Improving the Precision of Approximations in WCET Analysis for Multi-Core Processors

Michael Jacobs

Saarland University, Saarbrücken COMPUTER SCIENCE

Introduction

WCET Analysis

- Timing-critical applications
 - Strict deadlines on the response times
- ► WCET bound of a program
 - Upper bound on the execution times
 - Depends on behavior at microarch. level
 - Obtained by WCET analysis
- Modern processors are complex
 - Designed for average-case performance
 - Too many behaviors at microarch. level

Multi-Core Processors

- Resources shared between the cores
 - Data buses
 - Caches
- Advantages
 - Reduced weight
 - Reduced energy consumption
 - Reduced production costs
- Shared resource interference
 - Performance can drop

Existing Approaches

- Limited to particular...
 - In classes of processors
 - ways of approximation
- Formalisms and algorithms differ
- > Yet, they follow a **common** methodology
 - Coarse approximation as baseline
 - Exclude some spurious behavior

- Exhaustive simulation not possible
- Need for approximation
 - Hide some microarchitectural details
- Challenge for WCET analysis
 - Consider all access interleavings
- Need for approximation

Our Contribution

- A meta approach
 - Formalizes common methodology

Meta Approach

- For simplicity
 - One program per core
 - Each program is run at most once
- Concrete execution behavior of given system
 - $Traces \subset Universe$
- \blacktriangleright WCET of program on core C
 - $WCET_C = \max_{t \in Traces} et_C(t)$
- Approximation by abstract traces
 - Abstract model (*Traces*, γ_{trace})

Property Lifting Example

- Round-robin bus arbitration
 - Before a requested bus access is granted, at most one bus access per concurrent core is granted.

Blocked cycles for a single bus access

Overapproximates concrete behavior

Provides WCET bound

$$\max_{\substack{t \in Traces}} UB_{et_C}(\hat{t}) \geq WCET_C$$

Infeasible abstract traces

$$\widehat{\textit{Infeas}} = \{ \hat{t} \mid \hat{t} \in \widehat{\textit{Traces}} \land \gamma_{\textit{trace}}(\hat{t}) \cap \textit{Traces} = \emptyset \}$$

- Only describe spurious behavior
- May dominate WCET bound calculation
- System properties

 $Prop = \{P_1, \ldots, P_{\#Prop}\}$

Hold for each system behavior

 $\forall t \in Traces : \forall P_i \in Prop : P_i(t)$

Lifting properties to abstract traces

 \blacktriangleright No access takes longer than l_a cycles

- A round-robin property Shall hold for all $t \in Traces$ $P_{rr}(t) \Leftrightarrow [\# blockedCycles_{C}(t)]$ $< \# accesses_C(t) \cdot (\# Cores - 1) \cdot l_a$ • Lifting P_{rr} to abstract traces $\exists t \in \gamma_{\textit{trace}}(\hat{t}) : P_{\textit{rr}}(t)$ $\Leftrightarrow \exists t \in \gamma_{trace}(\hat{t}):$ #blockedCycles_C(t)
 - $< \#_{2} < \#_{2} < e_{2} < e_{3} < e_{4}$

Soundness criterion for lifted version $\widehat{P_i}$ of P_i

 $\exists t \in \gamma_{trace}(\hat{t}) : P_i(t)] \Rightarrow \widehat{P_i}(\hat{t})$

• Detecting infeasible abstract trace \hat{t}

 $\exists P_i \in Prop : \neg \widehat{P_i}(\hat{t})] \Rightarrow \hat{t} \in \widehat{lnfeas}$

Remove some infeasible abstract traces

 $Less Traces = \{ \hat{t} \mid \hat{t} \in Traces \land \forall P_i \in Prop : \widehat{P_i}(\hat{t}) \}$

Potentially improved WCET bound

$$\max_{i \in Traces} \overset{UB}{=} et_C(\hat{t}) \geq \max_{\hat{t} \in Less Traces} \overset{UB}{=} et_C(\hat{t}) \geq WCET_C$$

$$\stackrel{\leq}{\Rightarrow} \stackrel{IB}{\#} blockedCycles_{C}(\hat{t})$$

$$\stackrel{\leq}{\leq} \stackrel{UB}{\#} accesses_{C}(\hat{t}) \cdot (\#Cores - 1) \cdot \boldsymbol{l}_{a}$$

$$\stackrel{\Leftrightarrow}{\Leftrightarrow} : \widehat{P}_{rr}(\hat{t})$$

Created with ATEX beamerposter http://www.ctan.org/tex-archive/macros/latex/contrib/beamerposter