
WCET Analysis for Multi-Core Processors with Shared
Buses and Event-Driven Bus Arbitration

Michael Jacobs, Sebastian Hahn, Sebastian Hack

Department of Computer Science
Saarland University

November 16, 2015

computer science

saarland
university

http://compilers.cs.uni-saarland.de/people/jacobs
http://embedded.cs.uni-saarland.de/hahn.php
http://compilers.cs.uni-saarland.de/people/hack
http://www.cs.uni-saarland.de/


computer science

saarland
universityConsidered HW Platform

Multi-core processor with n cores
Shared bus

I Connecting the cores to the memory
I Event-driven bus arbitration
I Running example: round-robin

C1Cores C2 ... Cn

Shared Memory

Shared Bus

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 1 / 29



computer science

saarland
universityConsidered Execution Model

Set of programs:

Progs = {p1, . . . , p|Progs|}

Per program pi ∈ Progs:
Minimum inter-start time (mistpi )

I Optional
I Zero if not specified

Scheduling:

Partitioned

Non-preemptive

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 2 / 29



computer science

saarland
universityWCET Analysis for Multi-Core Processors

Calculate WCET bound for a program executed on a core
I Must consider shared-resource interference!
I E.g. cycles blocked at shared bus

Two kinds of WCET bounds:
Co-runner-insensitive

I Independent of co-running programs
I Only depend on the HW platform
I Implicitly assume worst co-runners

Co-runner-sensitive
I Take into account co-running programs
I Consider (limited) scheduling knowledge
I Potentially more precise

We propose approaches for both!

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 3 / 29



computer science

saarland
universityExisting Approaches

Compositionality [Schranzhofer et al., 2011]
I WCET analysis ignores bus blocking
I Bound on blocked cycles is added
I Ignores indirect effects

⇒ Unsound for many HW platforms, e.g.
I In-order pipelines with unblocked stores
I Out-of-order pipelines

Enumerate possible interleavings of accesses by the
cores [Kelter and Marwedel, 2014]

I High computational complexity
I Strong synchronicity assumptions

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 4 / 29



computer science

saarland
university

Co-Runner-Insensitive Analysis

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 5 / 29



computer science

saarland
universityModeling Shared-Bus Interference

By non-determinism
I A pending access request can be:

F granted immediately or
F blocked for another cycle

I Splits in micro-architectural analysis

Bounding the non-determinism
I Worst-case per access request
I E.g. for round-robin arbitration

F Each concurrent core
is granted a complete access first:

Path analysis
I Find longest path through graph
I Modeled as integer linear program (ILP)
I Classical implicit path enumeration [Li and Malik, 1995]

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 6 / 29



computer science

saarland
universityExperimental Evaluation

Hardware configuration
I In-order execution
I local instruction scratchpad (fitting whole program)
I local data cache (misses served via bus)
I Round-robin bus arbitration

31 benchmarks
I Mälardalen
I Generated from SCADE models

Results normalized to analysis ignoring bus interference

Geometric mean over normalized results

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 7 / 29



computer science

saarland
universityPoor Scalability

Non-determinism increases with number of cores

2-Core 4-Core
analysis runtime 8.878 38.840
peak memory cons. 1.581 3.616

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 8 / 29



computer science

saarland
universityExploiting Pipeline Convergence

Pipeline states often converge
I After a few cycles blocked at the bus
I State unchanged until access finished
I Converged chain

UBtime dominated by last state in chain
I Safely replace chain by last state in it

Fast-forwarding of converged chains

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 9 / 29



computer science

saarland
universityExploiting Pipeline Convergence

Pipeline states often converge
I After a few cycles blocked at the bus
I State unchanged until access finished
I Converged chain, e.g. for s5

UBtime dominated by last state in chain
I Safely replace chain by last state in it

Fast-forwarding of converged chains

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 9 / 29



computer science

saarland
universityExploiting Pipeline Convergence

Pipeline states often converge
I After a few cycles blocked at the bus
I State unchanged until access finished
I Converged chain

UBtime dominated by last state in chain
I Safely replace chain by last state in it

Fast-forwarding of converged chains

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 9 / 29



computer science

saarland
universityImproved Scalability

Fast-forwarding improves scalability

In-order execution

instr. scratchpad instr. cache
data cache data cache

2-Core 4-Core 2-Core 4-Core
WCET bound 1.604 2.803 1.678 3.028
analysis runtime 1.685 1.670 5.905 5.903
peak memory cons. 1.056 1.056 1.430 1.423

Runtime and memory consumption independent of n

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 10 / 29



computer science

saarland
universityImproved Scalability

Fast-forwarding improves scalability

Out-of-order execution

instr. scratchpad instr. cache
data cache data cache

2-Core 4-Core 2-Core 4-Core
WCET bound 1.657 2.965 1.726 3.175
analysis runtime 3.339 3.473 39.170 47.271
peak memory cons. 1.165 1.187 6.303 7.591

Moderate growth of runtime and memory consumption w.r.t. n

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 10 / 29



computer science

saarland
university

Co-Runner-Sensitive Analysis

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 11 / 29



computer science

saarland
universityIterative Co-Runner-Sensitive Analysis

co-runner-
insensitive
analysis

W

blocked cycle bound
BC =

∑
Cj∈Conci

αCj (W )

BC

Ci = core under analysis
Conci = Cores \ {Ci}
αCj (W ) = upper bound on number of access cycles of core Cj in W cycles

repeat ILP path analysis,
additional constraint∑

e∈Edges
timesTakene · LBblockede ≤ BC

until W reaches fixed point

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 12 / 29



computer science

saarland
universityIterative Co-Runner-Sensitive Analysis

co-runner-
insensitive
analysis

W

blocked cycle bound
BC =

∑
Cj∈Conci

αCj (W )

BC

Ci = core under analysis
Conci = Cores \ {Ci}
αCj (W ) = upper bound on number of access cycles of core Cj in W cycles

repeat ILP path analysis,
additional constraint∑

e∈Edges
timesTakene · LBblockede ≤ BC

until W reaches fixed point

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 12 / 29



computer science

saarland
universityIterative Co-Runner-Sensitive Analysis

co-runner-
insensitive
analysis

W

blocked cycle bound
BC =

∑
Cj∈Conci

αCj (W )

BC

Ci = core under analysis
Conci = Cores \ {Ci}
αCj (W ) = upper bound on number of access cycles of core Cj in W cycles

repeat ILP path analysis,
additional constraint∑

e∈Edges
timesTakene · LBblockede ≤ BC

until W reaches fixed point

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 12 / 29



computer science

saarland
universityIterative Co-Runner-Sensitive Analysis

co-runner-
insensitive
analysis

W

blocked cycle bound
BC =

∑
Cj∈Conci

αCj (W )

BC

Ci = core under analysis
Conci = Cores \ {Ci}
αCj (W ) = upper bound on number of access cycles of core Cj in W cycles

repeat ILP path analysis,
additional constraint∑

e∈Edges
timesTakene · LBblockede ≤ BC

until W reaches fixed point

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 12 / 29



computer science

saarland
universityIterative Co-Runner-Sensitive Analysis

co-runner-
insensitive
analysis

W

blocked cycle bound
BC =

∑
Cj∈Conci

αCj (W )

BC

Ci = core under analysis
Conci = Cores \ {Ci}
αCj (W ) = upper bound on number of access cycles of core Cj in W cycles

repeat ILP path analysis,
additional constraint∑

e∈Edges
timesTakene · LBblockede ≤ BC

until W reaches fixed point

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 12 / 29



computer science

saarland
universityUpper-Bounding Concurrent Access Cycles

Meaning of αCj (W )

How many access cycles can core Cj perform at most in any
interval of W time units?

Our approach
I Micro-architectural analysis of program(s) executed on Cj
I Generalized implicit path enumeration
I Exploit minimum inter-start time for precision

Why generalize?
I Implicitly enumerate all paths ≤ W
I Path may start / end at any program point
I Path may span across multiple program runs
I Path may span across different programs

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 13 / 29



computer science

saarland
universityExperimental Evaluation

Hardware configuration:

Dual-core processor

Out-of-order execution

Instruction cache

Data cache

Round-robin bus arbitration

Setup for experiments:
19 programs of our benchmark suite

I Those for which the co-runner-insensitive analysis needed ≤ 5 minutes

Co-runner-sensitive analysis for all 192 possible pairs
I 361 experiments

In each experiment
I One program per core
I Minimum inter-start time of co-runner identical to its WCET bound

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 14 / 29



computer science

saarland
universityIteration Example

Benchmark bsort100.c

Co-runner janne_complex.c

Iteration WCET reduction runtime peak mem.
0 5,197,213 0.000% 6m 13s 546M
1 4,869,654 6.303% 6m 16s 667M
2 4,750,724 8.591% 6m 21s 741M
3 4,708,728 9.399% 6m 43s 901M
4 4,695,003 9.663% 7m 6s 901M
5 4,687,438 9.809% 7m 29s 901M
6 4,686,534 9.826% 7m 32s 901M
7 4,686,534 9.826% 7m 33s 901M

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 15 / 29



computer science

saarland
universityExperimental Results

Statistical Distribution

All 361 experiments:

min. low. qurt. median upp. qurt. max.
runtime 1m 2s 10m 18s 19m 15s 35m 54s 118m 39s
peak mem. 285M 820M 1559M 2293M 7154M

WCET bound reduced for 42 experiments (11.6%):

min. low. qurt. median upp. qurt. max.
iterations 3 6 10 17 20
WCET reduction 0.068% 1.945% 3.657% 7.243% 12.456%

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 16 / 29



computer science

saarland
university

Summary

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 17 / 29



computer science

saarland
universitySummary

Four key contributions:

Modeling shared-bus interference by non-determinism

Fast-forwarding of converged chains

Iterative calculation of co-runner-sensitive WCET bounds

Generalized implicit path enumeration

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 18 / 29



computer science

saarland
universityConclusion

WCET analysis for relatively complex multi-core processors
I Possible, but
I Runtime and memory consumption are high

Co-runner-insensitive analysis is scalable
I Almost independent of number of cores

Co-runner-sensitive analysis is more precise
I Up to 12.5% of WCET bound reduction

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 19 / 29



computer science

saarland
universityRecently Published

Paper at RTNS [Jacobs et al., 2015]
I November 4-6, 2015
I WCET Analysis for Multi-Core Processors with Shared Buses and

Event-Driven Bus Arbitration

Check paper for details
I E.g. for generalized ILP

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 20 / 29



computer science

saarland
university

Tool Chain

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 21 / 29



computer science

saarland
universityTool Chain

Program
Source Code

Compilation
(LLVM)

Control-Flow
Graph

Placement
in Address

Space

Directive
Heuristics

Loop Bound
Analysis

Value
Analysis

Control-Flow
Analysis

Annotated
CFG

Basic Block
Timing Info

Micro-
Architectural

Analysis

WCET Bound
Calculation

Legend:

Data

Action

Key facts:

Own analysis framework
Based on LLVM

I Version 3.4

Analysis on back-end IR
I ARM back-end

Modular micro-architectural analysis:
Pipeline execution

I In-order
I Out-of-order

Different memory hierarchies

Shared-bus interference

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 22 / 29



computer science

saarland
universityAnalysis Paradigms

Micro-architectural analysis
I By abstract interpretation
I [Thesing, 2004]

State-sensitive execution graph
I One edge per pair of in- and out-state of a basic block
I "Prediction file/graph" in AbsInt1 terminology
I [Stein, 2010]

Path analysis
I By implicit path enumeration via ILP
I Find longest path in execution graph

F for one program run [Li and Malik, 1995, Stein, 2010]
F generalized [Jacobs et al., 2015]

I ILP solver CPLEX 12.4

1http://www.absint.com
Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 23 / 29



computer science

saarland
universitySetup for Co-Runner-Sensitive Analysis

One analysis tool instance per analyzed program
I Potential for parallel execution
I Reported runtime sequential

Analysis instances exchange in each iteration
I WCET bounds (⇒)
I Upper bounds on access cycles (⇐)

High runtime and memory consumption of generalized IPET
I We use a time limit of 20 seconds per solver run

F Take best upper bound after limit exceeds
I LP relaxation would also work

Implementation restricted to one program per analyzed core
I Upper bound on access cycles for a core calculated by one analysis

instance
I Each instance only argues about one program

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 24 / 29



computer science

saarland
universityFuture Extension

Supporting multiple programs per core in co-runner-sensitive analysis
Conceptual approach

I Glue together execution graphs of multiple programs
I Perform generalized IPET

Planned implementation
I Each tool instance dumps ILP formulations
I Modularly combine ILP formulations
I Actual iterations only call ILP solver

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 25 / 29



computer science

saarland
university

Supported Bus Arbitration Policies

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 26 / 29



computer science

saarland
universitySupported Bus Arbitration Policies

Requirement:
I Upper bound number of blocked cycles per access independently of

co-runners

Requirement holds for e.g.
I Round-robin
I First-come-first-serve
I Time-division multiple access (though our approach pessimistic)
I . . .

Thus, not yet supported
I Priority-based arbitration

Additional requirement for our co-runner-sensitive analysis:
I Arbitration policy is work-conserving

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 27 / 29



computer science

saarland
universityFuture Work: Time-Division Multiple Access

Our approach implicitly assumes:
I Each access might just have missed its slot

Offset-based analysis can do much better!
I Idea: track offsets w.r.t. the bus schedule per access
I [Chattopadhyay et al., 2012]

Our plan
I Implement an offset-based analysis in our framework
I Abstract offsets for scalability

F e.g. by intervals

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 28 / 29



computer science

saarland
universityFuture Work: Priority-Based Arbitration

Tweak micro-architectural analysis
I Fast-forward to "∞" at convergence while blocked
I If an access request does not converge until a threshold of blocked cycles
⇒ Stop analysis, "potentially diverging"

In path analysis, iterate from below
I Start assuming no concurrent access cycles
I Until least fixed point reached

Make iterative analysis more precise
I Priority-based arbitration is "more than" work conserving
I At most one interfering access of lower priority per own access

Other arbitration policies may also profit from least fixed point!

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 29 / 29



computer science

saarland
universityReferences I

Chattopadhyay, S., Kee, C., Roychoudhury, A., Kelter, T., Marwedel, P., and Falk, H. (2012).
A unified WCET analysis framework for multi-core platforms.
In Proceedings of the 18th IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 99–108.

Jacobs, M., Hahn, S., and Hack, S. (2015).
Wcet analysis for multi-core processors with shared buses and event-driven bus arbitration.
In Proceedings of the 23rd International Conference on Real-Time Networks and Systems.

Kelter, T. and Marwedel, P. (2014).
Parallelism analysis: Precise WCET values for complex multi-core systems.
In Artho, C. and Ölveczky, P., editors, Third International Workshop on Formal Techniques for
Safety-Critical Systems.

Li, Y.-T. S. and Malik, S. (1995).
Performance analysis of embedded software using implicit path enumeration.
In Proceedings of the 32nd Annual ACM/IEEE Design Automation Conference, pages 456–461.

Schranzhofer, A., Pellizzoni, R., Chen, J.-J., Thiele, L., and Caccamo, M. (2011).
Timing analysis for resource access interference on adaptive resource arbiters.
In Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 213–222.

Stein, I. J. (2010).
ILP-based path analysis on abstract pipeline state graphs.
PhD thesis.

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 30 / 29



computer science

saarland
universityReferences II

Thesing, S. (2004).
Safe and Precise WCET Determination by Abstract Interpretation of Pipeline Models.
PhD thesis.

Michael Jacobs WCET Analysis for Multi-Core Processors November 16, 2015 31 / 29


	Introduction
	Co-Runner-Insensitive Analysis
	Co-Runner-Sensitive Analysis
	Summary
	Tool Chain
	Supported Bus Arbitration Policies

