefix of

𝑡1 such that both emit the same sequences of leakages and vice versa. In other words, the leakage of

one trace is simulated on the other
6
. We can model this as a 2-simulation: The simulation relation

is leakage equality and we define the synchroniser using a case distinction:
7

● either there is further leakage on both traces, then it jumps to that position,

● or there is no further leakage ever, in which case it is defined as (1, 1).

6
This captures the notion of “coproductive security” as defined in [Bohannon et al. 2009].

7
In general, this synchroniser is not computable. But this is not a problem because we only need it as a proof argument.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

Non-interference Preserving Optimising Compilation 323:7

. . .

. . .

. . .

. . .

. . .

. . .

(a)

. . .

. . .

. . .

. . .

(b)

⟨︀𝑓 ⧹︀

𝑓 𝑙 = 𝑙
′

. . .

leaks 𝑙
′

leaks ⟨︀𝑙⧹︀

(c)

⟨︀⧹︀

𝑙
′
= (︀⌋︀

. . .

leaks 𝑙
′

leaks ⟨︀⧹︀

(d)

. . .

. . .

. . .

. . .

*

*

[] ⟨︀𝑙⧹︀

[] 𝑓0 𝑙

[] ⟨︀𝑙⧹︀

[] 𝑓1 𝑙

(e)

Fig. 4. (a) and (b) show how simulations can be combined if they have a trace in common: The nodes with
the same colour and denote identical states. We extend the horizontal simulation on top to the traces below
using the vertical simulation. (c) and (d) show the local leakage transformer simulation: (c) If there is leakage
𝑙 on source, then the leakage on target 𝑙 ′ should adhere to the annotated transformer 𝑓 . (d) If there is no
leakage on source, then there neither should be any on the target. (e) shows the indistinguishability simulation,
where a simulation on the leakage of the source traces is extended to the target traces using local leakage
transformer simulations.

As there is progress on both traces in either case, we can use maxStall 𝑥 𝑗 = 0 for any position 𝑥

and any lane 𝑗 . This definition ensures leakage equality at every synchronised position.

The second ingredient is a simulation proof between any source trace and its related target trace,

that ensures adherence to the local leakage transformer annotation. This is illustrated in Figs. 4c

and 4d. There are two cases: If a source state 𝑥 emits some leakage 𝑙 , we expect an annotation of a

leakage transformer 𝑓 that maps source leakage events to sequences of target leakage events (see

(c)). The sequence of leakage events of this step on the target trace has to be equal to 𝑓 𝑙 . If 𝑥 is not

leaky, the associated step in the target should not be either (see (d)).

Now, we combine both components to build the indistinguishability simulation (see Fig. 4e).

The indistinguishability assumption (depicted horizontally) ensures that the source leakages are

equal and that we step from one such leakage to another. The local leakage transformer simulation

(depicted vertically) relates source leakages to target leakages by the local leakage transformer

annotations (denoted by 𝑓0 and 𝑓1). If 𝑓0 𝑙 = 𝑓1 𝑙 holds, we can conclude indistinguishability on the

target traces. In particular, this is the case when the functions 𝑓0 and 𝑓1 are equivalent.

Preserving CT. The adherence to a local leakage transformer annotation is sufficient for CT-

preservation: In CT, branching decisions and memory accesses are leaked. This has two con-

sequences: First, source traces on public-equal input are forced to have the same control flow.

Additionally, every program point either always leaks something or never. Both properties together

imply that related leakage events of the indistinguishability simulation are always at the same

program point. Consequently, they have the same local leakage transformer annotation and since

those in turn are applied to the same source leakage, the target leakage is equal as well.

Preserving non-interference. In the general case, as discussed in Fig. 1a, the local leakage transform-

ers of related source leakage events may not be equal. To facilitate this equality, our backtracking

code transformation NIFTY tracks the sequence of the local leakage transformers of individual

branches and checks them for equality. If they are equal the optimisation can go ahead, otherwise a

fallback pass is used—for this particular part of the code.

The programs in Fig. 1 exemplify the three possible cases for a conditional: In program (b) the

branching predicate is public8, thus any two traces with public-equal inputs take the same path.

8
We say a branching predicate is secret if it depends on secret inputs and public otherwise.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

323:8 Julian Rosemann, Sebastian Hack, and Deepak Garg

Here, we can optimise aggressively In the programs (a) and (c), the branching variable is secret, thus
dead code elimination might break non-interference. In (c) the first leaky assignment is deleted on

both branches and the second one is kept on both branches, so non-interference is not violated and

we can keep the result. However, as discussed before, the sequences of local leakage transformers

in case (a) are inconsistent: (︀rm, id⌋︀ ≠ (︀id, rm⌋︀. Thus, we rewind and use a fallback pass that leaves

every leaky assignment intact. The rewinding only affects the code inside of the branch.

Loops with a public predicate in a public context can be optimised aggressively as well, due to

the fact that traces with public-equal inputs will have the same number of iterations. For loops

with a secret predicate or that are in secret context, we have to use the fallback pass by default, as

the track-and-check approach does not work there.

NIFTY is implemented as a higher-order function that takes a leakage model and an optimisation

and its accompanying data flow transformers as inputs. The only proof obligation is a proof that

target traces adhere to the local leakage transformer annotation. By design, each branch can only

be backtracked once, leading to a worst-case runtime of 𝒪(𝑓 (𝑛) + 𝑛 ⋅ 𝑑) where 𝑑 is the depth of

deepest nested secret branch, 𝑛 the size of the program and 𝑓 the runtime function of the applied

optimisation.

3 Generalising Simulations to Hyperproperty Simulations
In this sectionwe build up on the intuition given before and formalise our new notions of simulations.

All of this section is independent of leakage model and the source and target languages.

3.1 𝑘-Simulations and Synchronisers
First, we recall the standard notion of a stuttering simulation. To this end, we fix a type of source

states Stsrc and a type of target states Sttgt and step functions stepsrc
∶ Stsrc → Stsrc and steptgt

∶ Sttgt →
Sttgt. We introduce shared notations using ● as placeholder. For two states 𝑥,𝑦 we write 𝑥 Ð→● 𝑦
to denote step● 𝑥 = 𝑦. We write step

𝑛
● 𝑥 and 𝑥 Ð→𝑛

● 𝑦 for 𝑛 (∈ N) iterated applications of step●.

At this point we do not want to fix a language and its concrete semantics. Instead, we fix an input

type I and program types Prog
src
,Prog

tgt
and assume functions ∐︀⋅, ⋅̃︀● ∶Prog● → I→ St● to project a

program and its input to an initial state. For states 𝑥,𝑦 and a list of states 𝑎 we write 𝑥
𝑎ÐÐ→∗● 𝑦 if the

elements of 𝑎 form a sequence of steps from 𝑥 to 𝑦 (including 𝑥 , excluding 𝑦). The last state is not

needed we just write 𝑥
𝑎ÐÐ→∗● . Note that the totality of step● implies that every pair of a program 𝑝

and an input 𝑖 gives rise to an infinite sequence of states, called the trace of 𝑝 and 𝑖 . We say 𝑎 is a

trace prefix for 𝑝 and 𝑖 if ∐︀𝑝, 𝑖̃︀●
𝑎ÐÐ→∗● holds.

Definition 3.1 (Stuttering Simulation). A relation ≈ ∶ Stsrc → Sttgt → P9 is a stuttering

simulation with respect to the two functions syncStepSt ∶ Stsrc → N and maxStallSt ∶ Stsrc → N on
programs 𝑝 ∶Prog

src
and 𝜋 ∶Prog

tgt
and input 𝑖 ∶ I if

● ∐︀𝑝, 𝑖̃︀src ≈∐︀𝜋, 𝑖̃︀tgt holds, and
● for any source step 𝑥 Ð→ 𝑦 and any target states 𝜉,𝜐 such that 𝑥 ≈ 𝜉 , two conditions are met:
– if 𝜉 Ð→syncStepSt𝑥 𝜐, then 𝑦 ≈𝜐,
– if syncStepSt𝑥 = 0, then maxStallSt𝑥 > maxStallSt𝑦.

The necessity of the last requirement follows the same intuition as was outlined in Section 2.

We call the special case where syncStepSt is constantly 1 a lockstep simulation. In this case no

maxStallSt function has to be specified, as the last condition is trivially fulfilled.

9P denotes the type of propositions.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

Non-interference Preserving Optimising Compilation 323:9

Our generalisation to 𝑘 lanes takes a similar form: As outlined in Section 2, we require a function

syncStep ∶N𝑘 → N𝑘
that describes the size of the synchronised step and a function maxStall ∶N𝑘 →

N<𝑘N𝑘
that is used to ensure eventual progress on every lane. To formulate the condition for

eventual progress, we first need some auxiliary definitions. We define an iterated version of

syncStep that takes a natural number 𝑛 ∈ N and a position m ∈ N𝑘
and returns the position after 𝑛

synchronised steps on m (where "+" is interpreted component-wise):

syncStep
● ∶ N→ N𝑘 → N𝑘

syncStep
0m = m

syncStep
𝑛+1m = syncStep𝑛 (m + syncStepm) .

We introduce the notion of synchronised positions—the positions that are reachable by synchronised

steps.

Definition 3.2. We say n ∈ N𝑘 is synchronised with respect to syncStep and we write syncedn if
● n = 0𝑘 , or
● there is a synchronised position m ∈ N𝑘 such that n = m + syncStepm.

Using these definitions we formalise the relationship between syncStep and maxStall that guar-

antees eventual progress on all lanes, a property which is commonly called fairness.

Definition 3.3. The functions (syncStep,maxStall) form a (𝑘-)synchroniser if for any synchro-
nised position 𝑛 ∈ N𝑘 and any lane 𝑗 we have

𝑛 𝑗 < (syncStep1+maxStall𝑛 𝑗 𝑛)𝑗 (fairness).

The strict inequality in Definition 3.3 implies that there is always eventually progress on all

lanes and thus every possible position is caught up eventually.

Properties on 𝑘-tuples of traces (for a fixed 𝑘 ∈ N) are commonly called hyperproperties. We follow

this convention and analogously use the term hypertrace for 𝑘-tuples of traces as well as hyperstate
for 𝑘-tuples of states. Additionally, we use the term hypersequence to refer to a 𝑘-tuple of (finite) lists
of states. Synchronisers allow us to define steps from one synchronised position on a hypertrace to

the next. We call these steps synchronised steps. We call the components of hypertraces lanes and
we use subscripts ⋅𝑗 to access the 𝑗th entry on any kind of tuple. We overload the Ð→ notation in

all its variants for hyperstates and hypersequences and we overload ∐︀⋅, ⋅̃︀● for tuples of programs

and inputs. Furthermore, we define ⋃︀ ⋅ ⋃︀ ∶(︀St●⌋︀𝑘 → N𝑘
to compute the component-wise length of the

respective hypersequences.

Definition 3.4 (Synchronised Step). Assume a 𝑘-synchroniser 𝑆 = (syncStep,maxStall). Let
𝑝 be a 𝑘-tuple of programs, let 𝑖 be a 𝑘-tuple of inputs and 𝑎 ∶(︀St●⌋︀𝑘 be a hypersequence. We write

∐︀𝑝, 𝑖̃︀●
𝑎Ð→∗𝑆→ if synced𝑆 ⋃︀𝑎⋃︀ holds and we have ∐︀𝑝 𝑗 , 𝑖 𝑗 ̃︀●

𝑎 𝑗ÐÐ→∗● for every lane 𝑗 . In this case, we say 𝑎 is a

hypertrace prefix for 𝑝 and 𝑖 . We write ∐︀𝑝, 𝑖̃︀●
𝑎Ð→∗𝑆→

𝑏Ð→𝑆→ 𝑥 to additionally require for every lane 𝑗 , that

𝑦 𝑗

𝑏 𝑗ÐÐ→
(syncStep ⋃︀𝑎⋃︀)𝑗
● holds, where 𝑦 is the last element of 𝑎.

We define 𝑘-simulations to preserve a simulation relation over synchronised steps:

Definition 3.5. Assume a tuple of programs 𝑝 , a tuple of inputs 𝑖 and let (syncStep,maxStall) be
a 𝑘-synchroniser.

A relation ≈ ∶ (︀St⌋︀𝑘 → P is a 𝑘-simulation on 𝑝 and 𝑖 if the following conditions hold:

≈∐︀𝑝, 𝑖̃︀● (base)

∀𝑎,𝑏 ∶(︀St●⌋︀𝑘 . ≈𝑎⇒ ∐︀𝑝, 𝑖̃︀●
𝑎Ð→∗𝑆→

𝑏Ð→𝑆→⇒ ≈𝑎𝑏 (synchronised step)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

323:10 Julian Rosemann, Sebastian Hack, and Deepak Garg

This definition ensures that the relation holds at every synchronised position. The defining

property of the synchroniser ensures that for any hypertrace prefix 𝑎 there is an extension 𝑏 such

that 𝑎𝑏10 is at a synchronised position.

Theorem 3.1 (Soundness of 𝑘-simulation). Let 𝑎 be a hypertrace prefix for 𝑝 and 𝑖 . If ≈ is a
𝑘-simulation on input 𝑖 , then there is an extension 𝑏 of 𝑎 such that

∐︀𝑝, 𝑖̃︀●
𝑎𝑏ÐÐ→∗● and ≈(𝑎𝑏).

Proof sketch. Since the synchroniser guarantees eventual progress on every lane, there is

an 𝑛 ∈ N such that ⋃︀𝑎⋃︀ ≤ syncStep
𝑛
0
𝑘 11

. We can construct a hypertrace prefix 𝑎′ for 𝑝 and 𝑖

with ⋃︀𝑎′⋃︀ = syncStep
𝑛
0
𝑘
and then 𝑎 must be a prefix of 𝑎′ as step● is deterministic. Since ≈ is a

𝑘-simulation and ⋃︀𝑎′⋃︀ is a synchronised position we have ≈𝑎′. □

Definition 3.6. Assume a stuttering simulation (≈, syncStepSt,maxStallSt) on a source program
𝑝 , a target program 𝜋 and an input 𝑖 . We define a 2-simulation (≈′, syncStep,maxStall) by the following
equations:

𝑎 ≈′ 𝛼 ∶= last𝑎 ≈ last𝛼 where last denotes the last element of a list

syncStep (𝑛,𝑚) ∶= (1, syncStepSt(step𝑛
src
∐︀𝑝, 𝑖̃︀src))

maxStall (𝑛,𝑚) 0 ∶= 1
maxStall (𝑛,𝑚) 1 ∶= maxStallSt(step𝑛

src
∐︀𝑝, 𝑖̃︀src).

Lemma 3.2. Definition 3.6 indeed defines a 𝑘-simulation.

Proof Sketch. By applying syncStepSt and maxStallSt to step
𝑛
src
∐︀𝑝, 𝑖̃︀src we are essentially trans-

lating a state-wise definition to a trace-wise one and can use progress guarantee of the former for

the latter. ≈′ is a 2-simulation because the definition of syncStep mimics the steps on the stuttering

simulation. □

Stuttering simulations between source and target traces are total on the reachable source states,

i.e. they relate every reachable source state with a target state, which is not in general the case for

synchronisers. As we will need it for combining 𝑘-simulations, we formalise totality for synchro-

nisers.

Definition 3.7. We say a 2-synchroniser (syncStep,maxStall) is total if there is a function
syncStep

♯ ∶ N→ N such that for any 𝑛 ∈ N we have

synced(𝑛, syncStep♯ 𝑛).

Lemma 3.3. The synchroniser in Definition 3.6 is total.

Proof Sketch. By using the fact that syncStep always steps 1 step on source. □

We will now investigate 𝑘-simulations that are specifically suited for preserving hyperproperties.

10
For sequences or hypersequences 𝑎,𝑏 we write to 𝑎𝑏 to denote their concatenation.

11
Where ≤ is defined component-wise.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

Non-interference Preserving Optimising Compilation 323:11

3.2 Hyperproperty Simulations
The preservation (or transformation) of a 𝑘-hyperproperty 𝑃 is basically a 2𝑘-hyperproperty: the

conjunction of having 𝑃 on the source and on the target traces. In this section we introduce

hyperproperty simulations which are instances of 𝑘-simulations and thus share their soundness

results. As seen in the previous section, a 𝑘-simulation needs some sort of synchronisation. We

define the synchroniser modularly by combining a 𝑘-synchroniser on the source traces with the

2-synchroniser between source and target traces induced by a stuttering simulation. This combined
synchroniser is constructed such that every synchronised position is a synchronised position with

respect to the source synchroniser as well as to the source-target synchroniser (and thus source

and target states are related by the simulation relation of the stuttering simulation). This approach

allows for different recombinations of synchronisers.

To be able to formulate hyperproperty simulations we first construct the combined synchroniser.

Let 𝑝 be a source program, 𝜋 be a target program and let 𝑖 be a 𝑘-tuple of inputs. We write

∐︀(𝑝, 𝑖), (𝜋, 𝑖)̃︀
2𝑘 to denote the initial 2𝑘-hyperstate that is induced by the cartesian product of

(𝑝, 𝜋) and 𝑖 . This initial hyperstate induces a 2𝑘-hypertrace. By convention we call the first 𝑘

lanes the source lanes and the second 𝑘 lanes the target lanes. We assume a 𝑘-synchroniser

(syncStep𝐻 ,maxStall𝐻) on the source lanes and call it the source synchroniser. In Fig. 4a it is

represented by the horizontal component. Additionally, we assume a family of source-target

synchronisers (syncStep𝑉𝑗
,maxStall𝑉𝑗

)𝑗∈N<𝑘 consisting of 𝑘 total 2-synchronisers that relate lane 𝑗

and 𝑗 + 𝑘 , for 0 ≤ 𝑗 < 𝑘 . Given a stuttering simulation on any input, this family can be constructed

using Definition 3.6. The source-target synchronisers are represented by the vertical component in

Fig. 4a.

As discussed in Section 2, we extend the source synchroniser to the target lanes by using the

projection of the source-target synchronisers to retrieve the corresponding target position. We

define syncStep
2𝑘 for the combined synchroniser. For n,m ∈ N𝑘

, let

syncStep
2𝑘(n,m) = (syncStep𝐻n, (syncStep𝑉𝑗

♯ ((n + syncStep𝐻n)𝑗))𝑗∈N<𝑘
−m) .

Note that we add n and subtract m in this formula because syncStep𝐻 /syncStep2𝑘 return the step
size while syncStep𝑉𝑗

♯
assumes and returns an absolute position. For the source lanes maxStall

2𝑘 is

just defined by maxStall𝐻 :

maxStall
2𝑘 2𝑘(n,m) 𝑗 = maxStall𝐻n 𝑗 where 0 ≤ 𝑗 < 𝑘.

We omit the definition of maxStall
2𝑘 for the target lanes because it is quite technical and not

very insightful. The intuition is that since maxStall𝐻 guarantees progress on the source lanes and

maxStall𝑉𝑗
guarantees progress on the target lanes, if there is progress on the source lanes, we can

use maxStall𝑉𝑗
to figure out how often maxStall𝐻 has to be applied to progress on the target lanes.

This construction ensures progress on any lane for the combined synchroniser.

Theorem 3.4. The functions (syncStep
2𝑘 ,maxStall

2𝑘) form a 2𝑘-synchroniser called the combined

synchroniser. For any n ∈ N2𝑘 with synced
2𝑘 n, corresponding horizontal (m ∈ N𝑘) and vertical

(m ∈ N2) positions are synchronised positions with respect to syncStep𝐻 and syncStep𝑉𝑗
, respectively.

As a notational convenience we define

∐︀(𝑝, 𝑖), (𝜋, 𝑖)̃︀
2𝑘

(𝑎,𝛼)
ÐÐÐ→∗𝑉→

(𝑏,𝛽)
ÐÐÐ→∗𝑉→ ∶= ∀0 ≤ 𝑗 < 𝑘, ∐︀(𝑝 𝑗 , 𝑖 𝑗), (𝜋 𝑗 , 𝑖 𝑗)̃︀2𝑘

(𝑎 𝑗 ,𝛼 𝑗)ÐÐÐÐ→∗𝑉𝑗
→
(𝑏 𝑗 ,𝛽 𝑗)ÐÐÐÐ→∗𝑉𝑗

→ .

Definition 3.8. Let ≈src ∶(︀Stsrc⌋︀𝑘 → P and ≈tgt ∶(︀Sttgt⌋︀𝑘 → P be relations.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

323:12 Julian Rosemann, Sebastian Hack, and Deepak Garg

We say (≈src,≈tgt) is a hyperproperty simulation if the following conditions hold:

≈
src

∐︀𝑝, 𝑖̃︀src (base source)

≈
tgt

∐︀𝜋, 𝑖̃︀tgt (base target)

∀𝑎 𝛼, ≈
src

𝑎⇒ ≈
tgt

𝛼 ⇒

∀𝑏 𝛽, ∐︀𝑝, 𝑖̃︀src
𝑎Ð→∗𝐻→

𝑏Ð→𝐻→

⇒ ∐︀(𝑝, 𝑖), (𝜋, 𝑖)̃︀
2𝑘

(𝑎,𝛼)
ÐÐÐ→∗𝑉→

(𝑏,𝛽)
ÐÐÐ→∗𝑉→

⇒ ≈
src

(𝑎𝑏) ∧ ≈
tgt

(𝛼𝛽).

(hyperproperty step)

This definition is very similar to Definition 3.5: Essentially we require a synchronised step

on the source synchroniser as well as a sequence of synchronised steps on every source-target

synchroniser. The reason for this subtle difference is that the combined synchroniser does guarantee

a synchronised position for the source-target synchroniser, but multiple steps may be required to

get there.

Theorem 3.5 (2𝑘-simulation). A 𝑘-hyperproperty simulation (≈src,≈tgt) is a 2𝑘-simulation with
≈(𝑎, 𝛼) ∶= ≈src 𝑎 ∧ ≈tgt 𝛼 .

Proof. The base case follows directly from the hyperproperty simulation base cases. For the

synchronised step we have to show ≈(𝑎𝑏, 𝛼𝛽), given ≈(𝑎, 𝛼) and ∐︀(𝑝, 𝑖), (𝜋, 𝑖)̃︀
2𝑘

𝑎Ð→∗𝐵→
𝑏Ð→𝐵→ . Using

Theorem 3.4 we can derive

∐︀𝑝, 𝑖̃︀src
𝑎Ð→∗𝐻→

𝑏Ð→𝐻→ and ∐︀(𝑝, 𝑖), (𝜋, 𝑖)̃︀
2𝑘

(𝑎,𝛼)
ÐÐÐ→∗𝑉→

(𝑏,𝛽)
ÐÐÐ→∗𝑉→

from the latter assumption. Now, applying the hyperproperty step concludes the proof. □

Theorem 3.6 (Soundness of Hyperproperty Simulation). Let 𝑎 and 𝛼 be hypertraces prefixes
for 𝑖 and 𝑝 or 𝜋 , respectively. If (≈src,≈tgt) is a hyperproperty simulation then there are extensions 𝑏
and 𝛽 , such that

≈
src

(𝑎𝑏) ∧ ≈
tgt

(𝛼𝛽) ∧ ∐︀𝑝, 𝑖̃︀src
𝑎𝑏ÐÐ→∗

src
∧∐︀𝜋, 𝑖̃︀tgt

𝛼𝛽
ÐÐ→∗

tgt
.

Proof. Use Theorem 3.5 and Theorem 3.1. □

3.3 Indistinguishability Simulations
To ease proofs of preserving indistinguishability properties like non-interference, we design a

specific hyperproperty simulation instance. This allows us to modularise the proof into a horizontal
and a vertical component. The horizontal component consists of the source leakage equivalence

and the equality of local leakage transformers between two related leakage events. The vertical

component is the adherence of the target leakage to the local leakage transformers, i.e. a simulation

argument between a source and target trace stating that the target traces indeed produce the

leakage as it is described by the annotated local leakage transformers.

We model leakage events with a type 𝐿 that represents what can be observed and a leakage
function ℒ. The leakage function maps states to ⟨︀𝐿⧹︀ where ⟨︀⋅⧹︀ denotes the option type constructor,

i.e. something of type ⟨︀𝐿⧹︀ is either ⟨︀⧹︀ (no leakage) or ⟨︀𝑥⧹︀ where 𝑥 is of type 𝐿. We define a state 𝑥 to

be leaky if ℒ 𝑥 ≠ ⟨︀⧹︀ and a hyperstate to be leaky if 𝑥 𝑗 is leaky on all lanes 𝑗 . We lift ℒ to sequences

in the following way (where 𝑎 ∶∶ 𝑥 denotes appending an element 𝑥 to the list 𝑎):

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

Non-interference Preserving Optimising Compilation 323:13

Definition 3.9 (Leakage Seqence). For ℒ ∶ St→ ⟨︀𝐿⧹︀ we define ℒ ∶(︀St⌋︀ → (︀𝐿⌋︀:
ℒ(︀⌋︀ = (︀⌋︀

ℒ(𝑎 ∶∶ 𝑥) = { ℒ𝑎 if ℒ 𝑥 = ⟨︀⧹︀
ℒ𝑎 ∶∶ 𝑙 if ℒ 𝑥 = ⟨︀𝑙⧹︀ .

We say a sequence of states is leak-free if ℒ 𝑥 = (︀⌋︀ holds. A hypersequence is leak-free if for

every lane the respective list is leak-free. Note that the terms leaky and leak-free are defined on

different domains and are no complements to each other.

Horizontal Component. For the remainder of this section we fix a leakage function ℒ and an

equivalence relation ≡ on lists of leakage events. Now, we can define indistinguishability on trace

prefixes and eventual indistinguishability (capturing a property coined “coproductive security”

in [Bohannon et al. 2009]) and non-interference of programs in our setup.

Definition 3.10 (Indistinguishability). We say two lists of states 𝑎,𝑎′ are indistinguishable
and write 𝑎 ≡ℒ 𝑎′ if ℒ 𝑎 ≡ ℒ 𝑎′ holds.

Definition 3.11 (Eventual Indistinguishability). We say initial states ∐︀𝑝, 𝑖̃︀● and ∐︀𝑝′, 𝑖′̃︀●
observe eventual indistinguishability if for any two sequences 𝑎,𝑎′ such that ∐︀𝑝, 𝑖̃︀●

𝑎ÐÐ→∗● and

∐︀𝑝′, 𝑖′̃︀●
𝑎
′

ÐÐ→∗● there are extensions 𝑏,𝑏′ such that ∐︀𝑝, 𝑖̃︀●
𝑎ÐÐ→∗●

𝑏ÐÐ→∗● , ∐︀𝑝′, 𝑖′̃︀●
𝑎
′

ÐÐ→∗●
𝑏
′

ÐÐ→∗● and 𝑎𝑏 ≡ℒ
𝑎′𝑏′.

Definition 3.12 (Non-Interference). Let ∼ be an equivalence relation on inputs (denoting
equality of public inputs). We say a program observes non-interference if for any two inputs 𝑖, 𝑖′ such
that 𝑖 ∼ 𝑖′, the initial states ∐︀𝑝, 𝑖̃︀● and ∐︀𝑝, 𝑖′̃︀● observe eventual indistinguishability.

When preserving non-interference we want to use the assumption of non-interference on the

source program to instantiate a 2-simulation on the source traces that synchronises on leakage

events. As 𝑘-simulations are defined on infinite traces and always require eventual progress, we

have to handle the case where there is no leakage left in a special way.

Definition 3.13 (Next Leaky Position). We define the step to the next leaky position for a
program 𝑝 , an input 𝑖 and an 𝑛 ∈ N as the smallest𝑚 ∈ N>0 such that there is a state 𝑥 such that
∐︀𝑝, 𝑖̃︀● ÐÐ→𝑛

●ÐÐ→𝑚
● 𝑥 holds and 𝑥 is leaky (i.e. ℒ𝑥 ≠ ⟨︀⧹︀).

We say m ∈ N𝑘
>0 is the hyperstep to the next leaky position for a program 𝑝 , an input tuple 𝑖 and a

position n ∈ N𝑘 , if m𝑗 is the next leaky position on 𝑝 , 𝑖 𝑗 and n𝑗 for all lanes 𝑗 .

The existence of a next leaky position is not in general decidable, but since syncStep𝐻 does not

have to be computable we can exploit the axiom of choice and use a classical case distinction to

define the leakage synchroniser.

Definition 3.14 (Leakage Synchroniser). For a program 𝑝 and an input tuple 𝑖 we define a
leakage synchroniser:

syncStep𝐻n = {
m if m ∈ N𝑘

>0 is the step to a next leaky position on 𝑝 , 𝑖 and n
1
𝑘 if no such next leaky position exists

maxStall𝐻n 𝑗 = 1.

Lemma 3.7. The leakage synchroniser is indeed a synchroniser.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

323:14 Julian Rosemann, Sebastian Hack, and Deepak Garg

Proof. On every synchronised step the synchroniser makes progress on all traces: If there is a

next leaky position, then by the requirement of𝑚 > 0 in Definition 3.13. Otherwise by definition. □

Lemma 3.8. Let 𝑝 be a program and 𝑖, 𝑖′ be inputs. The initial states ∐︀𝑝, 𝑖̃︀● and ∐︀𝑝, 𝑖′̃︀● observe
eventual indistinguishability if and only if ≡ℒ is a 2-simulation on ∐︀𝑝, 𝑖̃︀● and ∐︀𝑝, 𝑖′̃︀● (synchronised
by the leakage synchroniser).

Proof. In the forward direction, use the extension given by Definition 3.11 to construct the

synchronised step for the 2-simulation. In the other direction: By Theorem 3.1 for any trace prefixes

𝑎,𝑎′ there are semantically valid extensions 𝑏,𝑏′ such that 𝑎𝑏 ≡ℒ 𝑎′𝑏′. □

Vertical Component. To relate source and target leakage events, we now assume a type 𝐿′ for

target leakage events. Additionally we assume a function TF ∶ Stsrc → ⟨︀𝐿 → (︀𝐿′⌋︀⧹︀ that maps every

source state to an option type of a local leakage transformer.

Definition 3.15 (Adherence of Local Leakage Transformer). Assume a source sequence
of states 𝑎 and a target sequence of states 𝛼 . We say the leakage on 𝛼 adheres to the local leakage
transformers of 𝑎 and write 𝑎 ≈𝑉 𝛼 if either

● both lists are empty, i.e. 𝑎 = (︀⌋︀ = 𝛼
● 𝑎 = 𝑎′ ∶∶ 𝑥 and 𝛼 = 𝛼 ′𝛽 for a state 𝑥 and lists of states 𝑎′, 𝛼 ′, 𝛽 such that 𝑎′ ≈𝑉 𝛼 ′ and
– if ℒ𝑥 = ⟨︀⧹︀, then ℒ 𝛽 = (︀⌋︀
– if ℒ𝑥 = ⟨︀𝑙⧹︀, then ℒ 𝛽 = TF𝑥 (ℒ𝑥).

Definition 3.16 (Local Leakage Transformer Simulation). We say we have a local leakage
transformer simulation on programs 𝑝 , 𝜋 and input 𝑖 if ≈𝑉 is a total 2-simulation on ∐︀𝑝, 𝑖̃︀src and
∐︀𝜋, 𝑖̃︀tgt.

Definition 3.17 (Horizontal Consistency of Local Leakage Transformers). We say we
have horizontal consistency of local leakage transformers on 𝑝 and 𝑘-tuple of inputs 𝑖 , if ≈𝐻 is a
𝑘-simulation on ∐︀𝑝, 𝑖̃︀src, where ≈𝐻 is defined as the equality of TF on the last states of the respective
trace prefixes.

Now, we have everything to state and prove our main theorem.

Theorem 3.9 (Indistinguishability Simulation). Let 𝑝 be a source program and 𝜋 be a target
program and let 𝑖0, 𝑖1 be inputs. If

● 𝑝 ,𝑖0,𝑖1 observe horizontal consistency of local leakage transformers,
● ≈𝑉 is a local leakage transformer simulation on both inputs, and
● ≡ℒ is a 2-simulation on ∐︀𝑝, 𝑖0̃︀src and ∐︀𝑝, 𝑖1̃︀src,

then (≈𝐻 ,≈𝐻) is a hyperproperty simulation on ∐︀(𝑝, (𝑖0, 𝑖1)), (𝜋, (𝑖0, 𝑖1)̃︀2𝑘 . We call this instance an
indistinguishability simulation.

Proof. The base cases hold trivially. The horizontal synchroniser is given by the leakage sim-

ulation and the vertical synchronisers are given by the local leakage transformer simulations. It

remains to show the hyperproperty step of Definition 3.8 holds:

Assume 𝑎 ∶ Stsrc2 and 𝛼 ∶ Sttgt2 such that 𝑎0 ≡ℒ 𝑎1 and 𝛼0 ≡ℒ 𝛼1 hold. Furthermore, we have 𝑏, 𝛽, 𝑥

such that ∐︀𝑝, 𝑖̃︀src
𝑎Ð→∗𝐻→

𝑏∶∶𝑥ÐÐ→𝐻→ and ∐︀(𝑝, 𝑖), (𝜋, 𝑖)̃︀
2𝑘

(𝑎,𝛼)
ÐÐÐ→∗𝑉→

(𝑏∶∶𝑥,𝛽)
ÐÐÐÐ→∗𝑉→ hold, where the deconstruction

of the synchronised step into 𝑏 ∶∶ 𝑥 is justified by the fact that the leakage synchroniser always

steps forward on all lanes. Now, we do a case distinction on whether 𝑥 is leaky:

● If 𝑥0 is leaky but 𝑥1 is not or vice versa, we have a contradiction to the indistinguishability

assumption.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

Non-interference Preserving Optimising Compilation 323:15

● If 𝑥0 and 𝑥1 are leaky, we can derive the following equation:

ℒ 𝛽0 ≡ TF𝑥0 (ℒ𝑥0) ≡ TF𝑥1 (ℒ𝑥0) ≡ TF𝑥1 (ℒ𝑥1) ≡ ℒ 𝛽1 .
The first and last step are justified by the local leakage transformer simulation, the second

step is justified by the horizontal consistency of local leakage transformers and the third step

is justified by indistinguishability on the source.

● If neither 𝑥0 nor 𝑥1 are leaky, we have ℒ 𝛽0 = (︀⌋︀ = ℒ 𝛽1 by the local leakage transformer

simulations.

Thus, we have 𝛼0𝛽0 ≡ℒ 𝛼1𝛽1 and by the indistinguishability assumption also 𝑎0𝑏0 ≡ℒ 𝑎1𝑏1. □

Corollary 3.10. Let 𝑝 be a non-interfering source program and let 𝜋 be a target program. If
conditions (1) and (2) of Theorem 3.9 hold for any pair of public-equal inputs, 𝜋 is non-interfering.

Proof. Use Theorem 3.8 to derive the third condition and to conclude the proof. □

4 Non-Interference Preserving Optimisations
In this section we demonstrate important applications of Theorem 3.10. First, we use it to simplify

CT-preservation proofs. Then, we introduce our code transformation framework NIFTY to support

leakagemodels that allow secret branches. NIFTY uses backtracking to ensure horizontal consistency

of local leakage transformers (see Theorem 3.9), it thereby adjusts optimisations to preserve non-

interference even in the presence of secret branches. Finally, we instantiate both concepts on some

example optimisations.

4.1 Preserving Constant-Time
As has been argued in Section 2, we can reduce the proof burden of CT-preservation to simply

proving the target leakage to adhere to the local leakage transformer annotation. This is due to the

fact that in CT any two related leakages must occur at the same program point.

𝑝 ∈ Prog ∶= list Stmt

Stmt ∶= 𝑥 ← 𝑒 #A

⋃︀ if𝑒 then𝑝0 else𝑝1 #A
⋃︀ while𝑒 do𝑝0 #A

where 𝑒 is an expression and 𝑥 is variable.

(a) The syntax of our minimal language.

∐︀𝑥 ← 𝑒, 𝑖̃︀;𝑝 Ð→ ∐︀𝑝, {𝑖{𝑥 ↦ (︀𝑒⌋︀𝑖}̃︀

(︀𝑒⌋︀𝑖 ≠ 0

∐︀if𝑒 then𝑝1 else𝑝2;𝑝, 𝑖̃︀ Ð→ ∐︀𝑝1; 𝐽 ;𝑝, 𝑖̃︀

∐︀𝐽 ;𝑝, 𝑖̃︀ Ð→ ∐︀𝑝, 𝑖̃︀

∐︀(︀⌋︀, 𝑖̃︀ Ð→ ∐︀(︀⌋︀, 𝑖̃︀

(b) An excerpt of the semantics of our minimal
language.

Fig. 5

To formalise this, we first define a minimal language and its semantics. Our language consists of

three kinds of statements: assignments, conditionals and loops. A program is a list of statements.

Fig. 5a presents the syntax. We assume a set of variables Var and define the types Val ∶= N,
Env ∶= Var→ Val. Instead of specifying expressions we assume a type of expressions Expr and a

evaluation function (︀⋅⌋︀⋅ as well as a function mem returning all contained variables. Expressions

are pure, they have no external effects. Our syntax supports annotations at statements: We write

𝑠#𝐴 to annotate the statement 𝑠 with some additional information 𝐴. We will omit the annotations

when they are not relevant.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

323:16 Julian Rosemann, Sebastian Hack, and Deepak Garg

The semantics are mostly as one would expect them, Fig. 5b shows an excerpt. The program
state ∐︀𝑝, 𝑖̃︀ consists of a remaining program 𝑝 and a variable environment 𝑖: A step in the semantics

processes the head of 𝑝 and adjusts the remaining program and variable environment of the next

program state accordingly. For example, the execution of an assignment 𝑥 ← 𝑒 just removes it from

the remaining program and sets 𝑥 to the value of the expression 𝑒 in the variable environment of

the next state. To be able to distinguish code in branches from the remaining program, we introduce

a special no-op statement J when evaluating conditionals and loops. As we require the step relation

in Section 3 to be a function, we stutter the termination state. We use variable environments 𝑖 as

input type, thus the initial state of a program 𝑝 and an input 𝑖 is just ∐︀𝑝, 𝑖̃︀.
To model leakage in our semantics we assume a type 𝐿 and a synctactic leakage function

ℓ ∶ Stmt→ ⟨︀Env→ 𝐿⧹︀ .
The leakage function takes a statement as input and returns an option type of a function. This

guarantees that the decision of whether there is leakage is statically available, but not necessarily

the specific value of it. We instrument our semantics with the leakage function:

∐︀𝑝, 𝑖̃︀; 𝑙 Ð→ℓ ∐︀𝑝′, 𝑖′̃︀; ℓ 𝑠 𝑖, where ∐︀𝑝, 𝑖̃︀ Ð→ ∐︀𝑝′, 𝑖′̃︀.
Executing a statement 𝑠 results in having the leakage ℓ 𝑠 𝑖 in the next instrumented state. We

assume termination to be observable as well and realise this by a special termination leakage𝑇 . We

instantiate the semantic leakage function ℒ ∶ St→ ⟨︀𝐿⧹︀ from Section 3 by as ℒ∐︀𝑝, 𝑖̃︀; 𝑙 ∶= 𝑙 .
Let variables be partitioned into subsets of public and secret variables:Var

Pub
⊍VarSec = Var. Now,

we can define CT where we model memory accesses with accesses to public variables.

Definition 4.1 (Cryptographic Constant-time Leakage Model).

ℓ𝐶𝑇 (𝑥 ← 𝑒) ∶=
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

⟨︀⧹︀ if 𝑥 ∈ VarSec ∧ Var
Pub

∩mem𝑒 = {}
⟨︀𝜆 _.(⟨︀⧹︀ , ⟨︀𝑥⧹︀ ,Var

Pub
∩mem𝑒)⧹︀ if 𝑥 ∈ Var

Pub

⟨︀𝜆 _.(⟨︀⧹︀ , ⟨︀⧹︀ ,Var
Pub

∩mem𝑒)⧹︀ otherwise

ℓ𝐶𝑇 (if𝑒 . . .)
ℓ𝐶𝑇 (while𝑒 . . .)

(︀ ∶= ⟩︀𝜆 𝑖.(⟩︀(︀𝑒⌋︀𝑖 ≠? 0(︁ , ⟨︀⧹︀ ,VarPub𝑒)(︁ .

Definition 4.2. We say a program 𝑝 observes cryptographic constant-time (in short: CT) if it
observes non-interference with respect the leakage model Stsrc𝐶𝑇 .

Lemma 4.1. Let 𝑝 be a program that observes CT. Then, any two related leakage events are at the
same program point.

Proof Sketch. This property is a core motivation for CT. We can prove it with a lockstep

simulation on 𝑝 and two public-equal inputs. At every step, as branching decisions are leaked, both

traces must always take the same branch and since by definition any statement either is leaky

or not—independent of the variable environment—related leakage events are always at the same

program point. □

We say a program 𝑝 is annotated with local leakage transformers if for any substatement the

annotation provides a function 𝑓 ∶ ⟨︀𝐿 → (︀𝐿′⌋︀⧹︀, where 𝐿′ denotes the type of target leakage events.
Theorem 4.2. Let 𝑝 be a source program that is annotated with local leakage transformers and let

𝜋 be a target program. We assume there is a local leakage transformer simulation (see Definition 3.16)
between 𝑝 and 𝜋 on any input 𝑖 . Then, CT on 𝑝 implies CT on 𝜋 .

Proof. We apply Theorem 3.10. Conditions (2) and (3) are given by assumption, only horizontal

consistency remains to be shown. By Theorem 4.1, any two related leakages must be at the same

program point and since annotations only depend on the program point this concludes the proof. □

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

Non-interference Preserving Optimising Compilation 323:17

The proof of Theorem 4.2 does not depend on our specific definition of CT—the statement holds

for any leakage model satisfying Theorem 4.1. This is the case for any reasonable formulation of

CT.

4.2 Preserving NI
In the previous subsection the leakage model ensured horizontal consistency of local leakage

transformers. In the presence of secret branches this is not the case. To guarantee horizontal

consistency nonetheless, we introduce the backtracking code transformation NIFTY. As discussed

before, the core idea is to optimise code inside secret branches aggressively, but check at every

control flow rejoin for horizontal consistency of local leakage transformers.

We optimise the program in two steps: First, we annotate the source program. This annotation

contains the local leakage transformers at every leaky source program point and it determines

where the considered optimisation is disabled. In this step the backtracking technique discussed

before is used to ensure horizontal consistency (see Definition 3.17) of local leakage transformers.

By Theorem 3.10, it is now safe to apply the optimisation to the annotated program. The only

requirement for the optimisation pass is that it can be disabled by such an annotation and that it

indeed changes the leakage in the way the annotation says.

We assume optimisations to be guided by some data flow analysis. For example, in the case of

dead code elimination the analysis would be a liveness analysis that evaluates for every program

point the set of live variables, i.e. variables that will potentially be used after the program point

and before they are overwritten. Only assignments that are dead, i.e. whose variable is not live at
that point, may be eliminated. Furthermore, we need a function that maps analysis results to local
leakage transformers.12 As demonstrated in Section 1 these can be represented by rm and id for

dead code elimination and they directly correspond to the liveness analysis result.

When the optimisation is disabled in a secret branch, as for example in Fig. 1a, this may affect the

result of the data flow analysis even outside the branch: For the example of dead code elimination,

the elimination of an assignment may shorten the lifetime of the variables it uses. To ensure sound

analysis results and avoid reanalysing the whole program, we integrate the data flow analysis into

our annotation pass for local leakage transformers.

Even when disabling the optimisation locally we still need sound information on the data flow

of this section. For example, in Fig. 1a we need sound liveness information for the branches of the

conditional to support optimisations outside of it. Thus, we need a fallback data flow transformer.

Finally, depending on the optimisation we need a mapping from the local data flow analysis

result to a local leakage transformer and a leakage model as defined in Section 4.1.

To summarise NIFTY takes the following inputs:

● a optimising data flow analysis, given as a set of data flow transformers (FTa, FTi, FTw)13,

● a fallback data flow analysis, given a set of data flow transformers (FTa0, FTi0, FTw0),

● a mapping from analysis results to local leakage transformers (TF),

● an annotation at every branch whether it depends on secret inputs (𝑠#secret), and
● a leakage model.

NIFTY then does one data flow pass through the program where it may on backtrack conditionals

(but each one only once) and iterates through loops until the data flow analysis FT finds a fixpoint.

The result is a program that has a sound analysis annotation with respect to the original data flow

analysis as well as local leakage transformer annotations such that the secret branches always have
the same sequence of local leakage transformers.

12
More precisely, we need a representation of them that have a decidable equality.

13
One for each syntactic construct: assignment, if-statement and while-statement.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

323:18 Julian Rosemann, Sebastian Hack, and Deepak Garg

niftyProg𝑝 𝑜 𝑌

𝑝 =?

(𝑜,𝑌)
(𝑜𝑝 , 𝑌𝑝) ← niftyProg𝑝

′
𝑜 𝑌

(𝑜𝑠 , 𝑌𝑠) ← niftyStmt 𝑠 𝑜𝑝 𝑌𝑝

𝑜𝑝 ∼ 𝑜𝑠

𝑜 ← SecretN

(𝑜𝑠 ++𝑜𝑝 , 𝑌𝑝)

𝑝 = (︀⌋︀ 𝑝 = 𝑠 ;𝑝
′

yes no

Fig. 6. A flowchart describing how niftyProg.

0

●

00

t●
000

tt●
. . .

000

tt●
0000

ttt●
. . .

10

t●

00

f●

000

tf●
000

ff●

10

f●

1

●

01

t●
01

f●

2

●

Fig. 7. An example program where every
program point is annotated with its respec-
tive control flow tags. The tags on the left
side of the loop describe different loop iter-
ations.

We control the behaviour of the analysis with an optimisation mode. This is realised by the

following inductive type:

optMode ∶= Public ⋃︀ SecretT (𝑏𝑙 ∶(︀𝐿 → (︀𝐿′⌋︀⌋︀) ⋃︀ SecretN.

The optimisation mode Public signifies that the control flow at this point is not dependent on

secret inputs, thus any leakage here must occur on all lanes. This allows for the use of the optimising

analysis. Both SecretT and SecretN signify that the control flow is dependent on secret inputs,
i.e. different public-equivalent lanes may observe different occurrences of leakage. In the mode

SecretT the algorithm keeps track of the witnessed local leakage transformers at every occurrence

of leakage with a list thereof. If the tracked local leakage transformers are not equal at a join point

of secret branches we use SecretN to disable the optimisation locally. We define ∼ as the predicate
that takes two optimisation modes and returns whether they are of the same kind. We overload

the list operations ∶∶ and ++ for optimisation modes: For optimisation modes of type SecretT it
operates on the tracking information, otherwise both return the left operand.

NIFTY is a pass over the program that propagates both the optimisation mode as well as the

analysis information to preceding or succeeding statements
14
. We implement it with the two mutual

recursive functions that act on either statements or programs, respectively:

niftyStmt (𝑠 ∶ Stmt) (𝑜 ∶ optMode) (𝑏 ∶ 𝐵) ∶ optMode ∗ 𝐵
niftyProg (𝑝 ∶ list Stmt) (𝑜 ∶ optMode) (𝑏 ∶ 𝐵) ∶ optMode ∗ 𝐵.

Both take the optimisation mode 𝑜 as well as the analysis information 𝑏 of the remaining program

as additional arguments and they return a pair of an optimisation mode and an analysis information.

In this process niftyStmt also always directly annotates the respective program point.

Figure 6 describes how a program is processed in the backwards variant: Given an empty program,

niftyProg just returns its arguments. Otherwise, it first makes a recursive call on the tail of the

program and then calls niftyStmt on the head where it uses the optimisation mode and analysis

information returned from the first call. If both returned optimisation modes are of the same kind,

then niftyProg returns this optimisation mode with possibly appending the tracking information

along with the analysis information of the call on the statement. Otherwise, the recursive calls

are repeated with SecretN as optimisation mode. In this case it is guaranteed that the resulting

optimisation modes are SecretN for both, thus termination is ensured.

14
Depending on the iteration order of the original analysis it is either a forward or a backward pass.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

Non-interference Preserving Optimising Compilation 323:19

niftyStmt 𝑠 𝑜 𝑌

𝑠 =?

𝑠#𝑦 ← 𝑜 = SecretN ? FTa0 𝑥 𝑒 𝑌 ∶ FTa𝑥 𝑒 𝑌
𝑠#𝑓 ← TF𝑒 𝑠#𝑦

(𝑜 = SecretT ? SecretT (︀𝑠#𝑓 ⌋︀ ∶ 𝑜, 𝑠#𝑦)

𝑠#secret∧

𝑜 = Public

𝑜
′
← SecretT (︀⌋︀

(𝑜0, 𝑌0) ← niftyProg𝑝0 𝑜
′
𝑌

(𝑜1, 𝑌1) ← niftyProg𝑝1 𝑜
′
𝑌

𝑜0 = 𝑜1

𝑠#𝑦 ← 𝑜 = SecretN ? FTi0 𝑒 𝑌0 𝑌1 ∶ FTi𝑒 𝑌0 𝑌1
𝑠#𝑓 ← TF𝑒 𝑌0 𝑌1

𝑜
′
← SecretN

(𝑜 = SecretT ? SecretT(𝑜0 ∶∶ 𝑠#𝑓) ∶ 𝑜, 𝑠#𝑦)
𝑜
′
← 𝑜

𝑠#public∧

𝑜 = Public

𝑜 ← SecretN

(𝑜0, 𝑌0) ← niftyProg𝑝0 𝑜 𝑌

𝑠#𝑦 ← 𝑜 = SecretN ? FTw0 𝑒 𝑌0 ∶ FTw𝑒 𝑌0

𝑠#𝑦 = 𝑦

𝑦 ← 𝑠#𝑦

𝑠#𝑓 ← TF𝑒 𝑠#𝑦

(𝑜, 𝑠#𝑦)

𝑠 = 𝑥 ← 𝑒

𝑠 = if𝑒 then𝑝0 else𝑝1

𝑠 = while𝑒 do𝑝0

no

yes

no

yes

no

yes

noyes

Fig. 8. The flowchart demonstrates the implementation of niftyStmt.

Now, consider Fig. 8 for a visualisation of niftyStmt. For an assignment we check whether the

current optimisation mode is SecretN. If so, then the fallback analysis FT0 is used. Otherwise, we

use the standard approach. In either case we annotate the statement with the analysis result (stored

in 𝑦) and the respective local leakage transformer (stored in 𝑓). The optimisation mode (possibly

including updated tracking information) and the analysis result are propagated. On a conditional,

we first check whether we are entering secret control flow: If the (outside) optimisation mode is

Public and the branching predicate is dependent on secret inputs, we set the optimisation mode to

SecretT, otherwise the outer control flow is propagated. Then, we can analyse the branches in the

current optimisation mode. If these calls produce both the same optimisation mode, in particular

the same tracking information (if in SecretT), then the result can be used and the resulting analysis

result is given by the corresponding transformer for conditionals. Otherwise we have to do the

analysis again with 𝑜 ′ = SecretN.15 If the outer control flow of a loop and its branching condition

are public we can use the optimisation mode Public for its body. Otherwise, the number of loop

iterations may differ on different traces which makes tracking of leakage changes impossible.

Therefore we set the optimisation to SecretN in this case. The data flow analysis FT may need

several iterations through the loop to find a fixpoint.

To ensure a semantics-preserving optimisation, NIFTY should provide the same soundness

guarantees as the original analysis does.

Lemma 4.3. Assume that the optimising data flow transformers and the fallback data flow trans-
formers both produce sound annotations with respect to some soundness property of the respective
optimisation. Then NIFTY produces sound annotations with respect to the same property.

The track-and-check approach for conditionals with high branching conditions guarantees that

the leaks on alternative paths through the conditional are treated the same way. Implicitly, this

assumes that both paths have the same leaks in the source program. This is a stronger assumption

than what a purely semantic definition of non-interference would provide, as here two leakage

15
Note that this second pass necessarily succeeds because the optimisation mode will be SecretN on both branches.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

323:20 Julian Rosemann, Sebastian Hack, and Deepak Garg

events may be related although they are in two different, sequential conditionals with a secret
predicate (e.g. if𝑎 then𝑋 else ⋅;if𝑎 then ⋅ else𝑋 , where X is some leaky event). To allow for

arbitrary optimisations in public control flow and as many as possible in secret control flow we

define a stronger variant of non-interference. Intuitively, we require leakage equivalence of public-
equivalent traces at every re-join of control flow.

We define this requirement using control flow tags. Consider Fig. 7 for an example that shows

how we track control flow. A control flow tag consists of two stacks of the same length, denoted on

top of each other. The lower component captures the relevant branching decisions while the upper

component captures how many control flow rejoins have already happened at any given depth.

As both stacks have always the same length we can also interpret them as one stack of tuples. At

the root of the program we initialise the stack with one single entry
0

● . Whenever the control flow

branches,
0

t or
0

f is pushed to the stack, depending on which branch was taken. On every control

flow rejoin the top of the stack is dropped and the counter of the next entry is increased. When

processing a conditional or a loop the tail of the program is appended to the respective subprograms

(i.e. the taken conditional branches or the loop body). Conversely, the top of the stack is popped

whenever a conditional or loop is left, i.e. when witnessing the join marker 𝐽 (see Section 4.1).

To make sure that leakages traces are equal at every join, we require the control flow tags of

related leakage events to be aligned.

Definition 4.3. Let 𝑐0
𝑑0
,
𝑐1
𝑑1

be control flow tags. Let 𝑛 be the length of the greatest common prefix
of 𝑑 and 𝑑 ′. We say 𝑐0

𝑑0
precedes

𝑐1
𝑑1

and write 𝑐0
𝑑0
≺ 𝑐1

𝑑1
if the prefix of the length 𝑛 of 𝑐0 is lexically

smaller than the prefix of length 𝑛 of 𝑐1. We say 𝑐0
𝑑0

and 𝑐1
𝑑1

are aligned if 𝑐0
𝑑0
⊀ 𝑐1

𝑑1
and 𝑐1

𝑑1
⊀ 𝑐0

𝑑0
.

Definition 4.4. Let 𝑐, 𝑐′ be control flow tags and 𝑙, 𝑙 ′ be leakage of some type 𝐿. We say (𝑐, 𝑙) and
(𝑐′, 𝑙 ′) satisfy aligned indistinguishability and write (𝑐, 𝑙) ≡ (𝑐′, 𝑙 ′) if 𝑙 = 𝑙 ′ and the control flow tags
𝑐 and 𝑐′ are aligned (see Definition 4.3). Aligned indistinguishability is a equivalence relation.

Definition 4.5. We say a program adheres to aligned non-interference with if it is non-interfering
with respect to the equivalence relation of aligned indistinguishability.

Assuming aligned non-interference we can now show that NIFTY guarantees horizontal consis-

tency of local leakage transformers.

Lemma 4.4. Let 𝑝 be a source program satisfying aligned non-interference that is annotated by
NIFTY. Then we have horizontal consistency of local leakage transformers for any two public-equal
inputs.

Proof Sketch. We prove this by instantiating a 2-simulation on the source traces using a

synchroniser similar to the leakage synchroniser. In contrast to the leakage synchroniser, this

synchroniser uses points of control flow divergence and rejoin as additional synchronised position.

This guarantees both traces to be at the same program point when in public control flow. When

in secret control flow, the sequence of local leakage transformers must be equal because any such

branch is backtracked in NIFTY when they are not equal. □

Theorem 4.5. For any program 𝑝 that observes aligned non-interference and any optimisation and
leakage model such that we have local leakage transformer simulations on public-equal inputs, the
optimisation acting on the 𝑝 annotated by NIFTY preserves non-interference.

Proof. Apply Theorem 3.10 and use Theorem 4.4 for the horizontal consistency. □

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

Non-interference Preserving Optimising Compilation 323:21

𝑌 ⊆ {𝑥} ∪𝑋 𝑥 ∈ 𝑌 → livee 𝑒 ⊆ 𝑋
liveopt (︀𝑥 ← 𝑒⌋︀ ∶ (𝑋,𝑌)

opt.

𝑌 ⊆ {𝑥} ∪𝑋 livee 𝑒 ⊆ 𝑋 𝑥 ∈ 𝑌
live

fallback
(︀𝑥 ← 𝑒⌋︀ ∶ (𝑋,𝑌) fallback

Fig. 9. Judgements showing how the optimising and the fallback liveness analyses act on an assignment.

4.3 Case Studies
We demonstrate the applicability of our approach by defining local leakage transformer simulations

for three optimisations and then applying Theorem 4.2 and Theorem 4.5 on them to get proofs

of CT-preservation and non-interference preservation for any given leakage model. This way,

our approach allows to separate optimisation-specific arguments from security policy specific

arguments which is not directly possible in related work. For each of the three optimisations

we only have to show a local leakage transformer simulation and get CT-preservation and non-

interference preservation for free through the theorems we have established in this paper. Note that

while our proofs work for any leakage model, the aggressiveness of the optimisation that NIFTY

performs will be different: a weaker leakage model allows for more aggressive optimisations.

Dead Code Elimination. Dead code elimination was used as a running example throughout the

paper. To identify assignments to dead variables, i.e. variables not used before they are either

overwritten or the program terminates, a liveness analysis is required. The liveness analysis an-
notates at every program point the live-before set 𝑋 and the live-out set 𝑌 , denoting for variables
whether they are live before and/or after the statement. We define two variants of it (see Fig. 9):

First, the optimising variant incorporates possible eliminations by only requiring the variables of

the expression to be live, if the assigned variable is live itself. This ensures that a dead assignment

does not extend the lifetime of the variables used therein. In contrast, in the fallback approach the

variables of the respective expression are required to be live either way and the assigned variable

itself is considered to be live. Given a program with annotated liveness information, dead code

elimination removes any assignment to a variable 𝑥 such that 𝑥 is not live at that program point.

The local leakage transformers are defined analogously: We use rm whenever a leaky assignment is

eliminated and id on every other leaky statement.

Lemma 4.6. We have a local leakage transformer simulation for dead code elimination.

Proof. We step through source and target program. Whenever an assignment is eliminated, we

stall on the target trace and, if there is leakage, then the source is marked by rm, which is fulfilled.

In every other case, source and target are processed in lockstep and any leakage is preserved. □

Corollary 4.7. Dead code elimination preserves CT.

Corollary 4.8. Applying NIFTY on dead code elimination preserves non-interference.

Common Branch Factorisation. Common branch factorisation (in short: CBF) does not need a data

flow analysis like dead code elimination. Instead, it simply moves assignments at the start of both

branches of a conditional outside of the conditional, if there is no conflicting dependence to the

branch predicate. We still need an analysis for the correct annotation of local leakage transformers.

As the optimisation may swap leakages—the one of the branch itself and the one of the moved

assignment—, we need a little trick to be able to formulate local leakage transformers: We define an

equivalent leakage model ℓ ′ that merges these two leakages 𝐴 and 𝐵 to one leakage event 𝐴𝐵. Now,

the data flow analysis flags any position that is admissible for a factorisation. The local leakages

transformer at optimised program points reverses any leakage 𝐴𝐵 to 𝐵𝐴. The fallback pass never

flags anything as admissible, and the actual optimisation only optimises program points with a flag.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

323:22 Julian Rosemann, Sebastian Hack, and Deepak Garg

Lemma 4.9. We have a local leakage transformer simulation for CBF.

Proof. A simulation proof where at every optimised conditional the target trace processes the

factorised assignment with the branch on source and the branch on the target trace is processed

together with the assignment on source. □

Corollary 4.10. Common branch factorisation preserves CT.

Corollary 4.11. Applying NIFTY on CBF preserves non-interference.

Linearisation. Linearisation is a technique that replaces conditional control flow by a linear

sequence of predicated instructions to save the overhead of branching. This pass is only interesting

when branches do leak (otherwise no leakage is changed, non-interference preservation holds

trivially), so we will only consider it for CT. Our linearisation pass is similar to the one discussed

in [Barthe et al. 2020] in which the authors had to resort to a complex CT-simulation proof to support

CompCert’s branch placement heuristic in the linearised code. Our approach handles it without

any additional effort. Here, we assume a data flow transformer that marks any conditional with

true or false, signifying whether the consequence and alternative of the conditional should come

first when linearised. The corresponding local leakage transformer maps booleans to booleans: It

maps whether the branch goes left or right to whether there is jump or not. The actual optimisation

then linearises the code according to the ordering annotation.

Lemma 4.12. We have a local leakage transformer simulation for linearisation.

Proof. This is a simple lockstep simulation where we show that the target trace jumps exactly

when it is supposed to according to the local leakage transformer. □

Corollary 4.13. Linearisation preserves CT.

5 Related Work
Constant-time simulations (CT-simulations). Our work directly extends the work of Barthe et al.

[2018], which presents a similar technique for proving the preservation of the constant-time policy
through compiler passes. Our definition of hyperproperty simulation (Definition 3.8) generalises

manysteps CT-simulation of Definition 8 of their work, and our formalisation of leakage is also

based on their Section IV. However, our proof technique nontrivially extends their work by sup-

porting proofs of preservation of 𝑘-hypersafety properties, not just the 2-trace constant-time policy.

Technically, we generalise the admissible source-trace relations, which are denoted ≈src in our

work and ≡𝑆 in their work. In their work, such a relation must hold after every pair of steps

in the two source traces (i.e., the two source traces are considered in lock-step). We relax this

requirement by admitting relations between 𝑘 source traces and allowing the prover to choose the

positions at which ≡src holds as long as no trace stalls forever (cf. Definition 3.3). This relaxation is

necessary for representing properties like leakage-based noninterference which does not require

the relation (indistinguishability) to hold at each step inside secret branches. The constant-time

policy considered by Barthe et al. [2018] prohibits branching on secrets by definition, so they do

not need this relaxation and do not consider it. Phrased differently in the terminology of Section

III-C of Barthe et al. [2018], we support hyperproperties based on both “locally preserves” and

“step-consistent” unwinding lemmas, whereas they only support properties based on former.

CT-simulations have been used to prove that the Jasmin compiler [Almeida et al. 2017], which was

designed for low-level constant-time programming, preserves the constant time policy under various

leakagemodels [Shivakumar et al. 2022]. CT-simulations, in conjunction with other techniques, have

also been used to prove that the CompCert compiler [Blazy et al. 2006; Leroy 2006, 2009] can preserve

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

Non-interference Preserving Optimising Compilation 323:23

the constant-time policy with minimal modifications [Barthe et al. 2020]. While not validated on

realistic compilers like Jasmin, our technique supports a broader class of hyperproperties. This idea

has been extended for the preservation of speculative constant-time: [Olmos et al. 2025; van derWall

and Meyer 2025] use a cube diagram similar to CT-simulations and to our proposed hyperproperty

simulations for preseving speculative constant-time. Again, in contrast to our work the simulation

is lockstep on one of the trace pairs and does not support secret branches.

To ease proofs of the preservation of constant-time, [Barthe et al. 2021] introduce structured
leakage: Here, the problem of the expressivity of a global leakage transformer is circumvented by

making the leakage more expressive. Instead of interpreting leakage as a series of leakage events,

the leakage of a program itself is of a tree structure, mimicing the program. In this setup, a global

leakage transformer is sufficient, even for optimisations like dead code elimination. We achieve

similar results for CT-preservation on the more common interpretation of leakage as a series of

events. It would be interesting to investigate whether our annotations of local leakage transformers

could be translated into a global leakage transformer for structured leakage and vice versa, and

whether the idea of structured leakage could be incorporated into NIFTY.

Orthogonal to work on preserving constant-time through compilation is work on enforcing that a

given program (in a single language, either source or target) respects constant-time. Constant-time

is a simplification of noninterference, so it can be enforced by modifying a standard information

flow type system for noninterference like Volpano et al. [1996]. A recent, industry-scale example of

this approach is the design of CT-Wasm, an extension of Webassembly with a type system that

enforces constant-time [Watt et al. 2019]. It would be interesting to apply techniques such as ours

or CT-simulations to (simple) compilers that use CT-Wasm as the source or target language.

Preservation of noninterference and indistinguishability. Preservation of noninterference through

compilation was first examined by [Barthe et al. 2007], who consider a source and target language,

both equipped with noninterference-enforcing type systems. They prove that a (simple) compiler

from source to target preserves well-typedness and, hence, well-typed source programs compile to

noninterferent target programs. Although seminal, this approach rejects source programs that may

be noninterferent but do not type check in the source and it does not consider optimisations. The

approach also does not consider leakage or side-channels, concepts that became prominent years

after the work was published. Consequently, the proof technique we develop (and the technique

of Barthe et al. [2018]) are substantially different from this type-based technique, both in the

mechanism and in the amenable sets of source and target languages.

The preservation and reflection of program indistinguishability (i.e., observation equivalence)

through program transformations is also called full abstraction or, in some contexts, secure compi-

lation [Patrignani et al. 2019]. This is a well-studied topic. Methods for establishing full abstraction

include (bi)simulations on the operational semantics for untyped languages [Abadi 1998; Abadi

et al. 2002], the use of sound and complete trace semantics to simplify the proofs [El-Korashy

et al. 2021], and logical relations when the source and the target languages are typed [Ahmed and

Blume 2008; Bowman and Ahmed 2015; Devriese et al. 2016]. However, these lines of work do

not provide a systematic way of handling leakage. Our technique handles leakage and supports

𝑘-hyperproperties beyond indistinguishability.

Secure compilation. Recent work has proposed the preservation of classes of robust hyperproper-

ties as a criterion for compiler security, where robust means “in all contexts”. Abate et al. [2019]

show that requiring a compiler to preserve increasingly larger classes of hyperproperties robustly

results in increasingly stronger criteria for compilers. However, work on proof techniques to estab-

lish the preservation of robust hyperproperties has, so far, been limited to robust (1-trace) safety

properties [Abate et al. 2018; El-Korashy et al. 2022; Patrignani and Garg 2021] and observational

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

323:24 Julian Rosemann, Sebastian Hack, and Deepak Garg

equivalence/noninterference, which we explained above. Extending our approach to handle all

contexts (robustness) would be an avenue for future work.

6 Conclusion & Future Work
In this work, we introduced a novel framework for hyperproperty preservation proofs, leveraging

the concept of 𝑘-simulations to model simulations across an arbitrary number of traces and enabling

the composition of complex simulations from simpler ones. Building on this, we developed hyper-
property simulations to facilitate modular proofs of hyperproperty preservation, particularly for

indistinguishability properties like non-interference. We proposed the notion of indistinguishability
simulations, which combine source-target leakage simulations with indistinguishability on source

traces, simplifying cryptographic constant-time preservation proofs and enabling proofs for more

general notions of non-interference. To address the challenge of non-interference preservation

in compiler optimisations, we presented the NIFTY framework, which ensures non-interference

preservation by selectively undoing optimisations in regions where they violate security guarantees.

Our approach is proven correct for any optimisation and leakage model, given a source-target

simulation proof for the specific case.

Our contributions invite for different directions in future work: The most obvious possible

direction would be to extend our case study of NIFTY with different compilation passes or apply it

to more realistic languages and semantics. Preservation of different security properties, for example

using an explicit timing model, could be another research target. This is a challenge, as here the

leakage has a state—the time passed since the last leakage event. As NIFTY already does a data flow

analysis, it should be possible to extend the framework to support this as well. As the hyperproperty

simulations are not specific to security policies, they could spark research in different domains that

are interested in preservation of hyperproperties during compilation. For example, they may be

employed to verify properties on single-program multiple-data (SPMD) programs.

Data-Availability Statement
This work has an accompanying Rocq development which has been submitted as an artifact [Rose-

mann et al. 2025]. All theorems, lemmas and corollaries in this paper are formalised. Due to the

nature of formalised proofs, many statements are described in a much more abstract way in the

paper. The development consists of roughly 15k lines of code. Most of it is for supporting the

definitions and propositions in Sections 3, 4.1 and 4.2. The case studies of Section 4.3 require

significantly less code.

State of the Proofs in the Submitted Artifact. All statements in Section 3 are proven completely

(except for very minor technical lemmas). The NIFTY framework is completely defined in Rocq and

its correctness properties are stated but some of their proofs are incomplete. For the case studies

in Section 4.3 the relevant data flow transformers (used by NIFTY) are defined but the proofs are

incomplete.

References
Martín Abadi. 1998. Protection in Programming-Language Translations. In Automata, Languages and Programming, 25th

International Colloquium, ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings (Lecture Notes in Computer Science,
Vol. 1443), Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel (Eds.). Springer, 868–883. doi:10.1007/BFB0055109

Martín Abadi, Cédric Fournet, and Georges Gonthier. 2002. Secure Implementation of Channel Abstractions. Inf. Comput.
174, 1 (2002), 37–83. doi:10.1006/INCO.2002.3086

Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco Patrignani, and Jeremy Thibault. 2019. Journey Beyond

Full Abstraction: Exploring Robust Property Preservation for Secure Compilation. In 2019 IEEE 32nd Computer Security
Foundations Symposium (CSF). IEEE. doi:10.1109/csf.2019.00025

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

https://doi.org/10.1007/BFB0055109
https://doi.org/10.1006/INCO.2002.3086
https://doi.org/10.1109/csf.2019.00025

Non-interference Preserving Optimising Compilation 323:25

Carmine Abate, Arthur Azevedo de Amorim, Roberto Blanco, Ana Nora Evans, Guglielmo Fachini, Catalin Hritcu, Théo

Laurent, Benjamin C. Pierce, Marco Stronati, and Andrew Tolmach. 2018. When Good Components Go Bad: Formally

Secure Compilation Despite Dynamic Compromise. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, David Lie, Mohammad Mannan, Michael

Backes, and XiaoFeng Wang (Eds.). ACM, 1351–1368. doi:10.1145/3243734.3243745

Amal Ahmed and Matthias Blume. 2008. Typed closure conversion preserves observational equivalence. In Proceeding of the
13th ACM SIGPLAN international conference on Functional programming, ICFP 2008, Victoria, BC, Canada, September 20-28,
2008, James Hook and Peter Thiemann (Eds.). ACM, 157–168. doi:10.1145/1411204.1411227

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira,

Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub. 2017. Jasmin: High-Assurance and High-Speed Cryptography.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017, Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM,

1807–1823. doi:10.1145/3133956.3134078

Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David Pichardie, and Alix Trieu. 2020.

Formal verification of a constant-time preserving C compiler. Proc. ACM Program. Lang. 4, POPL (2020), 7:1–7:30.

doi:10.1145/3371075

Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. 2018. Secure Compilation of Side-Channel Countermeasures: The

Case of Cryptographic "Constant-Time". In 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford, United
Kingdom, July 9-12, 2018. IEEE Computer Society, 328–343. doi:10.1109/CSF.2018.00031

Gilles Barthe, Benjamin Grégoire, Vincent Laporte, and Swarn Priya. 2021. Structured Leakage and Applications to

Cryptographic Constant-Time and Cost. In CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, Republic of Korea, November 15 - 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi

(Eds.). ACM, 462–476. doi:10.1145/3460120.3484761

Gilles Barthe, Tamara Rezk, and Amitabh Basu. 2007. Security types preserving compilation. Comput. Lang. Syst. Struct. 33,
2 (2007), 35–59. doi:10.1016/J.CL.2005.05.002

Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. 2006. Formal Verification of a C Compiler Front-End. In FM 2006: Formal
Methods, 14th International Symposium on Formal Methods, Hamilton, Canada, August 21-27, 2006, Proceedings (Lecture
Notes in Computer Science, Vol. 4085), Jayadev Misra, Tobias Nipkow, and Emil Sekerinski (Eds.). Springer, 460–475.

doi:10.1007/11813040_31

Aaron Bohannon, Benjamin C. Pierce, Vilhelm Sjöberg, Stephanie Weirich, and Steve Zdancewic. 2009. Reactive

noninterference. In Proceedings of the 2009 ACM Conference on Computer and Communications Security, CCS 2009,
Chicago, Illinois, USA, November 9-13, 2009, Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis (Eds.). ACM, 79–90.

doi:10.1145/1653662.1653673

William J. Bowman and Amal Ahmed. 2015. Noninterference for free. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015, Kathleen Fisher and

John H. Reppy (Eds.). ACM, 101–113. doi:10.1145/2784731.2784733

Ethan Cecchetti, Andrew C. Myers, and Owen Arden. 2017. Nonmalleable Information Flow Control. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 1875–1891.

doi:10.1145/3133956.3134054

Kevin Cheang, Cameron Rasmussen, Sanjit A. Seshia, and Pramod Subramanyan. 2019. A Formal Approach to Secure

Speculation. In 32nd IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019. IEEE,
288–303. doi:10.1109/CSF.2019.00027

Dominique Devriese, Marco Patrignani, and Frank Piessens. 2016. Fully-abstract compilation by approximate back-

translation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 164–177.

doi:10.1145/2837614.2837618

Akram El-Korashy, Roberto Blanco, Jérémy Thibault, Adrien Durier, Deepak Garg, and Catalin Hritcu. 2022. SecurePtrs:

Proving Secure Compilation with Data-Flow Back-Translation and Turn-Taking Simulation. In 35th IEEE Computer
Security Foundations Symposium, CSF 2022, Haifa, Israel, August 7-10, 2022. IEEE, 64–79. doi:10.1109/CSF54842.2022.9919680

Akram El-Korashy, Stelios Tsampas, Marco Patrignani, Dominique Devriese, Deepak Garg, and Frank Piessens. 2021.

CapablePtrs: Securely Compiling Partial Programs Using the Pointers-as-Capabilities Principle. In 34th IEEE Computer
Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021. IEEE, 1–16. doi:10.1109/CSF51468.2021.
00036

Xavier Leroy. 2006. Formal certification of a compiler back-end or: programming a compiler with a proof assistant.

In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2006,
Charleston, South Carolina, USA, January 11-13, 2006, J. Gregory Morrisett and Simon L. Peyton Jones (Eds.). ACM, 42–54.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

https://doi.org/10.1145/3243734.3243745
https://doi.org/10.1145/1411204.1411227
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/3371075
https://doi.org/10.1109/CSF.2018.00031
https://doi.org/10.1145/3460120.3484761
https://doi.org/10.1016/J.CL.2005.05.002
https://doi.org/10.1007/11813040_31
https://doi.org/10.1145/1653662.1653673
https://doi.org/10.1145/2784731.2784733
https://doi.org/10.1145/3133956.3134054
https://doi.org/10.1109/CSF.2019.00027
https://doi.org/10.1145/2837614.2837618
https://doi.org/10.1109/CSF54842.2022.9919680
https://doi.org/10.1109/CSF51468.2021.00036
https://doi.org/10.1109/CSF51468.2021.00036

323:26 Julian Rosemann, Sebastian Hack, and Deepak Garg

doi:10.1145/1111037.1111042

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107–115. doi:10.1145/1538788.

1538814

Kedar S. Namjoshi. 1997. A Simple Characterization of Stuttering Bisimulation. In Foundations of Software Technology
and Theoretical Computer Science, 17th Conference, Kharagpur, India, December 18-20, 1997, Proceedings (Lecture Notes in
Computer Science, Vol. 1346), S. Ramesh and G. Sivakumar (Eds.). Springer, 284–296. doi:10.1007/BFB0058037

Santiago Arranz Olmos, Gilles Barthe, Lionel Blatter, Benjamin Grégoire, and Vincent Laporte. 2025. Preservation of

Speculative Constant-Time by Compilation. Proc. ACM Program. Lang. 9, POPL (2025), 1293–1325. doi:10.1145/3704880

Marco Patrignani, Amal Ahmed, and Dave Clarke. 2019. Formal Approaches to Secure Compilation: A Survey of Fully

Abstract Compilation and Related Work. ACM Comput. Surv. 51, 6 (2019), 125:1–125:36. doi:10.1145/3280984
Marco Patrignani and Deepak Garg. 2021. Robustly Safe Compilation, an Efficient Form of Secure Compilation. ACM Trans.

Program. Lang. Syst. 43, 1 (2021), 1:1–1:41. doi:10.1145/3436809
Julian Rosemann, Sebastian Hack, and Deepak Garg. 2025. Non-interference Preserving Optimising Compilation. doi:10.5281/

zenodo.16929228

Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire, Vincent Laporte, and Swarn Priya. 2022. Enforcing

Fine-grained Constant-time Policies. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi

(Eds.). ACM, 83–96. doi:10.1145/3548606.3560689

Sören van der Wall and Roland Meyer. 2025. SNIP: Speculative Execution and Non-Interference Preservation for Compiler

Transformations. Proc. ACM Program. Lang. 9, POPL (2025), 1506–1535. doi:10.1145/3704887

Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. 1996. A Sound Type System for Secure Flow Analysis. J. Comput.
Secur. 4, 2/3 (1996), 167–188. doi:10.3233/JCS-1996-42-304

Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan. 2019. CT-wasm: type-driven secure

cryptography for the web ecosystem. Proc. ACM Program. Lang. 3, POPL (2019), 77:1–77:29. doi:10.1145/3290390

Hans Winderix, Marton Bognar, Lesly-Ann Daniel, and Frank Piessens. 2024. Libra: Architectural Support For Principled,

Secure And Efficient Balanced Execution On High-End Processors. In Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, CCS 2024, Salt Lake City, UT, USA, October 14-18, 2024, Bo Luo, Xiaojing Liao,

Jun Xu, Engin Kirda, and David Lie (Eds.). ACM, 19–33. doi:10.1145/3658644.3690319

Received 2025-03-25; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 323. Publication date: October 2025.

https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/BFB0058037
https://doi.org/10.1145/3704880
https://doi.org/10.1145/3280984
https://doi.org/10.1145/3436809
https://doi.org/10.5281/zenodo.16929228
https://doi.org/10.5281/zenodo.16929228
https://doi.org/10.1145/3548606.3560689
https://doi.org/10.1145/3704887
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.1145/3290390
https://doi.org/10.1145/3658644.3690319

	Abstract
	1 Introduction
	2 Key Ideas
	3 Generalising Simulations to Hyperproperty Simulations
	3.1 k-Simulations and Synchronisers
	3.2 Hyperproperty Simulations
	3.3 Indistinguishability Simulations

	4 Non-Interference Preserving Optimisations
	4.1 Preserving Constant-Time
	4.2 Preserving NI
	4.3 Case Studies

	5 Related Work
	6 Conclusion & Future Work
	References

