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Data-Parallel Languages

Data-parallel languages become more and more popular

I E.g. OpenCL, CUDA

Used for a long time in domain-specific environments (e.g. graphcis):

I RenderMan, Cg, glsl, . . .

Data-parallel execution model

I Execute one function (called kernel) on n inputs

I n threads of the same code

I Order of threads unspecified, can run in parallel

I Programmer can use barrier synchronization across threads

I Threads can query their thread id

Our Contribution

An algorithm to implement the data-parallel execution model for SIMD
architectures on arbitrary control flow graphs in SSA form.

2



Data-Parallel Languages: OpenCL Example

� �
__kernel void fastWalshTransform(

__global float * tArray ,

__const int step

)

{

unsigned int tid = get_global_id (0);

const unsigned int group = tid%step;

const unsigned int pair = 2*step*(tid/step) + group;

const unsigned int match = pair + step;

float T1 = tArray[pair];

float T2 = tArray[match];

tArray[pair] = T1 + T2;

tArray[match] = T1 - T2;

}� �
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Data-Parallel Execution Model: Example

CPU (1 core): All threads run sequentially

0 1 2 3 4 5 6 7 8 . . . 11 12 . . . 15

CPU (4 cores): Each core executes 1 thread

0 1 2 3 4 5 6 7 8 . . . 11 12 . . . 15

CPU (4 cores, SIMD width 4): Each core executes 4 threads

0 1 2 3 4 5 6 7 8 . . . 11 12 . . . 15
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Diverging Control-Flow

a
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f
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f

Thread Trace

1 a b c e f

2 a b d e f

3 a b c e b c e f

4 a b c e b d e f

Different threads execute different code paths

If merged into one SIMD thread, predication is required

Execute all code, mask out results of inactive threads 1

I Known as if-conversion

I Use hardware (predicated execution) or mask out manually

1Allen et al.: “Conversion of Control Dependence To Data Dependence”, POPL ’83
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Allen et al.: Control-Flow to Data-Flow Conversion

Conversion is performed on abstract syntax trees

I Re-implement it in every front end (language) you want to compile

F Language-dependent

I Predicated vector code disturbs common scalar optimizations

F Control flow is gone

F Some optimizations not possible anymore (e.g. PRE)

F Some optimizations confused by vector operations

All related work on domain-specific languages is AST-based

Front End Allen et al. Optimizations
Code

Generation

AST Vectorized CFG
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Our Setting

We load LLVM bitcode at the runtime of the system

I Low-level SSA code with control flow graphs

I Language-independent

I Leverage scalar optimizations before vectorization

Front End Optimizations
Whole-Function

Vectorization
Code

Generation

AST CFG Vectorized
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Whole-Function Vectorization: Main Phases

1 Preparatory transformations

2 Vectorization analysis

3 Mask generation

4 Select generation

5 CFG linearization

6 Instruction vectorization
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Phase II: Vectorization Analysis

Memory operations: conservatively have to be split into W guarded
scalar operations (scatter/gather)

Attempt to exploit fast SIMD load/store instructions

Mark instructions that result in aligned indices (e.g. [0, 1, 2, 3])

I Single vector load/store

Mark instructions that result in consecutive indices (e.g. [6, 7, 8, 9])

I Unaligned load

Mark instructions that are uniform across all threads (e.g. [4, 4, 4, 4])

I CFG regions marked as uniform can be executed in scalar unit
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Phases III, IV: Mask & Select Generation

a b

c d e

T F T F

Mask generation encodes control flow in masks:

I Mask(c) = mask(a) ∧ condition(a)

I Mask(d) = mask(a) ∧ ¬condition(a) ∨ mask(b) ∧ condition(b)

I Mask(e) = mask(b) ∧ ¬condition(b)

Select generation introduces select operations

I Create new vector from two incoming ones with appropriate mask
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Example: Nested Multi-Exit Loop� �
float f(float x, float y) {

float r = x * y;

for (int i=0; i<x; ++i) {

for (int j=0; j<y; ++j) {

--r;

if (r < 7) goto END;

}

}

END:

return r;

}� �

a

b

c

e d

f

Iterate until all threads have left the loop

Keep track of active & inactive threads

Remember which thread left through which exit

Naive: mask out after each operation

WFV: need only one operation per live value per nested loop
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Phase V: CFG Linearization

Remove all control-flow except for back-branches of loops

Insert dynamic mask-tests & branches to skip entire paths 2

2Shin et al.: “Introducing Control Flow into Vectorized Code”, PACT ’07
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Evaluation I: Vectorized RenderMan Materials

Material Scalar (fps) Vectorized (fps) Speedup

Brick 8.8 31.4 3.6x
Checker 8.8 31.8 3.6x
Glass 0.9 4.5 5.0x
Granite 7.2 24.6 3.4x
Parquet 4.3 18.6 4.3x
Phong 14.1 32.5 2.3x
Screen 4.6 22.7 4.9x
Starball 4.5 20.0 4.4x
Venus 7.6 25.7 3.4x
Wood 4.4 19.1 4.3x

Average 6.5 23.3 3.9x

Performance of SIMD ray tracer in frames per second (fps)

SIMD width 4

Material = function that computes colors of an object

Big impact due to frequent execution
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Vectorized RenderMan Materials: Demonstration
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vectorizedrenderman.mov
Media File (video/quicktime)



Evaluation II: Vectorized OpenCL Kernels

Application AMD (ms) Scalar (ms) Vectorized (ms) Speedup

AOBench 23520 37037 24390 1.5x
BlackScholes 280 13 2.4 5.2x
FastWalshTransform 320 80 100 0.8x
Histogram 480 410 710 0.6x
Mandelbrot 291200 4000 1800 2.2x
NBody 200 160 57 2.8x
MatrixTranspose 17600 1220 900 1.4x

Custom OpenCL CPU driver

Benchmarks from AMD-ATI StreamSDK

Single-thread performance, SIMD width 4, average over 100 iterations

Improvement for compute-intensive kernels

Performance loss for kernels dominated by random memory accesses
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Conclusion

Whole-Function Vectorization exploits data-level parallelism with
SIMD instructions

Targeted at data-parallel languages

SSA-based, works on any CFG

Language-independent

Vectorization analysis helps reducing overhead

Evaluation shows applicability to real-world scenarios

Thank You!

Questions?
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