Fabian Ritter

ritter.x2a@gmail.com

Web: compilers.cs.uni-saarland.de/people/ritter/ GitHub: github.com/fabian-r
LinkedIn: linkedin.com/in/fabian-ritter-x2a/ ORCID: 0000-0001-9227-0910

Education Saarland University, Saarbriicken, Germany

Academic

Activities

since 2017: PhD Candidate in the Compiler Design Lab, advised by Sebastian Hack.
I work on inferring, improving, and understanding low-level performance models of CPUs
using a variety of techniques: from evolutionary algorithms to linear optimization and
satisfiability modulo theories to abstract interpretation and differential testing. Before
that, I co-developed an LLVM-based framework to efficiently enforce memory safety in C
programs.

2016 — 2017: Doctoral Preparatory Phase at Saarbriicken Graduate School of Computer Sci-
ence.

2012 — 2015: Bachelor of Science in Computer Science with minor in Mathematics.
Thesis: Compiler Optimization using Symbolic Abstraction

Leibniz Gymnasium, St. Ingbert, Germany

2004 — 2012: Abitur with majors in Mathematics, English, German, Physics, and Politics.

Publications

> AnICA: Analyzing Inconsistencies in Microarchitectural Code Analyzers. F. Ritter and S.
Hack. 2022. In: Proceedings of the ACM on Programming Languages (OOPSLA)

> PICO: A Presburger In-bounds Check Optimization for Compiler-based Memory Safety Instru-
mentations. T. Jung, F. Ritter, and S. Hack. 2021. In: ACM Transactions on Architecture
and Code Optimization (TACO)

> PMEvo: Portable Inference of Port Mappings for Out-of-Order Processors by Evolutionary
Optimization. F. Ritter and S. Hack. 2020. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI)

Scholarships

2017 — 2020: Fellow of the International Max Planck Research School (IMPRS) for Computer
Science

2016 — 2017: Scholarship holder of the Saarbriicken Graduate School of Computer Science

2012 — 2015: Member of the Bachelor Honors Program, Saarland University

Teaching

2017 — 2023: Lecturer’s assistant at Saarland University for the lecture Compiler Construction.

2014 — 2017: Tutor/Teaching assistant at Saarland University for the lectures:

> Compiler Construction

> Nebenldufige Programmierung (concurrent programming)

> Grundzlige der Theoretischen Informatik (theoretical computer science)
> Systemarchitektur (system architecture)


mailto:ritter.x2a@gmail.com
https://compilers.cs.uni-saarland.de/people/ritter/
https://github.com/fabian-r
https://www.linkedin.com/in/fabian-ritter-x2a/
https://orcid.org/0000-0001-9227-0910
https://compilers.cs.uni-saarland.de/
https://compilers.cs.uni-saarland.de/people/hack/
https://www.graduateschool-computerscience.de/
https://www.graduateschool-computerscience.de/
https://compilers.cs.uni-saarland.de/publications/theses/ritter_bsc.pdf
https://dl.acm.org/doi/abs/10.1145/3563288
https://dl.acm.org/doi/10.1145/3460434
https://dl.acm.org/doi/10.1145/3460434
https://dl.acm.org/doi/abs/10.1145/3385412.3385995
https://dl.acm.org/doi/abs/10.1145/3385412.3385995

Skills

Projects

Technical

> C/C++, Python: experienced, used in research projects, course work, private projects, espe-
cially using the LLVM compiler framework

> Satisfiability Modulo Theories (SMT) solvers, (Integer) Linear Programming (ILP) solvers:
used extensively in research projects

> Scala: used in research projects and private projects

Java, C#, Verilog, Standard ML: used in course work

> BTEX: used for writing academic documents, designing slides and posters

v

Languages

> German: native
> English: proficient

Understanding and Improving Microarchitectural Performance Models (2021 — 2023)

> We investigate how microarchitectural throughput models differ and where their shortcomings
are. Based on differential testing and abstract interpretation, we developed a tool to find and
fix problems in microarchitectural models: https://github.com/cdl-saarland/AnICA

> Technologies: Python, C++, x86 Assembly, LLVM

Inferring Port Mappings of Out-of-Order Processors (2018 — 2023)

> We infer the instruction-to-execution-port mapping of modern out-of-order processors by Intel,
AMD, and ARM from experiments with time measurements. Our mechanisms for experiment
design and port mapping inference use formal methods as well as learning-based approaches.

> Find our research artifact here: https://github.com/cdl-saarland/pmevo-artifact

> Technologies: Python, C++, x86 Assembly, Gurobi (ILP solver), SMT solvers

Memory Safety in C (2017 — 2021)

> We explore ways to make C a memory-safe programming language without sacrificing too
much performance. Our static program analyses and dynamic program instrumentations are
implemented as a general framework for memory safety instrumentations in the LLVM compiler
infrastructure: https://github.com/cdl-saarland /MemInstrument

> Technologies: C++, LLVM, C

Supporting Transcendental Functions in Daisy, a Sound Verification Tool for the
Precision of Floating-Point Computations (2016)

> I extended Daisy to soundly estimate round-off errors caused by floating-point operations for
trigonometric and exponential functions. This required developing algorithms to compute
sound rational bounds for real-valued results of transcendental functions.

> Technologies: Scala

Sprattus: A Unified Framework for Rapid Prototyping of Static and Dynamic Pro-
gram Analyses (2015 — 2016)

> I implemented the analyses required for classical compiler optimizations in an LLVM-based
static analysis framework using symbolic abstraction. This allowed me to investigate how
combining these analyses influences transformation quality in the Clang compiler.

> Furthermore, I designed new analysis domains concerning accessed memory ranges and allo-
cated memory regions in the symbolic abstraction framework. This involved formalizing a
structured memory model for LLVM IR for use in symbolic abstraction. The resulting analysis
can validate the absence of memory safety violations in C programs.

> Technologies: LLVM, C++, C, Z3 (SMT solver)


https://github.com/cdl-saarland/AnICA
https://github.com/cdl-saarland/pmevo-artifact
https://github.com/cdl-saarland/MemInstrument
https://link.springer.com/chapter/10.1007/978-3-319-89960-2_15

