Fabian Ritter

Campus E1 3, Rm. 403, 66123 Saarbrücken, Germany fabian.ritter@cs.uni-saarland.de

EDUCATION

SINCE 2017	PhD student in the INTERNATIONAL MAX PLANCK RESEARCH SCHOOL for Computer Science, at the COMPILER DESIGN LAB at SAARLAND UNIVERSITY
2016 - 2017	Doctoral Preparatory Phase at SAARBRÜCKEN GRADUATE SCHOOL OF COM- PUTER SCIENCE, SAARLAND UNIVERSITY
2012 - 2015	Bachelor of Science in Computer Science with minor in Mathematics, SAARLAND UNIVERSITY
2004 - 2012	Abitur at LEIBNIZ GYMNASIUM, St. Ingbert

Scholarships and Certificates

SINCE 2017	Fellow of the INTERNATIONAL MAX PLANCK RESEARCH SCHOOL for Computer Science
2016 - 2017	Scholarship holder of Saarbrücken Graduate School of Computer Science, Saarland University
2013 - 2015	Member of Bachelor Förderprogramm, Saarland University

ACADEMIC ACTIVITIES

2017 - 2019	Lecturer's assistant at SAARLAND UNIVERSITY for the lecture Compiler Construction
2014 - 2017	 Tutor/Teaching assistant at SAARLAND UNIVERSITY for the lectures: ▷ Compiler Construction ▷ Nebenläufige Programmierung (concurrent programming) ▷ Grundzüge der Theoretischen Informatik (theoretical computer science) ▷ Systemarchitektur (system architecture)

SKILLS

LANGUAGE	▷ German: native▷ English: fluent
TECHNICAL	 ▷ C/C++, Python: experienced, used in research projects, course work, private projects, especially using the LLVM compiler framework ▷ SCALA: used in research projects and private projects ▷ JAVA, C#, VERILOG: used in course work ▷ IAT_EX: used for writing academic documents, designing slides and posters

RESEARCH PROJECTS

2018–	 Inferring Port Mappings of Out-of-Order Processors (current research) Inferring the instruction-to-execution-port mapping of modern out-of-order processors by Intel, AMD, and ARM from experiments with time measurements Exploring mechanisms for experiment design and mapping inference using formal methods as well as learning-based approaches
2017–	 Memory Safety in C (current research) ▷ Understanding memory-safety-induced vulnerabilities as a problem of the programming language definition (rather than an eternal sequence of attacks and counter-measures) ▷ Exploring ways of making C a safe programming language
2016	 Supporting Transcendental Functions in Daisy, a Sound Verification Tool for the Precision of Floating-Point Computations (Research Immersion Lab, AUTOMATED VERIFICATION AND APPROXIMATION group, MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS) ▷ Extended Daisy for soundly estimating round-off errors caused by using floating-point operations for trigonometric and exponential functions ▷ Developed algorithms for obtaining sound rational bounds for real-valued results of transcendental functions
2016	 Memory Safety Analysis in Sprattus (Research Immersion Lab, REAL-TIME AND EMBEDDED SYSTEMS LAB, SAARLAND UNI-VERSITY) ▷ Implemented analysis domains for obtaining information about accessed memory ranges and allocated memory regions in our symbolic abstraction framework ▷ Designed a structured memory model for LLVM bitcode for use in symbolic abstraction ▷ Evaluated on benchmarks from the Software Verification Competition 2016 with promising results
2015	 Compiler Optimizations using Symbolic Abstraction (Bachelor's Thesis, COMPILER DESIGN LAB, SAARLAND UNIVERSITY) Extended a framework for static analysis of LLVM bitcode by symbolic abstraction Implemented classical compiler transformations in the clang compiler based on the found analysis results Investigated how combining these analyses influences transformation quality