
WCET Analysis for Multi-Core Processors

Michael Jacobs, Sebastian Hack,
Jan Reineke, Reinhard Wilhelm

Department of Computer Science
Saarland University

February 28, 2013

computer science

saarland
university

http://www.cdl.uni-saarland.de/people/jacobs
http://www.cdl.uni-saarland.de/people/hack
http://embedded.cs.uni-saarland.de/reineke.php
http://rw4.cs.uni-saarland.de/people/wilhelm.shtml
http://www.cs.uni-saarland.de/


computer science

saarland
universityOutline

1 WCET Analysis

2 Multi-Core Processors

3 Bounding Bus Interference

4 Bounding Cache Interference

5 A Classification of Approaches to Interference Bounding

6 Summary

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 2 / 33



computer science

saarland
universityNeed for WCET Analysis

Embedded systems
Safety-critical applications

I E.g. in automotive or medical industry

Strict timing requirements
I Dictated by the physical environment

Sound execution time bounds for programs needed

⇒Worst-Case Execution Time (WCET) analysis

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 3 / 33



computer science

saarland
universityExecution Time of a Computer Program

Execution time
I Number of processor cycles
I Needed to execute a given program
I On a given hardware platform

⇒ Bounds are specific to a hardware platform

Execution time depends on

Fr
eq

ue
nc

y

Execution
time

LB BCET WCET UB

Bounds

Execution timesI Program input
Which path through the program is taken?

I Initial system state
E.g. load of a cached memory block faster

⇒ Sound bounds must hold for all possible combinations

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 4 / 33



computer science

saarland
universityExact Behavior of a Computer System

A Formalization

Exact behavior of a Core under Consideration (CuC)
I Set of actual system states: S
I Transitions under cycles of the CuC:

Transitions ⊆ S× S
I A trace describes one execution behavior

s0

s1

s2

s3

s4

s5Not suitable for timing analysis
I Realistic systems are complex
I Large space of initial system states and program inputs

F Exhaustive simulation is no option
I Many details irrelevant to timing

⇒ Abstract timing models needed

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 5 / 33



computer science

saarland
universityWCET Analysis Based on Abstract Timing Models

Abstract timing model of the CuC
I Set of abstract system states: Ŝ
I Abstract cycle semantics of the CuC:

̂Transitions ⊆ Ŝ× Ŝ

An abstract state may describe several concrete states
ŝ0

s0, s2

γ
ŝ1

s1, s3

γ

̂Transitions subsumes Transitions

An abstract trace may describe several concrete traces

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 6 / 33



computer science

saarland
universityInfeasible Traces

Abstract models over-estimate the concrete execution behavior
Example

I Concrete system
s0 → s1, s2 → s3

I Abstraction
ŝ0

s0, s2

γ
ŝ1

s1, s3

γ

I Abstract model
ŝ0 → ŝ1

I Described concrete traces
s0 → s1, s2 → s3, s0 → s3, s2 → s1

Abstraction has introduced infeasible traces

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 7 / 33



computer science

saarland
universityWCET Analysis for Single-Core Processors

Sound and precise analyses exist
Already high analysis complexity

I Uncertainty about successor states
F Non-determinism introduced by abstraction
F Many case splits needed ŝ1

ŝ0

ŝ2

cache miss cache hit

I State space explosion

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 8 / 33



computer science

saarland
universityOutline

1 WCET Analysis

2 Multi-Core Processors

3 Bounding Bus Interference

4 Bounding Cache Interference

5 A Classification of Approaches to Interference Bounding

6 Summary

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 9 / 33



computer science

saarland
universityTransition to Multi-Core Processors

Motivation
I Reduce price, weight and energy consumption

F Compared to multiple single-core processors
I Use processors from the mass market

F Further price reduction

Several cores share common resources
I Buses
I Caches core 1 core 2 . . . core n

shared
cache

shared
bus

Disadvantage: Interference on shared resources
I Subject of WP4 in R2

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 10 / 33



computer science

saarland
universityBus Arbitration

Shared bus

One core at a time allowed to access
Bus arbitration avoids bus conflicts

I Grants access to one core
I Blocks other cores requesting access

Different arbitration protocols
I Round-robin
I FCFS (First-Come-First-Serve)
I TDMA (Time-Division-Multiple-Access)

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 11 / 33



computer science

saarland
universityBus Interference

Bus interference
I Arbitration influences a core’s behavior
I Core behaves differently than with dedicated bus

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 12 / 33



computer science

saarland
universityCache Sharing

Shared cache

Several cores use the same cache lines
Core A evicts a block loaded by core B

I Core B may suffer an additional cache miss

Core A preloads a block for core B
I Core B enjoys an additional cache hit

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 13 / 33



computer science

saarland
universityCache Interference

Cache capacity interference
I These additional misses and hits influence a core’s behavior
I Core behaves differently than with dedicated cache lines

Cache access interference
I Similar to bus interference
I Not considered for now
I Assume cache access resolved through shared bus arbitration

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 14 / 33



computer science

saarland
universityChallenges for WCET Analysis

Traditional WCET analysis
I Only considers one program executed on one core

Analysis for multi-core processors has to consider interference
I Bus interference
I Cache interference

Goal: Analyze program on one core

However, programs on other cores may influence its behavior

⇒ Need for special timing analysis techniques

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 15 / 33



computer science

saarland
universityExisting Approaches

WCET Analysis for Multi-Core Processors

Only applicable to compositional processor architectures
I WCET analysis as if in isolation
I Add penalties

F Cycles blocked at the bus
F Additional cycles on cache misses

I Such processors are rarely available

Only consider a very abstract model of computation
I Based on superblocks

s0

exec0 = 4

µ0 = 2

s1

exec1 = 6

µ1 = 3

s2

exec2 = 3

µ2 = 3

Often only consider a single shared resource

⇒ Too restrictive

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 16 / 33



computer science

saarland
universityConsidering Interference

First approach
I Analyzing the exact system behavior of all cores simultaneously

Cores access shared resources
I Different access interleavings exhibit different timing

Must consider all interleavings
State space explosion

I Similar to verification of parallel programs

Need for abstraction
I Which is the right level of abstraction?

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 17 / 33



computer science

saarland
universityPrecision versus Complexity

Exact system behavior

Coarse abstraction

Precision Complexity

Where is a good trade-off?

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 18 / 33



computer science

saarland
universityPrecision versus Complexity

Exact system behavior

Coarse abstraction

Precision

Complexity

Where is a good trade-off?

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 18 / 33



computer science

saarland
universityPrecision versus Complexity

Exact system behavior

Coarse abstraction

Precision Complexity

Where is a good trade-off?

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 18 / 33



computer science

saarland
universityPrecision versus Complexity

Exact system behavior

Coarse abstraction

Precision Complexity

Where is a good trade-off?

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 18 / 33



computer science

saarland
universityCoarse Abstraction + Interference Bounds

Coarse abstraction as baseline
I Consider only the analyzed core
I Unknown state of the rest of the system
I A lot of infeasible interference

Improve by bounds on the interference
I Precise enough
I Efficiently obtained

Exclude infeasible traces

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 19 / 33



computer science

saarland
universityOutline

1 WCET Analysis

2 Multi-Core Processors

3 Bounding Bus Interference

4 Bounding Cache Interference

5 A Classification of Approaches to Interference Bounding

6 Summary

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 20 / 33



computer science

saarland
universityBus Interference on a Concrete System

A core executes a program part

Execution is blocked for a number of cycles at the bus

For many systems, this number can be bounded
Bounds can be based on

I The arbitration logic
I The concurrent access behavior

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 21 / 33



computer science

saarland
universityNumber of Blocked Cycles on a Concrete System

Bounds Based on the Arbitration Logic

Example: Round-robin arbitration
Worst-case scenario [Pellizzoni and Caccamo, 2010]

I All other cores are granted one access first

An access may last at most la cycles
Invariant for every feasible bus access

I #blocked(access) ≤ (n − 1) ∗ la

time

la la la. . .

≤ n − 1 times

Access
request

Lift to an abstract trace
I ∀t ∈ γ(t̂race) :

feasible(t)⇒ #blocked(t) ≤ UBNumAccesses(t̂race) ∗ (n − 1) ∗ la

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 22 / 33



computer science

saarland
universityNumber of Blocked Cycles on a Concrete System

Bounds Based on the Arbitration Logic

Example: Round-robin arbitration
Worst-case scenario [Pellizzoni and Caccamo, 2010]

I All other cores are granted one access first

An access may last at most la cycles
Invariant for every feasible bus access

I #blocked(access) ≤ (n − 1) ∗ la

time

la la la. . .

≤ n − 1 times

Access
request

Lift to an abstract trace
I ∀t ∈ γ(t̂race) :

feasible(t)⇒ #blocked(t) ≤ UBNumAccesses(t̂race) ∗ (n − 1) ∗ la

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 22 / 33



computer science

saarland
universityNumber of Blocked Cycles on a Concrete System

Bounds Based on the Concurrent Access Behavior

Consider event-driven bus arbitration
I Only blocked if another core has been granted access

Invariant for every feasible concrete trace
I It is not blocked longer than other cores access the bus
I Corresponds to the constraint

#blocked(trace) ≤ #concurrentBusAccesses(trace)

Lift to an abstract trace
I Exact amount of concurrent bus access cycles not known
I Pre-analyze the co-running tasks for an upper bound

[Wandeler et al., 2006, Pellizzoni et al., 2010]
F Per number of execution cycles
F UBNumConcurrentBusAccesses : N → N

I ∀t ∈ γ(t̂race) :
feasible(t)⇒ #blocked(t)

≤ UBNumConcurrentBusAccesses(#cycles(t̂race))

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 23 / 33



computer science

saarland
universityNumber of Blocked Cycles on a Concrete System

Bounds Based on the Concurrent Access Behavior

Consider event-driven bus arbitration
I Only blocked if another core has been granted access

Invariant for every feasible concrete trace
I It is not blocked longer than other cores access the bus
I Corresponds to the constraint

#blocked(trace) ≤ #concurrentBusAccesses(trace)

Lift to an abstract trace
I Exact amount of concurrent bus access cycles not known
I Pre-analyze the co-running tasks for an upper bound

[Wandeler et al., 2006, Pellizzoni et al., 2010]
F Per number of execution cycles
F UBNumConcurrentBusAccesses : N → N

I ∀t ∈ γ(t̂race) :
feasible(t)⇒ #blocked(t)

≤ UBNumConcurrentBusAccesses(#cycles(t̂race))

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 23 / 33



computer science

saarland
universityBus Interference in an Abstract Model

Consider an abstract trace

̂ ̂ ̂ ̂ ̂ ̂

≥ 4≥ 3
γ

7

4

6

4

And the concrete traces it describes

Number of blocked cycles known for each concrete trace

Annotate abstract trace with a lower bound on them
Approximate coarse lower bound

I Without looking at the concrete traces

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 24 / 33



computer science

saarland
universityBus Interference in an Abstract Model

Consider an abstract trace

̂ ̂ ̂ ̂ ̂ ̂

≥ 4≥ 3

γ

7

4

6

4

And the concrete traces it describes

Number of blocked cycles known for each concrete trace

Annotate abstract trace with a lower bound on them
Approximate coarse lower bound

I Without looking at the concrete traces

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 24 / 33



computer science

saarland
universityBus Interference in an Abstract Model

Consider an abstract trace

̂ ̂ ̂ ̂ ̂ ̂

≥ 4≥ 3

γ
7

4

6

4

And the concrete traces it describes

Number of blocked cycles known for each concrete trace

Annotate abstract trace with a lower bound on them
Approximate coarse lower bound

I Without looking at the concrete traces

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 24 / 33



computer science

saarland
universityBus Interference in an Abstract Model

Consider an abstract trace

̂ ̂ ̂ ̂ ̂ ≥̂ 4

≥ 3

γ
7

4

6

4

And the concrete traces it describes

Number of blocked cycles known for each concrete trace

Annotate abstract trace with a lower bound on them

Approximate coarse lower bound

I Without looking at the concrete traces

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 24 / 33



computer science

saarland
universityBus Interference in an Abstract Model

Consider an abstract trace

̂ ̂ ̂ ̂ ̂ ̂

≥ 4

≥ 3
γ

7

4

6

4

And the concrete traces it describes

Number of blocked cycles known for each concrete trace

Annotate abstract trace with a lower bound on them
Approximate coarse lower bound

I Without looking at the concrete traces

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 24 / 33



computer science

saarland
universityBus Interference in an Abstract Model

Consider an abstract trace

̂ ̂ ̂ ̂ ̂ ̂

≥ 4

≥ 3

γ
7

4

6

4

And the concrete traces it describes

Number of blocked cycles known for each concrete trace

Annotate abstract trace with a lower bound on them
Approximate coarse lower bound

I Without looking at the concrete traces

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 24 / 33



computer science

saarland
universityDetecting Infeasible Abstract Traces

Set of abstract traces for a program part̂ ̂ ̂ ̂ ̂ ̂

≥ 3 ≤ 4

̂ ̂ ̂ ̂ ̂

≥ 6 ≤ 3 E

̂ ̂ ̂ ̂ ̂ ̂ ̂

≥ 5 ≤ 4 E

̂ ̂ ̂ ̂ ̂ ̂

≥ 0 ≤ 3

Annotate lower bounds on the number of blocked cycles
Annotate upper bounds on the number of blocked cycles

I Derived for the concrete system and the arbitration protocol
I Hold for all feasible concrete traces described

Lower bound and upper bound contradict
I All concrete traces described are infeasible
I Then so is the abstract trace

Remove infeasible abstract traceŝ ̂ ̂ ̂ ̂ ̂ ≥ 3 ≤ 4̂ ̂ ̂ ̂ ̂ ̂ ≥ 0 ≤ 3

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 25 / 33



computer science

saarland
universityDetecting Infeasible Abstract Traces

Set of abstract traces for a program part̂ ̂ ̂ ̂ ̂ ̂ ≥ 3

≤ 4

̂ ̂ ̂ ̂ ̂ ≥ 6

≤ 3 E

̂ ̂ ̂ ̂ ̂ ̂ ̂ ≥ 5

≤ 4 E

̂ ̂ ̂ ̂ ̂ ̂ ≥ 0

≤ 3

Annotate lower bounds on the number of blocked cycles

Annotate upper bounds on the number of blocked cycles
I Derived for the concrete system and the arbitration protocol
I Hold for all feasible concrete traces described

Lower bound and upper bound contradict
I All concrete traces described are infeasible
I Then so is the abstract trace

Remove infeasible abstract traceŝ ̂ ̂ ̂ ̂ ̂ ≥ 3 ≤ 4̂ ̂ ̂ ̂ ̂ ̂ ≥ 0 ≤ 3

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 25 / 33



computer science

saarland
universityDetecting Infeasible Abstract Traces

Set of abstract traces for a program part̂ ̂ ̂ ̂ ̂ ̂ ≥ 3 ≤ 4̂ ̂ ̂ ̂ ̂ ≥ 6 ≤ 3

E

̂ ̂ ̂ ̂ ̂ ̂ ̂ ≥ 5 ≤ 4

E

̂ ̂ ̂ ̂ ̂ ̂ ≥ 0 ≤ 3

Annotate lower bounds on the number of blocked cycles
Annotate upper bounds on the number of blocked cycles

I Derived for the concrete system and the arbitration protocol
I Hold for all feasible concrete traces described

Lower bound and upper bound contradict
I All concrete traces described are infeasible
I Then so is the abstract trace

Remove infeasible abstract traceŝ ̂ ̂ ̂ ̂ ̂ ≥ 3 ≤ 4̂ ̂ ̂ ̂ ̂ ̂ ≥ 0 ≤ 3

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 25 / 33



computer science

saarland
universityDetecting Infeasible Abstract Traces

Set of abstract traces for a program part̂ ̂ ̂ ̂ ̂ ̂ ≥ 3 ≤ 4̂ ̂ ̂ ̂ ̂ ≥ 6 ≤ 3 Ê ̂ ̂ ̂ ̂ ̂ ̂ ≥ 5 ≤ 4 Ê ̂ ̂ ̂ ̂ ̂ ≥ 0 ≤ 3

Annotate lower bounds on the number of blocked cycles
Annotate upper bounds on the number of blocked cycles

I Derived for the concrete system and the arbitration protocol
I Hold for all feasible concrete traces described

Lower bound and upper bound contradict
I All concrete traces described are infeasible
I Then so is the abstract trace

Remove infeasible abstract traceŝ ̂ ̂ ̂ ̂ ̂ ≥ 3 ≤ 4̂ ̂ ̂ ̂ ̂ ̂ ≥ 0 ≤ 3

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 25 / 33



computer science

saarland
universityDetecting Infeasible Abstract Traces

Set of abstract traces for a program part̂ ̂ ̂ ̂ ̂ ̂ ≥ 3 ≤ 4̂ ̂ ̂ ̂ ̂ ≥ 6 ≤ 3 Ê ̂ ̂ ̂ ̂ ̂ ̂ ≥ 5 ≤ 4 Ê ̂ ̂ ̂ ̂ ̂ ≥ 0 ≤ 3

Annotate lower bounds on the number of blocked cycles
Annotate upper bounds on the number of blocked cycles

I Derived for the concrete system and the arbitration protocol
I Hold for all feasible concrete traces described

Lower bound and upper bound contradict
I All concrete traces described are infeasible
I Then so is the abstract trace

Remove infeasible abstract traceŝ ̂ ̂ ̂ ̂ ̂ ≥ 3 ≤ 4̂ ̂ ̂ ̂ ̂ ̂ ≥ 0 ≤ 3

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 25 / 33



computer science

saarland
universityOutline

1 WCET Analysis

2 Multi-Core Processors

3 Bounding Bus Interference

4 Bounding Cache Interference

5 A Classification of Approaches to Interference Bounding

6 Summary

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 26 / 33



computer science

saarland
universityBounding Cache Interference

Assume only cache capacity interference
I Cache not accessed by two cores at the same time

Coarse abstraction
I Each access could hit or miss the cache

Goal: Predict more cache hits
I Exclude some case splits

ŝ1

ŝ0

ŝ2

cache miss cache hit

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 27 / 33



computer science

saarland
universityShared Cache Analysis

Independent of Co-Running Tasks

Analysis as if on a single-core processor [Ferdinand and Wilhelm, 1997]
Is an accessed block still a cache hit?

I Consider maximum time since last access
I How many changes to the cache could arbitrary programs on other cores

maximally make in that time?
I Is it enough to evict the cache block?
I If not, still a cache hit

Very conservative if co-running tasks do not make full use of the cache

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 28 / 33



computer science

saarland
universityShared Cache Analysis

Depending on Co-Running Tasks

Same idea as before
Slight change to the classification

I How many changes to the cache can the co-running tasks maximally make
in that time?

Use an upper bound on the concurrent cache access behavior
I Per number of execution cycles

Pre-analyze the concurrent cores for this bound

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 29 / 33



computer science

saarland
universityOutline

1 WCET Analysis

2 Multi-Core Processors

3 Bounding Bus Interference

4 Bounding Cache Interference

5 A Classification of Approaches to Interference Bounding

6 Summary

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 30 / 33



computer science

saarland
universityA Classification

Approaches to Interference Bounding

Bus
interference

Cache
interference

Independent of
co-running

tasks

Based on
arbitration
protocol

Shared cache
analysis
independent of
co-running
tasks

Depending on
co-running

tasks

Based on
concurrent
access
behavior

Shared cache
analysis
depending on
co-running
tasks

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 31 / 33



computer science

saarland
universityOutline

1 WCET Analysis

2 Multi-Core Processors

3 Bounding Bus Interference

4 Bounding Cache Interference

5 A Classification of Approaches to Interference Bounding

6 Summary

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 32 / 33



computer science

saarland
universitySummary

WCET analysis for multi-core processors is important

There is potential for improvements
Find good trade-off

I Precision
I Complexity

Considering co-running tasks may lead to more precise results

Outlook
I Implement a WCET analysis for a multi-core processor
I Evaluate different levels of precision

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 33 / 33



computer science

saarland
universityReferences I

Ferdinand, C. and Wilhelm, R. (1997).
Fast and efficient cache behavior prediction.

Pellizzoni, R. and Caccamo, M. (2010).
Impact of peripheral-processor interference on WCET analysis of real-time embedded systems.
IEEE Transactions on Computers, 59:400–415.

Pellizzoni, R., Schranzhofer, A., Chen, J.-J., Caccamo, M., and Thiele, L. (2010).
Worst case delay analysis for memory interference in multicore systems.
In Proceedings of the 13th Conference on Design, Automation and Test in Europe, DATE ’10, pages
741–746, 3001 Leuven, Belgium, Belgium. European Design and Automation Association.

Wandeler, E., Thiele, L., Verhoef, M., and Lieverse, P. (2006).
System architecture evaluation using modular performance analysis: a case study.
Int. J. Softw. Tools Technol. Transf., 8(6):649–667.

Michael Jacobs WCET Analysis for Multi-Core Processors February 28, 2013 34 / 33


	WCET Analysis
	Multi-Core Processors
	Bounding Bus Interference
	Bounding Cache Interference
	A Classification of Approaches to Interference Bounding
	Summary
	Appendix

