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universityNeed for WCET Analysis

Embedded systems
Safety-critical applications

I E.g. in automotive or medical industry

Strict timing requirements
I Dictated by the physical environment

Sound execution time bounds for programs needed

⇒Worst-Case Execution Time (WCET) analysis
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Execution time
I Number of processor cycles
I Needed to execute a given program
I On a given hardware platform

⇒ Bounds are specific to a hardware platform

Execution time depends on
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Bounds

Execution timesI Program input
Which path through the program is taken?

I Initial system state
E.g. load of a cached memory block faster

⇒ Sound bounds must hold for all possible combinations
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A Formalization

Exact behavior of a Core under Consideration (CuC)
I Set of actual system states: S
I Transitions under cycles of the CuC:

Transitions ⊆ S× S
I A trace describes one execution behavior

s0

s1

s2

s3

s4

s5Not suitable for timing analysis
I Realistic systems are complex
I Large space of initial system states and program inputs

F Exhaustive simulation is no option
I Many details irrelevant to timing

⇒ Abstract timing models needed
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Abstract timing model of the CuC
I Set of abstract system states: Ŝ
I Abstract cycle semantics of the CuC:

̂Transitions ⊆ Ŝ× Ŝ

An abstract state may describe several concrete states
ŝ0

s0, s2

γ
ŝ1

s1, s3

γ

̂Transitions subsumes Transitions

An abstract trace may describe several concrete traces
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Abstract models over-estimate the concrete execution behavior
Example

I Concrete system
s0 → s1, s2 → s3

I Abstraction
ŝ0

s0, s2

γ
ŝ1

s1, s3

γ

I Abstract model
ŝ0 → ŝ1

I Described concrete traces
s0 → s1, s2 → s3, s0 → s3, s2 → s1

Abstraction has introduced infeasible traces
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Sound and precise analyses exist
Already high analysis complexity

I Uncertainty about successor states
F Non-determinism introduced by abstraction
F Many case splits needed ŝ1

ŝ0

ŝ2

cache miss cache hit

I State space explosion
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Motivation
I Reduce price, weight and energy consumption

F Compared to multiple single-core processors
I Use processors from the mass market

F Further price reduction

Several cores share common resources
I Buses
I Caches core 1 core 2 . . . core n

shared
cache

shared
bus

Disadvantage: Interference on shared resources
I Subject of WP4 in R2
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Shared bus

One core at a time allowed to access
Bus arbitration avoids bus conflicts

I Grants access to one core
I Blocks other cores requesting access

Different arbitration protocols
I Round-robin
I FCFS (First-Come-First-Serve)
I TDMA (Time-Division-Multiple-Access)
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Bus interference
I Arbitration influences a core’s behavior
I Core behaves differently than with dedicated bus
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Shared cache

Several cores use the same cache lines
Core A evicts a block loaded by core B

I Core B may suffer an additional cache miss

Core A preloads a block for core B
I Core B enjoys an additional cache hit
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Cache capacity interference
I These additional misses and hits influence a core’s behavior
I Core behaves differently than with dedicated cache lines

Cache access interference
I Similar to bus interference
I Not considered for now
I Assume cache access resolved through shared bus arbitration
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Traditional WCET analysis
I Only considers one program executed on one core

Analysis for multi-core processors has to consider interference
I Bus interference
I Cache interference

Goal: Analyze program on one core

However, programs on other cores may influence its behavior

⇒ Need for special timing analysis techniques
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WCET Analysis for Multi-Core Processors

Only applicable to compositional processor architectures
I WCET analysis as if in isolation
I Add penalties

F Cycles blocked at the bus
F Additional cycles on cache misses

I Such processors are rarely available

Only consider a very abstract model of computation
I Based on superblocks

s0

exec0 = 4

µ0 = 2

s1

exec1 = 6

µ1 = 3

s2

exec2 = 3

µ2 = 3

Often only consider a single shared resource

⇒ Too restrictive
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First approach
I Analyzing the exact system behavior of all cores simultaneously

Cores access shared resources
I Different access interleavings exhibit different timing

Must consider all interleavings
State space explosion

I Similar to verification of parallel programs

Need for abstraction
I Which is the right level of abstraction?
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Exact system behavior

Coarse abstraction

Precision Complexity

Where is a good trade-off?
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Coarse abstraction as baseline
I Consider only the analyzed core
I Unknown state of the rest of the system
I A lot of infeasible interference

Improve by bounds on the interference
I Precise enough
I Efficiently obtained

Exclude infeasible traces
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A core executes a program part

Execution is blocked for a number of cycles at the bus

For many systems, this number can be bounded
Bounds can be based on

I The arbitration logic
I The concurrent access behavior

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 21 / 33



computer science

saarland
universityNumber of Blocked Cycles on a Concrete System

Bounds Based on the Arbitration Logic

Example: Round-robin arbitration
Worst-case scenario [Pellizzoni and Caccamo, 2010]

I All other cores are granted one access first

An access may last at most la cycles
Invariant for every feasible bus access

I #blocked(access) ≤ (n − 1) ∗ la

time

la la la. . .

≤ n − 1 times

Access
request

Lift to an abstract trace
I ∀t ∈ γ(t̂race) :

feasible(t)⇒ #blocked(t) ≤ UBNumAccesses(t̂race) ∗ (n − 1) ∗ la
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Bounds Based on the Concurrent Access Behavior

Consider event-driven bus arbitration
I Only blocked if another core has been granted access

Invariant for every feasible concrete trace
I It is not blocked longer than other cores access the bus
I Corresponds to the constraint

#blocked(trace) ≤ #concurrentBusAccesses(trace)

Lift to an abstract trace
I Exact amount of concurrent bus access cycles not known
I Pre-analyze the co-running tasks for an upper bound

[Wandeler et al., 2006, Pellizzoni et al., 2010]
F Per number of execution cycles
F UBNumConcurrentBusAccesses : N → N

I ∀t ∈ γ(t̂race) :
feasible(t)⇒ #blocked(t)

≤ UBNumConcurrentBusAccesses(#cycles(t̂race))
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Consider an abstract trace

̂ ̂ ̂ ̂ ̂ ̂

≥ 4≥ 3
γ

7

4

6

4

And the concrete traces it describes

Number of blocked cycles known for each concrete trace

Annotate abstract trace with a lower bound on them
Approximate coarse lower bound

I Without looking at the concrete traces
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Set of abstract traces for a program part̂ ̂ ̂ ̂ ̂ ̂

≥ 3 ≤ 4

̂ ̂ ̂ ̂ ̂

≥ 6 ≤ 3 E

̂ ̂ ̂ ̂ ̂ ̂ ̂

≥ 5 ≤ 4 E

̂ ̂ ̂ ̂ ̂ ̂

≥ 0 ≤ 3

Annotate lower bounds on the number of blocked cycles
Annotate upper bounds on the number of blocked cycles

I Derived for the concrete system and the arbitration protocol
I Hold for all feasible concrete traces described

Lower bound and upper bound contradict
I All concrete traces described are infeasible
I Then so is the abstract trace

Remove infeasible abstract traceŝ ̂ ̂ ̂ ̂ ̂ ≥ 3 ≤ 4̂ ̂ ̂ ̂ ̂ ̂ ≥ 0 ≤ 3
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Assume only cache capacity interference
I Cache not accessed by two cores at the same time

Coarse abstraction
I Each access could hit or miss the cache

Goal: Predict more cache hits
I Exclude some case splits

ŝ1

ŝ0

ŝ2

cache miss cache hit
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Independent of Co-Running Tasks

Analysis as if on a single-core processor [Ferdinand and Wilhelm, 1997]
Is an accessed block still a cache hit?

I Consider maximum time since last access
I How many changes to the cache could arbitrary programs on other cores

maximally make in that time?
I Is it enough to evict the cache block?
I If not, still a cache hit

Very conservative if co-running tasks do not make full use of the cache
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Depending on Co-Running Tasks

Same idea as before
Slight change to the classification

I How many changes to the cache can the co-running tasks maximally make
in that time?

Use an upper bound on the concurrent cache access behavior
I Per number of execution cycles

Pre-analyze the concurrent cores for this bound
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Approaches to Interference Bounding

Bus
interference

Cache
interference

Independent of
co-running

tasks

Based on
arbitration
protocol

Shared cache
analysis
independent of
co-running
tasks

Depending on
co-running

tasks

Based on
concurrent
access
behavior

Shared cache
analysis
depending on
co-running
tasks

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 31 / 33



computer science

saarland
universityOutline

1 WCET Analysis

2 Multi-Core Processors

3 Bounding Bus Interference

4 Bounding Cache Interference

5 A Classification of Approaches to Interference Bounding

6 Summary

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 32 / 33



computer science

saarland
universitySummary

WCET analysis for multi-core processors is important

There is potential for improvements
Find good trade-off

I Precision
I Complexity

Considering co-running tasks may lead to more precise results

Outlook
I Implement a WCET analysis for a multi-core processor
I Evaluate different levels of precision
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