
Target-Specific Refinement of Multigrid Codes
Richard Membarth and Philipp Slusallek

German Research Center for Artificial Intelligence
Computer Graphics Lab, Saarland University

Intel Visual Computing Institute
{richard.membarth,philipp.slusallek}@dfki.de

Marcel Köster, Roland Leißa, and Sebastian Hack

Compiler Design Lab, Saarland University
Intel Visual Computing Institute

{koester,leissa,hack}@cs.uni-saarland.de

Abstract—This paper applies partial evaluation to stage a sten-
cil code Domain-Specific Language (DSL) onto a functional and
imperative programming language. Platform-specific primitives
such as scheduling or vectorization, and algorithmic variants such
as boundary handling are factored out into a library that make
up the elements of that DSL. We show how partial evaluation can
eliminate all overhead of this separation of concerns and creates
code that resembles hand-crafted versions for a particular target
platform. We evaluate our technique by implementing a DSL
for the V-cycle multigrid iteration. Our approach generates code
for AMD and NVIDIA GPUs (via SPIR and NVVM) as well as
for CPUs using AVX/AVX2 alike from the same high-level DSL
program. First results show that we achieve a speedup of up
to 3× on the CPU by vectorizing multigrid components and a
speedup of up to 2× on the GPU by merging the computation
of multigrid components.

Index Terms—Multigrid codes, partial evaluation, domain-
specific language.

I. INTRODUCTION

Common imperative programming languages (C, Fortran,
etc.) provide simple abstractions of fundamental features
of a processor: variables to abstract from different storage
locations (registers, stack), expression syntax to abstract from
linearization, function calls to abstract from calling conventions,
etc. These abstractions are essential to write portable and
maintainable code productively. It is the job of the compiler to
remove the overhead these abstractions cause and map them
to efficient machine code.

However, to achieve high performance, the compiler’s code
optimizations are often not good enough. Many machine
properties such as SIMD instructions or the memory hierarchy
are not orchestrated well by modern compilers. There are
basically two reasons for this: First, it requires intricate
knowledge of the target architecture to come up with a
transformation strategy. Second, it requires domain knowledge
to justify the correctness of the transformation.

Many performance-critical codes are manually “optimized”
towards a specific target architecture. This is of course error-
prone, results in unportable code, and is a maintenance and
debugging nightmare. Therefore, it is common practice to use
DSLs or other program generation tools to ease this process.

To make writing DSLs more productive, DSLs are often
embedded into a host language using staging: The syntax of the
host language is overloaded (where possible) to construct the
program representation of the DSL program. A DSL compiler
written in the host language then compiles the DSL program

during the runtime of the host program. While this approach
avoids the tedious task of building a front end for the DSL, it
has significant drawbacks:

1) The programmer has to resolve the overloading to
understand which part of the code belongs to the DSL
program or to the host program.

2) Although the host program may build the DSL program
successfully, the constructed DSL program is not guar-
anteed to be well-formed and might fail to compile. The
programmer does not notice this at compile time but only
when he runs the host program.

3) The DSL designer has to write a code generator for every
DSL language he wants to host.

In this paper, we resurrect an old idea that interestingly has
not been picked up much lately, although it solves all of the
problems just mentioned: The (first) Futamura projection [8].
The easiest way to implement a DSL is to write an interpreter
for it: For every language element, give a piece of code that
implements the semantics of this language element. Essentially,
the DSL implementation comes as a library. According to
the first Futamura projection, partially evaluating the DSL
interpreter with an input program compiles the DSL program:
a process we call refinement. The result is basically that
the interpreter is inlined into the program to be interpreted.
Section II discusses this approach in detail by means of an
idealized stencil code example. Note that this corresponds
exactly to the output of a compiler that traverses a program
representation and emits a piece of code per language element.
This approach solves the above-mentioned problems in the
following way:

1) There is only one program: The DSL program is the
host program that contains explicit calls to the interpreter
library.

2) Because there is only a single program, the programmer
is notified at compile time if the program is well-formed
or not.

3) The partial evaluator is a reusable component of the
(host) language and can be reused for every staged DSL.

In this paper, we present a small, staged DSL for the V-
cycle, an important multigrid iteration for solving linear systems
using the multigrid method [4], [19]. We use a functional and
imperative programming language called Impala to describe the
algorithm on a high level, independent of the target platform. To

fn apply_stencil(x: int, y: int,
field: Field, stencil: Stencil,
border: fn(int, int, int) -> int
) -> float {

let mut tmp = 0.0f;
for i, j in stencil.each() {
let xx = border(x+i, 0, field.cols-1);
let yy = border(y+j, 0, field.rows-1);
tmp += field(xx, yy) * stencil(i, j);

}
tmp

}

Listing 1: A generic function that applies a stencil (with respect
to boundary handling) to an input field at a given position.

this end, we derive suitable abstractions for the important and
performance-critical operations of the algorithm and factor them
out using higher-order functions. They essentially constitute
the language elements of our DSL and are implemented by an
expert for every target architecture. By partially evaluating the
DSL program with an implementation of the language elements
for a certain architecture, we obtain a program that looks like
it was specifically written for that particular target architecture.

In our experiments, we show that, using this approach,
we can map the V-cycle algorithm to different hardware
architectures: CPUs and GPUs. In the architecture mapping,
we perform important optimizations like vectorization and
cache-aware iteration reordering without tainting the other
parts of the implementation with hardware-dependent, low-
level details. In our previous work [13], we have demonstrated
that our technique can compete with manually-tuned expert
implementations of simple stencil codes while being orders of
magnitudes smaller in terms of code size. In this paper, we
demonstrate that our approach scales well to more complex
stencil codes by considering not only single stencils for
optimization, but sequences of operations.

II. EMBEDDING OF DSLS

This section describes the two main techniques to embed a
DSL in Impala by means of a small stencil code example:

1) Higher-order functions allow to design generic domain-
specific APIs that can be instantiated for every target
architecture by highly-optimized implementations.

2) Partial evaluation entirely removes the overhead of these
generic implementations by specializing the higher-order
functions to their arguments.

A. Higher-Order Functions

In stencil algorithms it is often necessary to access neigh-
boring elements which lie outside the actual field. Many
frameworks provide hard-coded solutions like setting these
virtual elements to zero, mirror the field, or clamp to border
values. It is good programming practice to not hard-code
boundary handling into the iterator but to separate this concern
from other concerns of the implementation. This separation
of concerns can be elegantly implemented with higher-order
functions: In Listing 1 the apply_stencil function expects

fn clamp(idx: int, lower: int, upper: int) -> int {
min(upper, max(lower, idx))

}

let stencil: Stencil = { /∗ . . . ∗ / };
let mut out: Field = { /∗ . . . ∗ / };

for x, y in iterate(out) {
out(x, y) = apply_stencil(x, y, field, stencil,

clamp);
}

Listing 2: Applying a given stencil to a field using clamp for
boundary handling.

a stencil which it wants to apply on a field field. The
boundary handling logic is passed as function via border.
For example, in order to clamp the border to the input field, the
programmer defines an appropriate clamp function and passes
it to apply_stencil as shown in Listing 2. Of course, a
naïve implementation of the higher-order functions by the
compiler inflicts the performance penalty of closure allocation,
function call, and so on.

B. Partial Evaluation

In Impala the programmer can annotate a call with @ to
partially evaluate that function call at compile time. This
will have the effect that the function is specialized to all
constant parameters as far as possible. By annotating the
call to apply_stencil with @, the compiler generates a
specialization where the definition of clamp is propagated
into the body of apply_stencil. In this way, each call to
border is specialized to a call to clamp.

out(x, y) = @apply_stencil(x, y, field, stencil,
clamp);

It is important to note that @ does not change the semantics
of the program. If all @s are elided, the program still computes
the same result. Equally important, @ is not an annotation
that the compiler can ignore at will. Every @-annotated call
activates one run of Impala’s partial evaluator. Once activated,
the partial evaluator keeps partially evaluating as long it makes
progress. The rules of Impala’s partial evaluator are formally
defined (however, this is outside the scope of this paper) and
are proven to preserve the termination of the program as long
as partial evaluation does not create new @-annotated calls.
A special $ annotation can exclude code parts from being
partially evaluated, if that is desired (for example some loops
with constant trip count as they appear in loop tiling).

Partial evaluation also helps to specialize apply_stencil
to the stencil itself. If the stencil is known at compile time
(which is often the case), the programmer certainly wants to
unroll the inner loop and replace the accesses to stencil with
concrete values. The partial evaluator transitively runs into the
apply_stencil function, unrolls the stencil.each()
function and propagates the stencil constants. Furthermore,
as calls to border have already been replaced with calls

to clamp, the partial evaluator will specialize both calls to
clamp in the inner loop.

The example from Listing 1 can be optimized even further:
It is also possible to create specialized variants for different
region of the field with tailored boundary handling for each
region [13]. For example, the vast main area of the field does
not need any boundary handling at all. This saves unneeded
boundary handling checks.

The function apply_stencil is essentially an “inter-
preter” that applies a stencil to a field at a given position.
The aspects of boundary handling, application of the stencil,
and the stencil itself are cleanly separated. Partial evaluation
eliminates the overhead of this separation of concerns and
produces high-performance code that looks like if all aspects
had been hand-coded into a single piece of code.

III. CODE REFINEMENT

Listing 1 is a straightforward CPU implementation. In this
section we show how to map implementations to different
acceleration devices.

A. Code Generation for Accelerators

Impala offers built-in, compiler-known, higher-order func-
tions to trigger code generation for GPUs as well as vector-
ization for CPUs with SIMD instruction sets. For example,
the following function behaves like a loop ranging from 0
to size while invoking body in each iteration:

fn vectorize(size: int, length: int,
body: fn() -> ()
) -> ();

However, the body is actually vectorized with SIMD width
length [11]. Likewise, the following function triggers code
generation for NVVM1, an Intermediate Representation (IR)
for NVIDIA GPUs, using the given blocking for the given
grid:

fn nvvm(grid: (int, int, int),
block: (int, int, int),
body: fn() -> ()
) -> ();

Impala lambda-lifts the body [9] and resolves all dependencies
to surrounding data. Any data needed from the outside is
automatically copied to the GPU. Output data is pushed back
to the CPU.

In a similar fashion, Impala offers built-in functions to
generate OpenCL and CUDA source code as well as SPIR2,
an IR for OpenCL. In contrast to pragma-based solutions like
OpenACC or OpenMP, Impala’s built-in functions are proper
functions which integrate seamlessly into Impala’s type system
and expect Impala values. In particular, we can wrap a call to
such a function within another function. This is not possible
with pragmas.

1http://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
2www.khronos.org/registry/spir/specs/spir_spec-1.2.pdf

B. Supporting Accelerators in the DSL

Reconsider Listing 2. We use the function

fn iterate(field: Field,
body: fn(int, int) -> ()
) -> ();

to abstract over the exact iteration behavior of the field. Impala’s
for-construct is just syntactic sugar for calling a higher-order
function while passing the body as lambda function.

iterate(field, |x, y| /∗ body ∗ /);

This allows DSL developers to overload for-constructs and
to provide a target-specific iteration strategy, that may use
vectorize or nvvm.

In order to vectorize the stencil computation with vector
length 8 for AVX or AVX2, we use the aforementioned
vectorize function to implement iterate:

fn iterate(field: Field,
body: fn(int, int) -> ()
) -> () {

for y in range(0, field.rows) {
vectorize(field.cols, 8, || -> () {
let x = get_thread_id();
body(x, y);

});
}

}

Note that we have not touched apply_stencil itself. We
can also implement other versions of iterate which map to
other accelerators, for example, by using the nvvm function.
Each iterate can act as drop-in replacement for another
one.

Again, this cleanly separates the overall algorithm from the
concrete implementations of its building blocks. By partial
evaluation, all those parts are fused into a piece of code that
looks like if it had been hand-coded explicitly for the particular
architecture.

IV. EVALUATION

In this section, we discuss the implementation of a DSL
for the V-cycle and show first results on different target
architectures. As target hardware, we consider an Intel Core i7-
3770K, an NVIDIA GeForce GTX 680, and an AMD Radeon
R9 290X.

A. A DSL for the V-Cycle

The basic idea of the multigrid method is to smooth the error
(e. g., using an iterative method like Jacobi or Gauss-Seidel) on
different resolutions of the same data. The V-cycle describes
one possible multigrid iteration as summarized in Algorithm 1.

The restrict and interpolate methods are used to transform
data between different resolutions of the multigrid. On each
level, the error is smoothed (smoother) and the error is
estimated (residual). This process is recursive and starts at
the finest resolution.

A DSL for the V-cycle should implement the algorithm
described in Algorithm 1, but give the programmer the flexi-
bility to choose custom methods for the multigrid components.

http://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
www.khronos.org/registry/spir/specs/spir_spec-1.2.pdf

Algorithm 1: Recursive V-cycle:
u
(k+1)
h = Vh

(
u
(k)
h , Ah, fh, ν1, ν2

)
.

1 if coarsest level then
2 solve Ahuh = fh exactly or by many smoothing

iterations
3 else
4 ū

(k)
h = Sν1h

(
u
(k)
h , Ah, fh

)
{pre-smoothing}

5 rh = fh −Ahū(k)h {compute residual}
6 rH = Rrh {restrict residual}
7 eH = VH

(
0, AH , rH , ν1, ν2

)
{recursion}

8 eh = PeH {interpolate error}

9 ũ
(k)
h = ū

(k)
h + eh {coarse grid correction}

10 u
(k+1)
h = Sν2h

(
ũ
(k)
h , Ah, fh

)
{post-smoothing}

11 end

Moreover, it should allow to specify additional properties
such as the depth of the recursion, the number of smoothing
steps, etc. Using Impala, we pass the multigrid components
as higher-order functions to the implementation of the V-
cycle. By partially evaluating the V-cycle implementation, the
user-provided multigrid components are inlined and optimized
with respect to the input (stencils, etc.). Listing 3 shows the
implementation of a DSL for the V-cycle and its invocation.

A naïve implementation of the V-cycle invokes each multi-
grid component according to the schedule of Algorithm 1
using the iterate function introduced in Section III. By
providing specialized iterate implementations for CPU and
GPU, we map the same algorithm to different target platforms.
Likewise, vectorization is triggered by using the vectorize
function in case we use a mapping for AVX. However, hand-
tuned implementations of the V-cycle might merge multiple
multigrid components in order to save unnecessary reads/writes
to memory. The same optimization can be achieved in Impala by
custom iterate functions that compute multiple components.
As an example, consider the computation of the residual
component followed by the restrict component: Instead of
computing the residual for the whole field first and then restrict
the field produced by the residual, we compute the residual
only for two rows and restrict the residual before the next rows
are processed. This pipelined processing allows to hold the
result of the restrict component in cache on the CPU and allows
to merge compute kernels on the GPU when using scratchpad
(local or shared) memory. On the GPU, this has the same effect
as loop fusion. Listing 4 illustrates this for the CPU. The index
passed to the residual and restrict component refer to
the temporary field. The offset to the current row of the other
fields are tracked in the Field object and are used when
accessing field elements. Merging the two components is only
valid if the operation of the multigrid components is known:
in our example, the restrict component is allowed to access
two rows only. Otherwise, a larger temporary array has to be
allocated and pre-computed before applying restrict.

fn vcycle_dsl(input: Field, levels: int,
vsteps: int, ssteps: int,
smoother: fn(/∗ . . . ∗ /) -> (),
residual: fn(/∗ . . . ∗ /) -> (),
restrict: fn(/∗ . . . ∗ /) -> (),
interpolate: fn(/∗ . . . ∗ /) -> ()
) -> Field {

/∗ a l l o c a t e memory f o r a l l l e v e l s ∗ /
/ / Sol , RHS , Res , Tmp

/ / v c y c l e i m p l e m e n t a t i o n
fn vcycle_dsl_intern(level: int) -> () {

if level == levels-1 {
/ / smooth
for i in range(0, ssteps) {
if i>0 { swap(Sol(level), Tmp(level)); }
for x, y in iterate(Sol(level)) {
solver(x, y, /∗ f i e l d s ∗ /);

}
}

} else {
/ / pre−smooth
for i in range(0, ssteps) {
if i>0 { swap(Sol(level), Tmp(level)); }
for x, y in iterate(Sol(level)) {
solver(x, y, /∗ f i e l d s ∗ /);

}
}

for x, y in iterate(Res(level)) {
residual(x, y, /∗ f i e l d s ∗ /);

}

for x, y in iterate(RHS(level+1)) {
restrict(x, y, /∗ f i e l d s ∗ /);

}

/ / r e c u r s i o n
vcycle_dsl_intern(level+1);

for x, y in iterate(Sol(level)) {
interpolate(x, y, /∗ f i e l d s ∗ /);

}

/ / pos t−smooth
for i in range(0, ssteps) {
if i>0 { swap(Sol(level), Tmp(level)); }
for x, y in iterate(Sol(level)) {
solver(x, y, /∗ f i e l d s ∗ /);

}
}

}
}

/ / c a l l t h e v c y c l e i m p l e m e n t a t i o n
for i in range(0, vsteps) {
vcycle_dsl_intern(0);

}
}

/ / s p e c i a l i z e c a l l t o v c y c l e _ d s l
let result = @vcycle_dsl(input, levels, vsteps,

ssteps, jacobi, residual,
restrict, interpolate);

Listing 3: Implementation of the DSL for the V-cycle.

B. Results

Our first evaluation of the V-cycle DSL presented in Sec-
tion IV-A shows promising results. Table I lists the execution

fn iterate_rr(Sol: Field, Res: Field,
RHSF: Field, RHSC: Field,
residual: fn(/∗ . . . ∗ /) -> (),
restrict: fn(/∗ . . . ∗ /) -> ()
) -> () {

/ / a l l o c a t e t emporary a r r a y f o r 2 rows
let mut tmp: Field = { /∗ . . . ∗ / };

for y in $range_step(0, Res.rows, 2) {
/ / compute t h e r e s i d u a l f o r two rows
for x in $range(0, Res.cols) {

@residual(x, 0 /∗ . . . ∗ / Sol, tmp, RHSF);
@residual(x, 1 /∗ . . . ∗ / Sol, tmp, RHSF);

}
/ / r e s t r i c t t h e r e s i d u a l o f two rows
for x in $range(0, RHSC.cols) {

@restrict(x, 0 /∗ . . . ∗ / tmp, RHSC);
}

}
}

Listing 4: Merging residual and restrict computation on the
CPU.

Table I: Execution times in ms for the components of the
V-cycle DSL for a field of size 2048× 2048 on an Intel Core
i7-3770K (CPU & AVX).

Mapping smoother residual restrict interpolate

CPU 11.63 11.21 1.61 2.24
CPU:M 11.63 12.18 2.24

AVX 3.98 3.99 2.33 3.39
AVX:M 3.98 4.10 3.39

time in ms on the CPU for the components of the V-cycle on
the first level. In addition to a non-vectorized CPU mapping
and a vectorized mapping for AVX, we list the execution time
when merging the residual and restrict components (CPU:M
and AVX:M). It can be seen that we get a speedup of 3× for
most components. Only restrict and interpolate are slower due
to their memory access pattern. The merged residual and restrict
computation for AVX vectorizes only the residual component.

Table II lists the corresponding execution time in ms on the
GPU using mapping strategies for NVVM and SPIR. Merging
the residual and restrict components is almost twice as fast as
computing both components in separate compute kernels on
the GPU.

C. Discussion

The proposed DSL can be easily extended to express
different multigrid iterations. It is actually sufficient to change
the recursion in the V-cycle implementation in order to get the
schedule for the W-cycle multigrid iteration.

The performance evaluation has shown that we can map
the same high-level description to different target platforms
by providing target-specific mappings. Moreover, we merge
multiple components as shown exemplarily for the residual
and restrict components.

Table II: Execution times in ms for the components of the
V-cycle DSL for a field of size 2048× 2048 on an NVIDIA
GeForce GTX 680 and an AMD Radeon R9 290X.

Mapping smoother residual restrict interpolate

NVVM 0.51 0.53 0.18 0.35
NVVM:M 0.51 0.34 0.35

SPIR 0.19 0.19 0.08 0.16
SPIR:M 0.19 0.14 0.16

We believe that using our approach, we can get the same
performance as target-dependent, hand-optimized implemen-
tations for multigrid solvers (e. g., [12]). For single stencil
operators, we have already shown that we achieve competitive
results compared to hand-tuned implementations on GPU
accelerators [13]. Currently, we are working on mappings
to merge computations across not only two, but several
components in order to get the same performance as hand-tuned
implementations.

V. RELATED WORK

Multigrid solvers and in particular stencil codes are one
of the most important algorithm classes in HPC and have
been a popular research topic for decades. Still, a multitude of
solutions exist and emerge to describe stencil codes at a high
level and to map them to different target architectures.

Specialized libraries like DUNE [2] or hypre [1] provide
a collection of solvers for large linear systems of equations
on massively parallel machines. Auto-tuning frameworks like
PATUS (Parallel Auto-Tuned Stencils) [10], [5] or the parallel
Optimized Sparse Kernel Interface (pOSKI) [3] generate
specialized codes for stencil computations on shared-memory
architectures. DSLs for stencil codes provide special language
constructs to describe stencil computations and to map the
computation to parallel target hardware [7], [18], [14], [16].

We use language embedding and DSLs to describe multigrid
solvers and stencil codes. However, we give the programmer
additional opportunities to influence the optimization and
transformation process from within the language.

Other DSL approaches such as Liszt [7], Pochoir [18], and
HIPAcc [14] focus on providing a simple and concise syntax
to express algorithms. However, they offer no control over
the applied optimization strategies. An advancement to this is
the explicit specification of schedules in Halide [16]: Target-
specific scheduling strategies can be defined by the programmer.
Still it is not possible to trigger code refinement explicitly.

An alternative to these approaches is explicit code refinement.
It can be achieved through staging like in Terra [6] and in
Spiral in Scala [15]. Terra is an extension to Lua. Program
parts in Lua can be evaluated and used to build Terra code
during the run of the Lua program. However, this technique
makes use of two different languages and type safety of the
constructed fragments can only be checked before executing
the constructed Terra code. Spiral in Scala uses the concept

of lightweight modular staging [17] to annotate types in Scala.
Computations which make use of these types, are automatically
subject to code refinement.

VI. CONCLUSION

In this paper, we present an approach for DSL creation via
embedding into our host language Impala. It features high-
level abstractions through higher-order functions and explicit
control over code specialization through partial evaluation.
These features allow to realize a novel refinement concept:
We are able to abstract from target-machine details and to
specialize code for different platforms.

As an example, we realize a DSL for multigrid codes. We
are able to generate code for CPUs (including vectorization)
and GPUs by only switching the mapping for the desired target
architecture. This process does not involve an adaption of the
implemented algorithm, since the realization is cleanly sepa-
rated from the surrounding building blocks. Code refinement
can then be applied to these different building blocks in order
to glue them together into a single piece of code. The resulting
code does not contain any abstractions nor unspecialized code
for the target architecture. Starting from the same high-level
description, we achieve a speedup of up to 3× on the CPU
through vectorizing and a speedup of up to 2× on the GPU
through kernel fusion.

VII. ACKNOWLEDGMENTS

This work is partly supported by the Federal Ministry of
Education and Research (BMBF), as part of the Collaborate3D
and ECOUSS projects as well as by the Intel Visual Computing
Institute Saarbrücken. It is also co-funded by the European
Union (EU), as part of the Dreamspace project.

REFERENCES

[1] A. Baker, R. Falgout, T. Kolev, and U. M. Yang. Scaling Hypre’s
Multigrid Solvers to 100,000 Cores. High-Performance Scientific
Computing, pages 261–279, 2012.

[2] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger,
and O. Sander. A Generic Grid Interface for Parallel and Adaptive
Scientific Computing. Part I: Abstract Framework. Computing, 82(2):103–
119, July 2008.

[3] Berkeley Benchmarking and Optimization (BeBOP) Group, University of
California, Berkeley. pOSKI: Parallel Optimized Sparse Kernel Interface
Library, Apr. 2012.

[4] W. L. Briggs, H. Van Emden, and S. F. McCormick. A Multigrid Tutorial,
volume 2. Society for Industrial And Applied Mathematics (SIAM),
June 2000.

[5] M. Christen, O. Schenk, and H. Burkhart. PATUS: A Code Generation
and Autotuning Framework for Parallel Iterative Stencil Computations
on Modern Microarchitectures. In Proceedings of the 25th IEEE
International Parallel & Distributed Processing Symposium (IPDPS),
pages 676–687. IEEE, May 2011.

[6] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek. Terra: A Multi-
Stage Language for High-Performance Computing. In Proceedings of
the 34th annual ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 105–116. ACM, June 2013.

[7] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos,
E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and
P. Hanrahan. Liszt: A Domain Specific Language for Building Portable
Mesh-based PDE Solvers. In Proceedings of the 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pages 9:1–9:12. ACM, Nov. 2011.

[8] Y. Futamura. Partial Evaluation of Computation Process—An Approach to
a Compiler-Compiler. Systems, Computers, Controls, 1999. Reproduction
of the 1971 paper.

[9] T. Johnsson. Lambda Lifting: Transforming Programs to Recursive
Equations. In Functional Programming Languages and Computer
Architecture, 1985.

[10] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An Auto-
Tuning Framework for Parallel Multicore Stencil Computations. In
Proceedings of the 24th IEEE International Parallel & Distributed
Processing Symposium (IPDPS), pages 1–12. IEEE, Apr. 2010.

[11] R. Karrenberg and S. Hack. Whole-Function Vectorization. In
Proceedings of the 9th Annual IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages 141–150. IEEE,
Apr. 2011.

[12] H. Köstler, M. Stürmer, and T. Pohl. Performance Engineering to Achieve
Real-time High Dynamic Range Imaging. Real-Time Image Processing,
pages 1–13, Jan. 2013.

[13] M. Köster, R. Leißa, S. Hack, R. Membarth, and P. Slusallek. Code
Refinement of Stencil Codes. Parallel Processing Letters (PPL), 24(3):1–
16, Sept. 2014.

[14] R. Membarth, F. Hannig, J. Teich, and H. Köstler. Towards Domain-
specific Computing for Stencil Codes in HPC. In Proceedings of the
2nd International Workshop on Domain-Specific Languages and High-
Level Frameworks for High Performance Computing (WOLFHPC), pages
1133–1138. IEEE, Nov. 2012.

[15] G. Ofenbeck, T. Rompf, A. Stojanov, M. Odersky, and M. Püschel.
Spiral in Scala: Towards the Systematic Construction of Generators
for Performance Libraries. In Proceedings of the 12th International
Conference on Generative Programming and Component Engineering
(GPCE), pages 125–134. ACM, Oct. 2013.

[16] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and
F. Durand. Decoupling Algorithms from Schedules for Easy Optimization
of Image Processing Pipelines. ACM Transactions on Graphics (TOG),
31(4):32:1–32:12, July 2012.

[17] T. Rompf and M. Odersky. Lightweight Modular Staging: A Pragmatic
Approach to Runtime Code Generation and Compiled DSLs. In Proceed-
ings of the 9th International Conference on Generative Programming
and Component Engineering (GPCE), pages 127–136. ACM, Oct. 2010.

[18] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson. The Pochoir Stencil Compiler. In Proceedings of the 23rd
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 117–128. ACM, June 2011.

[19] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic
Press, Dec. 2000.

	Introduction
	Embedding of DSLs
	Higher-Order Functions
	Partial Evaluation

	Code Refinement
	Code Generation for Accelerators
	Supporting Accelerators in the DSL

	Evaluation
	A DSL for the V-Cycle
	Results
	Discussion

	Related Work
	Conclusion
	Acknowledgments
	References

