Memory Aware Realtime Ray Tracing:
The Bounding Plane Hierarchy

Ralf Karrenberg

Computer Graphics Group
Saarland University
Saarbrtucken, Germany

Bachelor Thesis

Universitat des Saarlandes
Naturwissenschaftlich-Technische Fakultéit I
Fachrichtung Informatik

Bachelor-Studiengang Informatik

Betreuender Hochschullehrer / Supervisors:
Prof. Dr.-Ing. Philipp Slusallek, Universitit des Saarlandes,
Saarbriicken, Germany

Gutachter / Reviewers:

Prof. Dr.-Ing. Philipp Slusallek, Universitit des Saarlandes,
Saarbriicken, Germany

Dr. Karol Myszkowski, Max-Planck-Institut fiir Informatik,
Saarbriicken, Germany

Dekan / Dean:
Prof. Dr.-Ing. Thorsten Herfet, Universitéit des Saarlandes,
Saarbriicken, Germany

Eingereicht am / Thesis submitted:
August 81, 2007

Universitiat des Saarlandes
Fachrichtung 6.2 - Informatik
Im Stadtwald - Building E 1 1
66123 Saarbriicken

Erklidrung / Declaration:

Hiermit erklére ich, dass ich die vorliegende Arbeit selbststindig verfasst und alle
verwendeten Quellen angegeben habe.

I hereby declare that the work presented in this bachelor thesis is entirely my own
and that I did not use any sources or auxiliary means other than those referenced.

Saarbriicken, August 31, 2007

Einverstindniserklirung / Agreement:

Hiermit erklire ich mich damit einverstanden, dass meine Arbeit in den Bestand
der Bibliothek der Fachrichtung Informatik aufgenommen wird.

I hereby agree on including my work into the inventory of the computer science
library.

Saarbriicken, August 31, 2007

v

Abstract

Realtime Ray Tracing has become available on single desktop environments
over the last few years, recently moving on to supporting dynamic scenes.
Approaches either use general-purpose CPUs, high-end programmable graph-
ics cards or specialised custom hardware. One of the most important factors
influencing the performance of all implementations is the algorithm’s depen-
dence on a spatial index structure. Its random memory access is very slow
compared to the computational power of current computer hardware, often
being the bottleneck of the system.

The goal of this thesis was the design and implementation of a spatial
index structure that focuses entirely on improving memory efficiency in trade
for computational complexity. Two main starting points were followed: The
memory requirement of the whole structure and of each of its parts on one
hand and the caching efficiency on the other. The resulting contributions are
the following:

e The Bounding Plane Hierarchy (BPH) is a complete acceleration
structure equivalent to a Bounding Volume Hierarchy (BVH) with axis-
aligned bounding boxes (AABBs) that needs less than half the size of
current BVH-implementations.

e Treelets are groups of interconnected nodes that are traversed inde-
pendently from the rest of the acceleration structure by using a new
two-stage algorithm. They are employed to enhance cache efficiency -
especially on parallel and/or multi-threaded systems like the CELL -
and can be applied to any spatial index structure.

A first implementation of the BPH with Treelets using Packet Tracing
and SIMD-instructions renders animations in real-time while still offering
many possibilities for optimization.

vi

Kurzfassung

Echtzeit Ray Tracing ist in den vergangenen Jahren auf handelsiiblichen
Desktop-PCs moglich geworden - in letzter Zeit auch mit Unterstiitzung an-
imierter Szenen. Unterschiedliche Ansétze nutzen dafiir die Rechenkraft von
CPUs, high-end Grafikkarten oder speziell entwickelter Hardware. Einer der
wichtigsten Faktoren, der die Performance aller dieser Systeme beeinflusst,
ist die Abhéngigkeit des Algorithmus von einer rdumlichen Indexstruktur.
Deren zufélliger Speicherzugriff ist sehr langsam im Vergleich zur Rechen-
leistung aktueller Prozessoren und stellt daher haufig den Flaschenhals einer
Implementierung dar.

Das Ziel dieser Arbeit war die Entwicklung und Implementierung einer
Beschleunigungsstruktur, die vollstdndig auf die Optimierung der Speicher-
effizienz auf Kosten erhohter Rechenlast zugeschnitten ist. Dabei wurden
zwel Ansatzpunkte verfolgt: Der Speicherbedarf der gesamten Struktur sowie
jedes ihrer Teile auf der einen, die Cache-Effizienz auf der anderen Seite. Fol-
gende Beitrage wurden erarbeitet:

e Die Bounding Plane Hierarchy (BPH) ist eine zu einer Bounding
Volume Hierarchie (BVH) mit “Achsen-Ausgerichteten Begrenzungs-
Boxen” (AABBs) dquivalente Indexstruktur, die jedoch weniger als halb
so viel Speicherbedarf wie aktuelle BVH-Implementierungen hat.

e Treelets sind Gruppen von verbundenen Knoten, die mit einem neuar-
tigen zweistufigen Algorithmus unabhéngig vom Rest der Beschleuni-
gungsstruktur traversiert werden. Sie werden zur Verbesserung der
Cache-Effizienz benutzt - speziell auf Systemem wie dem CELL, die
parallel und/oder mit vielen Threads arbeiten - und kénnen mit jeder
Indexstruktur kombiniert werden.

Eine erste Implementierung der BPH einschliefilich neuartiger Treelet-
Traversierung unter Verwendung von Packet Tracing und SIMD-Instruktionen
rendert animierte Szenen bereits in Echtzeit, wihrend noch viele Moglichkeiten
zur Optimierung bestehen.

vii

Viil

Contents

B.5.2 Masking Rayd
3.5.3__Equally Signed Packetd

1X

13
14
15
17
18
20
22
22
22
24
24

25
25
26
28

CONTENTS

6.1 Constriction Using First Framd 43
6.2__Updating Without Rebuildd 44
6.3 Earlv Hit Test & Frustum Culling 45

6.4 Surface Area Heuristic (SAHY 45

lZ__Conclusion 49

I8 Future Work 51

81 _BPH Qptimization 51
811 Barly Hit Tesfl 51
I8.1.2 Rebnilds During Renderind 52
I8.1.3 Surface Area Heuristic (SAHY 52
I8.1.4 Arbitrary Primitive-Tistd 52

182 Treelet Optimizatiod v oo 54
8.2.1 Cache-Oblivious Treeletd 54
1822 FEnforcing Filled Treeletd 54
823 Finding Optimal Treelet-Sizd 55

Chapter 1

Introduction

Realtime Ray Tracing has become available on single desktop environments
over the last few years, recently moving on to supporting dynamic scenes.
Approaches either use general-purpose CPUs, high-end programmable graph-
ics cards or specialised custom hardware. One of the most important factors
influencing the performance of all implementations is the algorithm’s depen-
dence on a spatial index structure. Its random memory access is very slow
compared to the computational power of current computer hardware, often
being the bottleneck of the system.

It is a well-known issue that, in the last decades, development of CPUs has
shown constantly fast growing clock frequencies while bandwidth to memory
increases much slower due to the high manufacturing cost of memory with low
latency. Hardware manufacturers therefore deal with this widening “memory
gap” by using hierarchical cache-structures that buffer data in subsequent
levels of memory. These levels decrease in latency and size the nearer to the
CPU they are located. Thus, it is crucial for efficient software that relies on
RAM- or even disk-access to accommodate to the underlying hardware in
order to minimize worst-case access times.

The goal of this thesis was the design and implementation of a spatial
index structure that focuses entirely on improving memory efficiency in trade
for computational complexity. Two main starting points were followed: The
memory requirement of the whole structure and of each of its parts on one
hand and the caching efficiency on the other. The resulting contributions are
the following:

2 CHAPTER 1. INTRODUCTION

The Bounding Plane Hierarchy (BPH)

The BPH is a complete acceleration structure equivalent to a Bounding Vol-
ume Hierarchy (BVH) with axis-aligned bounding boxes (AABBs) that needs
less than half the size of current BVH-implementations.

The basic idea is that not all of the planes that define the AABBs of each
node’s children have to be stored explicitly - at least 6 out of 12 planes can
be discarded and reconstructed during traversal. Intersection can efficiently
be performed for both children at once, theoretically increasing intersection-
speed by a factor of two.

In order to further reduce memory demand of the BPH and increase
caching efficiency, inner nodes are compressed to 32 bytes and so-called “in-
termediate nodes” that optimize a common case of tree-topology are intro-

duced.

Treelets

Treelets are groups of interconnected nodes that are traversed independently
from the rest of the acceleration structure. They are employed to enhance
cache efficiency by using the knowledge that a certain ray traversing a par-
ticular node will probably traverse neighbouring paths as well.

The new traversal scheme is split in two different stages: a global stage
works between Treelets and a local one inside. If a ray enters a Treelet, it
will only leave it again after it has completely traversed it. Thus, all internal
nodes can be preloaded in one burst and made available in cache.

This technique is very likely to considerably increase efficiency of memory
access by guaranteeing cache-hits inside the Treelets, especially for parallel
and/or multi-threaded systems like the CELL. Another advantage is that
Treelets can be applied to any spatial index structure.

In order to let the index structure be as flexible as possible, no assump-
tion about the topology of the scene is made or used to simplify algorithms
(e.g. forcing balanced trees). The BPH can be applied to any binary Bound-
ing Volume Hierarchy using AABBs without big effort, Treelets can also be
used with any other index structure.

A first implementation of the BPH with Treelets using Packet Tracing
and SIMD-instructions renders animations in real-time while still offering
many possibilities for optimization.

Outline

The thesis starts with a basic introduction of the Ray Tracing algorithm,
its advantages and challenges and an overview of the related previous work
on Interactive Ray Tracing, spatial index structures and memory efficiency.
The main part introduces the BPH and Treelets and is accompanied by a
detailed analysis of memory requirement, traversal statistics and rendering
performance. A discussion of drawbacks of the current implementation leads
to the conclusion. The thesis is finished by some ideas for future work,
including approaches to solve most of the present problems.

CHAPTER 1. INTRODUCTION

Chapter 2
Previous Work

This chapter gives an introduction of the Ray Tracing algorithm with its
advantages and challenges and an overview of related work on spatial index
structures, dynamic scenes and memory efficiency.

2.1 Ray Tracing

Current graphics processing is usually done by so-called Graphics Processing
Units (GPUs) that use Rasterization to display graphics. In this approach,
the algorithm tests for each object where parts of it are visible on the screen.
The triangles of a scene are fed to the GPU sequentially, passing several steps
of a rendering pipeline where all factors are determined that influence the ap-
pearance of each individual triangle, including e.g. transformation, texturing,
clipping and transparency. These GPUs nowadays are highly optimized, be-
ing able to work on many triangles in parallel and supporting a large variety
of effects directly in hardware. But the individual handling of each triangle
is also Rasterization’s biggest drawback: Global effects like reflection, refrac-
tion or indirect illumination need information about the environment which
is not available directly. Thus, no accurate simulation of physics is possible
- in order to obtain the desired visual properties, the effects usually have to

be “faked”.

Ray Tracing on the other hand allows for a physically correct simulation
by using rays shot into the scene to determine all objects that are visible at
each pixel of the display. By definition it has knowledge about the complete
scene, naturally supporting global effects. A simplified illustration of the
algorithm is given in Figure 211

6 CHAPTER 2. PREVIOUS WORK

lightsource

B shadow rays
QQI}.. .
D V\ \“-... =

-
-
-
-
- -
-

reflection ray
observer

display-

Figure 2.1: Simplified illustration of the recursive Ray Tracing algorithm.

2.1.1 Basics

In order to simulate physically correct lighting, rays would be sent from each
light source into the scene, bouncing off of walls, being reflected or refracted,
indirectly illuminating other objects etc. Finally, those that fall into the
camera this way would be captured and displayed. The very low percentage
of those rays would result in great computational overhead, so the basic Ray
Tracing algorithm makes use of the fact that physical optics is symmetric:
rays of light are “back traced” from the viewpoint into the scene.

During rendering, the algorithm has to test each of these rays for its near-
est intersection with any of the primitives the scene consists of. For large
scenes, possibly consisting of millions of primitives, the complexity of this
computation quickly explodes. In order to avoid intersecting each ray with
all primitives, a spatial index structure is employed. It is built in a pre-
processing step before rendering starts, recursively subdividing either the
scene’s space or its objects. Although this greatly improves performance,
this acceleration structure is still one of the main bottlenecks of the algo-
rithm which is explained in more detail in the following Sections and
2.2

2.1. RAY TRACING 7

Without any oversampling or other additional techniques, the basic “Ray
Casting”-algorithm shoots one ray for each pixel of the currently generated
frame. The ray is traversed through the acceleration structure until it reaches
a leaf node, where it is tested for intersection points with the contained prim-
itives. If it hits any of these, the corresponding shader (a program that is
responsible for determining the appearance of the object, e.g. depending on
its material properties) is executed and delivers the appropriate colour, which
is then displayed at the pixel the ray was shot from. For this purpose, so-
called “Ray Tracing” allows the shader to recursively shoot additional rays,
e.g. for reflection and refraction when a transparent object is hit or shadow
rays to the light sources to determine if an object lies in shadow.

This approach makes it possible to render complex global effects like the
above mentioned reflection, accurate shadows or even global illumination.
On the computational part, Ray Casting is very interesting for massively
complex models due to its logarithmic complexity in the number of scene
objects. Finally, the coherence of adjacent rays can be exploited by highly
optimized parallel algorithms (e.g. using SIMD instructions that work on up
to four rays in parallel).

2.1.2 Problems
The Ray Tracing algorithm poses three main challenges:
e the expense of tracing millions of rays per second,

e the expense of finding the nearest intersection of a ray with all primi-
tives of the scene,

e the dependency on precomputation of a spatial index structure.

The first point can be illustrated by a very simple calculation: A scene is to
be rendered with a standard screen resolution of 1024*768 pixels, an average
of 10 rpp (rays per pixel, including secondary rays for shadow-computation,
reflection, refraction etc.) and 60 frames per second in order to deliver a
smoothly running interactive scene. The resulting

1024 % 768 * 10 % 60 ~ 471 M rays/sec,

are by far exceeding computational capacities of usual desktop processors or
even larger grids of workstations for non-trivial scenes. This problem has

8 CHAPTER 2. PREVIOUS WORK

been addressed by a variety of algorithmic approaches that are able to cope
with the issue, e.g. by exploiting the coherence of adjacent rays using so-
called “Packet Tracing” where rays are grouped and computation is done for
the complete packet in parallel, using the coherence between adjacent rays

(see Section BD.T]).

The second fundamental problem is introduced by testing each ray against
millions of primitives to find out its nearest intersection point. This requires
some organization of the scene’s objects to reduce the computational com-
plexity - an index structure is required that recursively subdivides the scene
and allows to narrow down the number of primitives that have to be inter-
sected with each ray to only a few. Section .2 introduces the most commonly
used index structures, including the Bounding Volume Hierarchy (BVH) that
serves as a fundament for this thesis.

Intersection becomes significantly faster using such subdivision schemes,
but this is bought by typically 50-100 traversal steps through the acceleration
structure (depending on the size of the scene) that each ray has to perform
until an intersection is found, which is still very costly.

The last major issue is the building-time of index structures which has a
lower bound of O(n log n) [WHOO, [HHS06]. At least for larger scenes this
is too costly to perform for each frame - a pre-processing step is required.
This imposes problems to all kinds of dynamic scenes where objects move,
sooner or later enforcing a recomputation of the index structure to adapt the
subdivision to the changed topology.

2.1.3 Interactive Ray Tracing

Interactive Ray Tracing has become possible over the last few years with the
first system running on clusters of PCs [WBWS01] and an implementation
for single desktop PCs [Wal(4] that was used for the OpenRT interface.

There have also been various implementations on different hardware plat-
forms like GPUs [Pur04l, [PGSS07], the Cell [METO5, BWSH] or custom hard-
ware [SWS02, WSS05, [Woo06].

2.2 Spatial Index Structures

Over the last years, so-called “kd-trees” [Ben75] were the most widely used
spatial index for static scenes as they provided the best frame rates. A kd-

2.2. SPATIAL INDEX STRUCTURES 9

tree subdivides space (using axis-aligned planes) into a binary tree-structure
where each leaf node holds only a few primitives. Another very popular data
structure is the “Bounding Volume Hierarchy” (BVH) [Cla76, RWS&0] that
recursively subdivides objects into groups that are contained in a Bounding
Volume - usually an Axis-Aligned Bounding Box (AABB) due to its sim-
plicity, but there are also approaches using e.g. oriented bounding boxes or
spheres.

Subdivision can be done in various ways, e.g. by simply recursively split-
ting the nodes in the middle in one dimension or with more sophisticated
heuristics like the “Surface Area Heuristic” (SAH) that tries to optimize the
splitting plane by using the probability if particular resulting subtrees will
be hit by a random ray (also see Section 7).

Although kd-trees were the acceleration structure of choice for a long time,
they are limited to static scenes, not supporting dynamic behaviour due to
the high computational cost of rebuilding the complete kd-tree whenever
primitives of the scene change position. Previous research tried to approach
this issue by isolating few dynamic objects and traversing them separately
[PMST99] or by using the coherence between successive frames [AH95]. Only
recently a lot of successful improvements were developed that solved the
problem at least partly:

The custom hardware of [WSS05] used a top-level kd-tree that referenced
object-kd-trees with different transformations and could be rebuilt quickly in
the driver, allowing a limited number of objects with rigid-body transforma-
tions. Much more convenient approaches use Bounding Volume Hierarchies
[LAMO3, WBS07, [LYTMO06] or hybrids like the B-KD-tree [WMS06] to em-
ploy fast updating instead of rebuilds as a basis for efficient handling of
coherently deforming and moving objects like humans or plants.

An efficient implementation of a kd-tree only uses 8 bytes per node, a
factor of 4 less than a common BVH using 32 bytes. On the other hand, due
to the subdivision of space, a kd-tree usually needs about 10-12 times the
number of inner nodes than the object-dividing algorithms if building all trees
down to one primitive per leaf without further optimizations. This leads to
an overall memory requirement of approximately 96 bytes per primitive for
a kd-tree whereas a standard BVH needs 64 bytes per primitive. The BKD-
tree even only needs 16 bytes per node and a total of 32 bytes per primitive,
the Bounding Interval Hierarchy (BIH), another kd-tree/BVH-hybrid, has a
memory requirement of 12 bytes per node and approximately 16 bytes per
primitive [WKQO6]. This thesis’s contribution - the Bounding Plane Hierarchy

10 CHAPTER 2. PREVIOUS WORK

(BPH) - requires 32 bytes/node and approximately 16 bytes per primitive,
if using two primitives in each leaf node it even comes down to 12 bytes per
primitive (see Section H).

Although the kd-tree is by far not the smallest overall structure, its low
memory requirement for each node can result in much higher cache-efficiency
because more nodes fit in one cache-line. However, a kd-tree’s working set of
nodes that are traversed during rendering can be much larger because prim-
itives are allowed to reside in several branches of the tree.

The starting point of this thesis was chosen to be a usual Bounding Vol-
ume Hierarchy which has proven to be a good choice for dynamic scenes
as it allows for quick updates or even complete rebuilds during rendering
[LY'TMO6]. However, a BVH needs much more information (and thus far
more memory) for each node than a kd-tree, as it needs to maintain a com-
plete box in 3D consisting of 6 planes instead of only one splitting-plane for

each child.

2.3 Memory Efficiency

In the last decades, development of CPUs has shown constantly fast growing
peak performance while bandwidth to memory increases much slower due to
the high manufacturing cost of memory with low latency. Growth estimations
predict CPU speed to increase by approximately 80% per year whereas the
speed of memory devices only grows at less than 10% per year [HP03, [Bas91].
Hardware manufacturers therefore deal with this widening “memory gap” by
using hierarchical cache-structures that buffer data in subsequent levels of
memory. These levels decrease in latency and size the nearer to the CPU
they are located. Thus, it is crucial for an efficient software that relies on
RAM- or even disk-access to accommodate to the underlying hardware in
order to minimize worst-case access times.

Research in this field has produced a variety of algorithms that work ei-
ther “cache-aware” or “cache-oblivious” [FLPR99]. An implementation that
is cache-aware uses the knowledge on what hardware it will run to adjust
memory access to the exact size of the cache-blocks whereas cache-oblivious
algorithms try to obtain maximal efficiency on any underlying hardware they
may run on without using any assumptions, minimizing cache-misses for all
cases.

The Ray Tracing algorithm’s possibly biggest issue is directly related
to this. For an efficient solution of the question what object a given ray

2.3. MEMORY EFFICIENCY 11

intersects with, it heavily depends on the performance of its spatial index
structure, introducing two problems:

e The access to this structure is mostly random which results in expensive
memory access when not using any sophisticated memory-layout.

e The structure somehow has to be stored and maintained during the
rendering process and can easily reach a size of several gigabytes for
large models.

Previous research addressing the first issue of organizing the index struc-
ture according to cache-access-patterns has been done by [YLPMO5, [YMO6]
and already led to significant increases in efficiency. The heuristics they de-
veloped could be a way to optimize construction of the Treelets presented in
this thesis (see Section B2).

Lots of work has been done in a field concerned with memory requirements
that applies to the second issue: dealing with extremely massive and detailed
scenes like a power plant or a Boeing 777 consuming gigabytes of space pose
specific challenges on distributing memory [BSGM02, [DWS04l, [DWS05].

12

CHAPTER 2. PREVIOUS WORK

Chapter 3

The Bounding Plane Hierarchy
(BPH)

The basis of the Bounding Plane Hierarchy (BPH) is formed by a standard
Bounding Volume Hierarchy (BVH) that recursively subdivides the primi-
tives of the scene and stores a complete axis-aligned bounding box (AABB)
that encapsulates all underlying geometry of each node.

The following sections introduce the main ideas behind the BPH:

e Each node of the BPH only stores those parts of its children’s AABBs
that are required for a reconstruction during traversal. Only those six
planes have to be stored that are different from the parent’s AABB,
effectively reducing the size of each node by a factor of 2.

e Each node of the BPH stores information about its two children. Due
to the fact that the last inner nodes above leaf level already store the
boxes of the leafs, these nodes directly point to the primitives and no
additional leaf nodes have to be constructed.

e Both children of an inner node can be intersected at once using a mod-
ified version of the classic slabs algorithm [KKS86], which can ideally
speed up intersection by a factor of two.

e Implicit leaf nodes are split in two groups: additional to the standard
pointer that references one primitive, a so-called “intermediate node” is
introduced that points to two subsequent primitives. These intermedi-
ate nodes replace an inner node whenever it would have two leaf nodes
as children, saving large amounts of memory.

13

14 CHAPTER 3. THE BOUNDING PLANE HIERARCHY (BPH)

e Inner nodes are compressed, “hiding” all information needed for traver-
sal inside the child-pointers. This way they fit exactly into 32 bytes
for better cache-alignment while the range of the pointers is slightly
reduced to 27 bit.

e The algorithm can efficiently be implemented using Packet Tracing with
SIMD-instructions.

3.1 Planes

A standard BVH implementation has to store two complete AABBs (con-
sisting of 12 floating point values) for each inner node with two children to
provide complete information for a correct traversal. In order to reduce the
size of each inner node, the BPH only stores the 6 planes that are necessary
to guarantee a correct reconstruction of these boxes.

The definition of a Bounding Volume Hierarchy implies that boxes fit as
tight to their underlying geometry as their shape allows. Thus, the bounds of
an inner node are defined by the union of their children’s bounds. Reversely
formulated this means that each child node shares some of the planes of its
parent - redundant information that can be spared.

The maximum amount of planes is determined by the dimensionality:
For each dimension, 4 planes are needed to enclose the minimum and max-
imum extent of both children. Two of these - the “outer” bounds - are by
definition shared with the parent node and can be reconstructed, the other
two - the “inner” bounds - are necessary and have to be stored. Hence, for
each dimension, two planes are mandatory that define the children’s extents
inside the parent. For one dimension, both of these values can belong to
the same child, defining its minimum and maximum extent. If both planes
belong to different children, they have to be properly stored in a way that the
min-plane defines the minimal extent of the child whose maximum extent is
given by the parent and vice-versa. For correct mapping of the planes during
traversal, only one bit of information for each plane is needed that indicates
if a plane belongs to the left or right child of the current box.

AABBESs in 2D therefore only need 4 planes in addition to the parent’s box,
in 3D two additional planes for the third dimension (6 in total) are required.
Graphical illustrations are given in Figures Bl (2D) and (3D).

3.2. LEAF & INTERMEDIATE NODES 15

=
e

0 1

Figure 3.1: Common cases for 2D: the parent’s bounds plus at most 4 addi-
tional planes define both boxes of the children. From left to right, the number
of planes that have to be stored increases as denoted. The parent-node is
coloured grey, the child-nodes are blue and red. Note that these are not all
possible cases.

3.2 Leaf & Intermediate Nodes

On the bottom level of the hierarchy, inner nodes directly point into the ar-
ray of primitives - no leaf nodes are constructed explicitly. It is possible to
store more than one primitive in each leaf by allocating them sequentially in
memory. They are accessed by adding offsets to the memory location of the
first primitive.

Generally it would be possible to allow an arbitrary number of primitives
per leaf, but that would require additional memory for each node in order
to store the exact amount. This would destroy the memory layout shown
in Section B3, while globally fixing the number of primitives per leaf node
also introduces the possibility to apply an additional optimization of a very
common case:

If an inner node has two leaf nodes as children, it is replaced by a so-
called “intermediate node”. This means that the parent of the current inner
node sets a flag indicating that this pointer references two lists of primitives
that are stored sequentially instead of one inner node (see Figure B3)). Inter-
section can be performed either by intersecting both lists directly or by first

16 CHAPTER 3. THE BOUNDING PLANE HIERARCHY (BPH)

minX (R)

maxXAL)

™ 2
vV Z

X->

minY (R) minZ (R)

maxy (L)

Figure 3.2: 3D Example: the parent’s bounds plus 5 planes define both boxes
of the children. minX, maxX etc. denote how each plane’s position is iden-
tified, L and R show what bits are set to map each plane to the correct child.
In this case, less than 6 planes suffice as maxZ does not have to be used.

3.3. COMPRESSED NODE-LAYOUT 17

recalculating their bounding boxes and intersecting these before continuing
with the primitives.

In such a case, the memory of those two bounding boxes is saved in trade
for the computational cost of either recalculating them or accepting more
ray-primitive-intersections, following the main key note of this thesis.

This case is very common as can be observed in Table B2 but can’t be
applied under all circumstances: Inner nodes with two different children (one
inner and one leaf node) are possible if no restrictions to the topology of
the tree are made - enforcing a layout where an inner node can only have
two inner nodes or two leaf nodes as children would need a specific building-
algorithm that would not adapt to the scene as good as it is possible without
restrictions. Figure B4 shows an example for the substitution applied to an
arbitrary structure.

Type 1 Type 2 Type 3a Type 3b

60 g0 g9

°Inner Node .Leaf Node °Intermediate Node OPrimitive

Figure 3.3: Different topologies of subtrees: type 3a is an inner node which
has two leaf nodes as children and can be transformed into an intermediate
node (type 3b), saving space of one inner node.

3.3 Compressed Node-Layout

Each inner node of the BPH stores the 6 crucial planes in two arrays of 3
floating point values, one for the min- and one for the max-planes. Addition-
ally, two unsigned integers serve as the child-pointers, referencing a memory
location either inside the array of inner nodes or inside the array of primitives
in case of a leaf node.

If a balanced tree was assumed, one of these pointers could be spared if
storing the corresponding children sequentially in memory, but as the BPH

18 CHAPTER 3. THE BOUNDING PLANE HIERARCHY (BPH)

Figure 3.4: Ezxample for replacement of inner nodes of type 3a by interme-
diate nodes. Cost of the structure before substitution is #inner nodes
sizeof(inner node) = 15 x 32 bytes = 480 bytes, cost afterwards is
9% 32 bytes = 288 bytes (40% saving). Note that leaf and intermediate nodes
are not explicitly stored and only shown for better comprehension. Legend:
see Figure [T3.

is designed to allow for arbitrary topologies of the tree, this optimization can
not be applied: The underlying BVH is allowed to adapt to the scene as good
as possible, also allowing inner nodes that have one leaf and one inner node
as children (see Figure B3)). In such a case, both pointers are obligatory and
none can be discarded.

For correct traversal each inner node of the BPH needs 10 bits of addi-
tional information: 6 bits to map each plane to the left or right child, 2 bits
that indicate if the left and/or right children are leaf nodes and another 2
bits that indicate intermediate nodes (they are not used if the child is an
inner node). If the BPH is employed with Treelets, these 2 bits can be used
to distinguish internal from external nodes of a Treelet (see Section ETI).

In order to better fit cache-lines, all this information is stored in the lower
5 bits of each node’s pointers which compresses inner nodes to 32 bytes/node
(see FigureB.H). The trade-off is a limited pointer-range of 27 bit that reduces
the maximum total size of the scene that can be handled directly.

During runtime, the desired values are reconstructed by few efficient shift-
and mask-operations whose influence on the overall performance is negligible.

3.4 Construction

The Bounding Plane Hierarchy is designed in such a way that an arbitrary
binary BVH can easily be converted. There is only the assumption that
the number of primitives per leaf node has to be fixed globally to be able

3.4. CONSTRUCTION 19

struct InnerNode {
//planes of min- and max-dimensions
float planes_min[3];
float planes_max[3];

//1 if plane belongs to
bool rightPlane_min[3];
bool rightPlane_max[3];

right child, O otherwise

//indices into node- or
unsigned int leftIndex,

vertex-array
rightIndex;

//flags set if children are leaf nodes
bool leftIsLeaf, rightIsLeaf;

//flags set if children are intermediate nodes
bool leftIsIntermediate, rightIsIntermediate;
}

struct InnerNodeCompressed {
float planes_min[3];
float planes_max[3];
unsigned int leftIndex;
unsigned int rightIndex;

}

void encode_left(bool isLeaf, bool isInterm, bool rightPlanes([3]) {

leftIndex = (leftIndex << 5) | (rightPlanes[0] << 4);
leftIndex = leftIndex | (rightPlanes[1] << 3);
leftIndex = leftIndex | (rightPlanes[2] << 2);
leftIndex = leftIndex | (isInterm << 1) | isLeaf;

};

unsigned int decode_rightPlane_min(unsigned int i) {

if (i == 0) return (left & 0x10) >> 4; //10000
if (i == 1) return (left & 0x8) >> 3; //01000
if (i == 2) return (left & 0x4) >> 2; //00100

};

unsigned int
unsigned int
unsigned int

decode_isInterm_left() { return (leftIndex & 0x2) >> 1; I};
decode_islLeaf_left() { return (leftIndex & Ox1); };
decode_index_left() { return leftIndex >> 5; };

Figure 3.5: Compression of inner nodes and encoding/decoding-functions
(only shown for left child). leftIndex/rightindex contain all boolean values
in their lower 5 bits.

20 CHAPTER 3. THE BOUNDING PLANE HIERARCHY (BPH)

to apply the intermediate-node-optimization. There are two ways to bypass
this restriction: either the optimization is not performed or the restriction
is relaxed as discussed in Section at the cost of deteriorated memory-
layout.

The transformation-algorithm recursively traverses the complete tree in
depth-first order and converts each node. The conversion itself can be imple-
mented by just a few lines of code (see Figure Bl) that - for each dimension
- match the corresponding planes of the parent node against the ones of its
children. If a plane is not equal to either the minimum or the maximum
plane of the parent, it is one of the crucial planes and has to be stored. Ad-
ditionally, a bit is set that indicates if the plane belongs to the left or right
child.

The fact that inner nodes store pointers to the primitives in the same
location as pointers to usual child nodes requires one bit for each child that
distinguishes inner nodes from lists of primitives (implicit leaf nodes). An-
other bit has to be encoded to indicate if the child is an intermediate node.
After the node has knowledge of all these values, these bits are hidden inside
the pointers using bit masks and shift-operations as shown in Figure

3.5 Traversal

A naive way of traversing the BPH is to simply reconstruct the complete
AABBs of both children and intersect them using a standard ray-box in-
tersection algorithm. This would introduce a fairly expensive computational
overhead that would probably outperform any memory-related optimizations
in all cases except for very large scenes.

The solution is a recursive traversal scheme that uses the hit-distances of
the previously intersected parent node in combination with a slightly modified
slabs algorithm [KKS&6)]. First, the planes are mapped to their correct children
by taking the ray’s direction signs into account - if for one dimension the
direction is negative, the corresponding min- and max-planes have to be
switched. Second, intersection points of the ray with each plane and the
corresponding distances are determined. In order to find out if the children
are hit, the smallest maximum distance to one child’s planes has to be larger
than the corresponding biggest minimum. A graphical illustration is given
in Figure B

This approach has approximately the same computational complexity as
a standard slabs test, but it performs ray-box-intersection for both children
at once instead of just one. Thus, it yields a theoretical speed up of 100%
compared to a standard BVH traversal scheme, but is being slowed down by

3.5. TRAVERSAL 21

InnerNode_BPH#* convertToBPH(InnerNode_ BVH *bvh_node, Box &parentBox) {
InnerNode_BPH *bphnode = new InnerNode_BPH();

//min-values
for (int i=0; i<3; i++) { //loop over x-,y- and z-dimension
if (bvh_node->rightBox.min[i] == parentBox.min[i]) {
//no crucial plane of right child, store for left child in any case
//small overhead if left box also shares this plane with parent
bphnode->planes_min[i] = bvh_node->leftBox.min[i];
} else {
//crucial plane of right child -> store and set rightPlane_min[i]
bphnode->planes_min[i] = bvh_node->rightBox.min[i];
bphnode->rightPlane_min[i] = true;
}
}
//max-values
for (int i=0; i<3; i++) {

if (bvh_node->rightBox.max[i] == parentBox.max[i]) {
bphnode->planes_max[i] = bvh_node->leftBox.max[i];
} else {

bphnode->planes_max[i] = bvh_node->rightBox.max[i];
bphnode->rightPlane_max[i] = true;

return bphnode;

}

Figure 3.6: C++-code for the conversion of a BVH into a BPH, showing
how to decide which planes can be discarded.

22 CHAPTER 3. THE BOUNDING PLANE HIERARCHY (BPH)

the more complex mapping of the planes to their corresponding children.
The traversal algorithm includes a few optimizations that are explained
in the following.

3.5.1 Packet Tracing

Packet Tracing exploits the high coherence between adjacent rays by working
on packets of multiple rays: those rays corresponding to neighbouring pixels
usually traverse the same space (and thus the same nodes of a spatial index
structure), intersect with the same primitives and query the same shader with
similar parameters. This allows for efficient usage of SIMD instructions that
perform all computations on groups of 4 rays in parallel without overhead
(except for the lack of suiting SSE instructions as discussed in Section [E1).

The current implementation works on packets of arbitrary multiples of
those groups of 4 rays that are computed sequentially, exploiting the co-
herency in terms of cache-hits when nodes or primitives that were intersected
by a previous group are accessed by the next as well.

Coherence degrades quickly for finer tessellated scenes and larger packets
(see observations in Section B4 and Table B4).

3.5.2 Masking Rays

Masking the first and last active rays of a packet helps reducing the number
of ray-box and ray-triangle intersections. Whenever a currently first active
ray did not intersect with a child, it is masked out and the next ray of the
packet becomes the “first active” for this branch of the structure. The same
is applied to the last active ray of the packet, so only a convex part of the
packet is considered when traversing lower levels of the tree.

This can also be extended to all rays of a packet by the usage of a bit-
mask and is very effective in reducing overhead for incoherent packets (see

Section B4l and Table B.)).

3.5.3 Equally Signed Packets

Separate handling of packets that contain rays that do not share the same
direction-signs helps optimizing the common case (same signs) which is less
complex because computation of certain parts (e.g. the matching of planes
to the children they belong to) can be done once for all rays. For packet sizes
up to 16x16, the percentage of those cases is above 97%.

3.5. TRAVERSAL

23

max):(-plane (L
1 minX-plane (R)

tnear

t

t_near(L) = tyear
t_near(R) = thear
t_far(L) =tsa
t_far(R) =tsar

t_near(L) = max(t_near(L), tminy) =t_near(L)
t_near(R) = max(t_near(R), tminx) = tminx

t_far(L) = min(t_far(L), tmaxx)
t_far(R) = min(t_far(R), tmaxy)

t_near(L) <= t_far(L) J => left child hit!
t_near(R) > t_far(R) X = right child not hit!

= tmaxx

= tmaxY

tminy = -inf (plane not used)

Figure 3.7: Example for the traversal of the BPH in 2D. Dashed lines rep-
resent the crucial planes stored in the node, red dots are intersection points.
The parent box is coloured grey, the node’s children are blue (left) and red

(right).

24 CHAPTER 3. THE BOUNDING PLANE HIERARCHY (BPH)

3.5.4 Ordered Traversal

If both children of a node have a valid intersection, the nearest is traversed
next and the other child is pushed onto the stack. This helps finding the
nearest triangle-intersection as fast as possible.

3.6 Dynamic Scenes

In order to support dynamic scenes, simple recursive updating of the bounds
is employed. No heuristically influenced complete rebuilds or other more
sophisticated techniques (as e.g. in [LYTMO06, WBS07]) have been used, the
implementation is straightforward:

The algorithm recursively traverses down the tree in depth-first order.
Each inner node recursively calls for an update of its children. At leaf level,
the AABB of the enclosed primitives is recomputed. The AABB is returned,
allowing the parent to save it and construct its own updated box out of the
two boxes of its children. If the new AABB is equal to the old one, the cur-
rent path does not have to perform any more updates and can immediately
return. This procedure continues until the complete tree is updated.

As will be discussed in Section again, this method is primarily efficient
for coherently changing, deformable scenes and is very likely not to work very
well for arbitrary dynamic scenes. However, it supports a very common type
of animation convincingly well and is easy to apply.

Chapter 4
Treelets

Treelets are clusters of interconnected inner nodes used to enhance locality
of traversal and thereby increase cache-efficiency. This basically points in
the same direction as cache-oblivious/cache-aware algorithms as one goal is
to increase cache-efficiency by reordering nodes in a way that those that are
likely to be traversed subsequently are placed next to each other in memory.
On the other hand, Treelets go one step further: they allow for completely
independent computation on subsets of the acceleration structure which is
perfectly suited for parallel and/or multi-threaded environments. This is es-
pecially useful for parallel processors that manage a local memory like the
“Synergistic Processing Elements” (SPEs) of a CELL (see Section EEJ).

Treelets of an acceleration structure have a fixed number of nodes that
can be arbitrarily chosen by the user, e.g. in dependence of the size and pos-
sible branching-factor of the scene (also see Section B2). Only inner nodes
are grouped to form a Treelet, leaf nodes are always considered as outgoing
edges that are not handled internally. Hence, triangle-intersection is “out-
sourced” and traversal of Treelets focuses entirely on inner nodes, allowing
for specialized code-optimization.

4.1 Construction

The building procedure for Treelets recursively traverses a given binary tree
alternating between breadth-first and depth-first order: A specified fixed
number of nodes is selected using a breadth-first traversal scheme and is
grouped together to form a Treelet. Outgoing edges on the other hand are
put on a stack that produces a global depth-first ordering of the Treelets.

25

26 CHAPTER 4. TREELETS

When constructing a new Treelet, memory for all nodes is allocated
(Treelet-size multiplied with the size of an inner node) and all nodes are
appended to an array in the order they are added to their Treelet. Only
inner nodes are considered during this procedure, leaf nodes always produce
an outgoing edge of the Treelet. If the Treelet is not completely filled yet, but
no inner node can be added because the leaf level is reached, the algorithm
checks if there already exists another partially filled Treelet that has enough
empty slots to accommodate the new one. This is done in a greedy manner
that uses the largest existing slot if no exactly fitting slot is available. If
there is no such slot, a new one is created, storing the remaining number of
unused nodes of the Treelet and the corresponding position in the array as
an empty slot for other Treelets.

In unfortunate topologies, e.g. with high branching factor but only few
nodes in each branch, this can happen several times subsequently, leading
to more incompletely filled Treelets and eventually to more memory over-
head. However, if a reasonable Treelet-size is chosen, the produced overhead
is usually just a few nodes (see Table BEH). This insertion-technique is es-
sential for the memory-efficiency of the algorithm because it “recycles” most
of the allocated but unused memory of incomplete Treelets. Without this
optimization, the size of the structure quickly becomes a multiple of what it
is without Treelets. The only other way would be to develop an algorithm
that guarantees filled Treelets (see Section R22).

In order to be able to determine if a child node belongs to the current or
a different Treelet during traversal, an additional bit of information has to be
stored in each inner node for each child. This bit is set to the same value for
all nodes of a Treelet and is alternated for all Treelets that are constructed on
its outgoing edges. This guarantees that external nodes are always recognized
correctly during traversal as there can never be two interconnected Treelets
with the same value of that bit.

Figure Tl shows an example of how Treelets are applied to an arbitrary
tree structure.

4.2 Traversal

The traversal scheme of Treelets consists of two stages, a global and a lo-
cal one: The global scheme uses a stack and either traverses a leaf node
or calls for traversal of a Treelet. This invokes the second stage, an inde-
pendent traversal that - for this thesis’s depth-first traversal - maintains its
own small stack and operates only on the local nodes of the current Treelet,

4.2. TRAVERSAL 27

°Inner Node Node-Array
.IIE Completed TL

Qi LT | aocatear
. TL root, X=Node Nr
°Intermediate Node

Internal TL Node,
Position = rootPos+Y

%Treelet (TL) I:‘ Empty Field

/> Pointer

el TT T TTTTTTTT]

Za 1)
- . v

I T2 8 B T2 T T[] (L T2 S]« T SO [J e+ T2

Figure 4.1: FExample for construction of Treelets of size 3. For better read-
ability, only some pointers are shown.

28 CHAPTER 4. TREELETS

starting with the root. If an internal child node of the Treelet has to be
traversed, it is pushed onto this local stack. Every time an outgoing edge has
to be taken, the corresponding inner or leaf node is pushed onto the global
stack, but the algorithm continues locally until the Treelet is traversed com-
pletely, indicated by an empty local stack. This behaviour leads to a reversed
traversal order of the outgoing edges: In a standard depth-first traversal, the
leftmost outgoing edge would be traversed first. Since the internal depth-
first traversal of the Treelets directly pushes outgoing edges onto the global
stack, the rightmost edge is pushed lastly and is thereby traversed first. As
discussed in Section B2, some ordering of these edges could be an option
worth exploring.

Globally, this two-stage algorithm results in a “broadened” depth-first or-
dered traversal that is likely to have a larger working set of nodes than a
standard depth-first traversal due to the fact that the algorithm first com-
putes intersection of all internal nodes of a Treelet before testing outgoing
edges that point to primitives. Influence of this overhead on a single-processor
machine can be observed in Section and in Table Pseudo-code for
the traversal is shown in Figure B2

4.3 Implementation On The CELL Processor

On a high level of abstraction, the CELL processor consists of three main
components:

e Power Processing Element (PPE) -
the main core (64-bit Power Architecture),

e Synergistic Processing Elements (SPEs) -
eight co-processors scheduled by the PPE,

e Element Interconnect Bus (EIB) -
a high-bandwidth circular data bus connecting all components.

The PPE works as a controller that maintains the global stack and sched-
ules free SPEs with tasks. Each task is to traverse a given Treelet with a
given packet of rays and return outgoing edges that have to be traversed
consecutively. Each SPE has its own local memory, so it can work on a
complete Treelet with only one memory access when being scheduled. Every
memory access during computation is then fed by the local store, resulting
in minimized latency. After successful traversal, the SPE communicates its
results back to the PPE, either indicating no valid intersection (finishing that

4.3. IMPLEMENTATION ON THE CELL PROCESSOR

29

void traverse() {
globalStack.push_back(root);

while (globalStack not empty) {
currentNode = globalStack.pop_back();

if (currentNode == Leaf Node) intersect Triangle(s);
else {

localStack.push_back(currentNode) ;

while (localStack not empty) {
currentTLNode = localStack.pop_back();
if (leftChild intersected) {
if (leftChild internal && no Leaf)
localStack.push_back(leftChild);
else

globalStack.push_back(leftChild);
}
if (rightChild intersected) {
if (rightChild internal && no Leaf)
localStack.push_back(rightChild);
else

globalStack.push_back(rightChild);
}
} //Treelet Node traversed

} //Treelet or Leaf Node traversed

Figure 4.2: Pseudo code for the traversal of a Treelet-based acceleration struc-

ture.

30 CHAPTER 4. TREELETS

branch) or supplying a list of outgoing edges or nodes that define the lower
levels outside the finished Treelet that have to be traversed. The PPE pushes
these nodes onto its global stack, maybe even performing some ordering op-
timization, e.g. by sorting the nodes by hit distances or by scheduling leaf
before inner nodes. Every time an SPE has completed a task and returned its
results, it is again scheduled by the PPE with the next node from its global
stack, eventually completing the traversal of this packet by the time the stack
is empty. This approach is suited to use all SPEs to full capacity regardless
of the structure’s topology, but this is bought by a lot of communication that
could result in bad overall performance.

A variant with less communication overhead would be to let each SPE
traverse a complete branch consisting of several Treelets by requesting sub-
sequent Treelets directly from main memory in order to minimize communi-
cation with the PPE. After successful traversal down to leaf level, an SPE
would return those rays to the PPE that travelled down all the way to leaf
level. The way intersection and shading of primitives is handled is a different
question that can be done independent of the traversal-routine.

Both schemes make parallel intersection of up to as many Treelets as
SPEs are on the chip possible because all SPEs work on disjoint subsets
of the index structure and traversal is not influenced by different branches
(except for discarding branches if a nearer intersection has been found). On
the current CELL architecture 8 SPEs are available, each with a local store
of 256 KB memory without cache. This allows loading one or even several
complete Treelets (up to a total of over 8000 BPH-nodes) onto each SPE.
Since there is no hardware caching-mechanism, a software-cache has to be
used which is costly to access, but the use of Treelets amortizes this access
over many nodes.

Chapter 5
Results

This chapter describes how the BPH performs with respect to memory re-
quirement and rendering performance, additionally pointed out by some
statistics for traversal. The tests confirm that the Bounding Plane Hierarchy
is very well suited for saving large amounts of memory - in fact it reduces the
required memory of a scene’s index structure by a minimum of 35% and up
to 75% compared to current acceleration structures (Section B.2). Although
achieving interactive framerates, the performance of the BPH is inferior to
an optimized BVH (Section B.3)).

As for Treelets, the effectiveness of the construction-algorithm is shown
in terms of its small memory overhead. Due to the fact that no suiting
architecture has been tested, the provided statistics for the BPH with Treelets
concentrate on the memory overhead produced. Performance of the BPH on
a single-core CPU drops about 10-35% when using Treelets (Section BH).

5.1 Configuration

All tests were run on a Samsung X10 notebook with an Intel Centrino Pro-
cessor (Pentium M) at 1.7 GHz and 512MB of RAM. The operating system
was Kubuntu Linux 6.06 with kernel 2.6.

The chosen scenes consist of mostly single objects, one indoor-like (“toast-
ers”) and one outdoor-scene (“fairy”) between 12 and 1,000,000 triangles, dy-
namic scenes range from 5,000 to 170,000 triangles with several animation-
frames (see Figure b1l and and Tables B0l and B3)). They were rendered
at a resolution of 512x512 pixels without any complex shading (basic “eye-
light”-shading).

31

32 CHAPTER 5. RESULTS

Performance comparison is drawn with a highly optimized BVH imple-
mentation (“wBVH”) after [WBS07], the memory requirement is also com-
pared to the B-KD-tree (“BKD”) and the unoptimized BVH (“BVH”) used
for conversion to the BPH to see direct improvement. See Page 1] for refer-
ences of the scenes.

Figure 5.1: The static test scenes: ground, shuttle, bunny, dragon, buddha.
Additionally, the first frames of the dynamic scenes were used.

Figure 5.2: The dynamic test scenes: wood-doll, marbles, toasters, hand,
ben, fairy.

5.2. MEMORY REQUIREMENT

33

Scene Triangles BVH | wBVH BKD BPH BPH2
ground 12 0.5K 0.3K 0.3K 0.2K 0.1K
shuttle 616 31K 19K 20K 12K 0.8K
wooddoll 5,378 274K 181K 172K 105K 66K
marbles 8,800 466K 336K 282K 178K 110K
toasters 11,141 580K 356K 356K 221K 141K
hand 15,855 815K 525K 507K 310K 198K
bunny 69,451 || 3,373K | 2,399K | 2,222K | 1,285K 755K
ben 78,029 || 3,962K | 2409K | 2,497K | 1,509K 955K
fairy 174117 || 8,785K | 5,331K | 5,572K | 3,347K | 2,126K
dragon 871,414 || 45,504K | 30,614K | 27.885K | 17,335K | 10,975K
buddha | 1,087,716 || 56,762K | 37,977K | 34,807K | 21,624K | 13,720K

Table 5.1: Owverall size of the acceleration structures for the test-scenes (in
bytes, triangle-data not included). The BPH only needs 38% of the size of an
unoptimized BVH, and around 60% of a B-KD-tree or the highly optimized
BVH (“wBVH?) that uses 1-4 triangles per leaf. If the BPH uses 2 triangles
per leaf node (“BPH2”), percentages even drop to 24% (BVH) and around
38% (wBVH, BKD).

5.2 Memory Requirement

Table BT shows memory consumption of different index structures on the
test scenes. The BPH on average saves over 60% of space compared to the
unoptimized BVH, and still around 40% in comparison to the B-KD-tree and
the highly optimized BVH. The latter on the other hand does not have a fixed
number of primitives per leaf (whereas BVH, BKD and BPH go down to one
per leaf) but heuristically stores between 1 and 4 primitives with an average
of 2 on the tested scenes. This can theoretically save a complete level of the
tree which corresponds to 50% of its total size. A comparison to a BPH with
2 primitives/leaf is more even and shows over 60% savings instead of 40%
when compared to the single-primitive version.

Figure E3 gives a good overview of what memory overhead (additional to
storing the primitives) will be introduced by the different structures if used
for a scene whose number of triangles is known in advance: On average, the
unoptimized BVH needs over 50 bytes per primitive, the optimized variant
(mostly due to multiple triangles per leaf) and the B-KD-tree about 32 and
the BPH below 20 - if allowing 2 triangles per leaf, the BPH even drops to
12 bytes per primitive.

The total amount of saved space can be traced back to the different

34 CHAPTER 5. RESULTS

Memory Requirement AVG Bytes/Triangle
55
50 [
451 |
. hand 40—
[bunny 35 4— [evH
ben W wBvH
Wiy 30— W BKD
M dragon 25— WsPH
Doedcha 0 || WepHe
15—
10 +—|
0 51—
BVH wBVH BKD BPH BPH2 o
Acceleration Structures Acceleration Structures

Figure 5.3: Left: memory consumption of the different acceleration struc-
tures. Right: average amount of memory used in relation to the scene’s
triangles.

design decisions of the BPH. The largest part of course results from the basis
of the BPH: the fact that each node only stores a maximum of 6 planes
instead of two full AABBs reduces the size of each individual node by 50%
(as described in Section Bl). Being able to handle the last level above the
primitives implicitly because each node stores its children’s bounds also helps
keeping the explicitly stored tree as small as possible.

The usage of intermediate nodes (see Section B.2) also has a large impact
on the overall size. Table shows that on average 65% of all leaf nodes are
in fact intermediate nodes which saves about 35% of the total size.

5.3 Rendering Performance

The rendering frame rates of the BPH show real-time performance between
1 and 29 frames per second for the static and between 1 and 10 frames per
second for the dynamic scenes at a resolution of 512x512 pixels. Frame rates
drop towards bigger scenes due to the computational complexity and towards
larger packet sizes due to the decreasing coherency of the contained rays. As
Table shows, this can be observed especially for a packet size of 16x16
where the simple “ground”-object with only a few primitives is rendered faster
than with smaller sizes due to the high coherence of rays, whereas for the
massive models the frame rate drops substantially because due to the fine
tessellation the coherence is worse than for smaller sizes.

5.3. RENDERING PERFORMANCE 35

Scene % of total leafs | bytes saved | % of total size
ground 71 140 42
shuttle 63 6,636 35
wooddoll 65 59,108 36
marbles 59 90,944 34
toasters 61 118,720 35
hand 63 172,312 36
bunny 73 820,428 39
ben 66 864,276 36
fairy 67 1,946,980 37
dragon 61 9,231,712 35
buddha 61 | 11,535,216 35
| AVG | 64 | - | 36 |

Table 5.2: Savings due to the usage of intermediate nodes. Each intermediate
node saves one inner node (= 32 bytes). See Section[Z2 and Figures[Z3 and

B4

The performance of the current implementation is clearly inferior to the
chosen reference, the highly optimized BVH. This is mostly a result of the
shortcoming of algorithmic optimizations (e.g. no SAH, no “early hit test”
and no frustum culling were implemented, see Section [E4]) as well as a gen-
eral amount of inefficiency by reason of abstract design and lack of code
optimization.

Table shows frame rates both for the BPH and the highly optimized
BVH for different packet sizes, an illustration is given by Figures B4 and

36 CHAPTER 5. RESULTS

Scene wBVH BPH

4x4 | 8x8 | 16x16 | 4x4 | 8x8 | 16x16
ground 60 | 84 90| 21| 24 29
shuttle 51| 72 77| 15| 16 17
wooddoll 36 | 47 44| 11| 11 11
marbles 26 | 35 32 7 7 6
toasters 25| 35 33) S S
hand 22 | 31 28 7 7 6
bunny 17 21 17 6 5 4
ben 22 | 26 22 7 6 4
fairy 71 11 9 2 2 2
dragon 9 8 6 3 2 1
buddha 8 7 5 3 2 1
wood-doll(29) || 37| 45 431 10| 10 9
marbles(500) 20 | 31 30 5 5 5
toasters(245) 23| 31 30 5 5 5
hand(44) 21| 29 27 6 6 6
ben(30) 18| 24 19 4 5 5
fairy(21) 6 9 8 2 2 1

Table 5.3: Performance comparison of the BPH with the highly optimized
BVH for different packet-sizes, measured in frames per second. The cur-
rent implementation of the BPH is on average 3-5 times slower, worsening
towards bigger packet-sizes and larger scenes due to missing early hit- and
frustum-tests. Brackets indicate the number of frames the dynamic scenes
consist of. All numbers are average values for representative views.

5.3. RENDERING PERFORMANCE 37

Static Performance

90+

[fps(wBVH)
M ex8

W 16x16

Hfps(BPH)
W ex8

W 16x16

frames/second

!Il
k|

m'1| ik

ground shuttle wood- marbles toasters hand bunny ben fairy dragon buddha
doll

Scenes

Figure 5.4: Rendering performance of the BPH compared to a highly opti-
mized BVH for different packet sizes (static scenes).

Dynamic Performance

[fps(wBVH)
[8x8

M 16x16

X fps(BPH)
I 8x8

M 16x16

frames/second

wood-doll(29) marbles(500) toasters(245) hand{44) ben(30) fairy(21)
Scenes

Figure 5.5: Rendering performance of the BPH compared to a highly opti-
mized BVH for different packet sizes (dynamic scenes).

38 CHAPTER 5. RESULTS

5.4 Traversal Statistics

Table B4 provides further statistics for traversal and masking of rays. The
number of packet-node- and packet-triangle-intersections allows for a more
detailed analysis of the BPH’s performance than the overall outcome in fps,
as it is platform-independent and only represents the algorithmic efficiency
in finding the correct intersection as fast as possible. Just as observed for
the frame rates (which of course result mostly from the intersections), the
number of intersections increases towards larger scenes simply because the
tree is larger and towards larger packet-sizes because of decreasing coherence
of the rays.

Table B4 also shows that this performance is to a large degree more de-
pending on the topology of the scene and the resulting tree than on the raw
number of triangles as e.g. the fairy has only a fifth of the primitives as the
buddha but for smaller packet sizes needs more traversal steps to find the
best intersection, because the buddha is a quite regular, balanced structure
which results in a more balanced tree. For the larger packet-sizes on the
other hand, intersections for the statue increase rapidly which is a result of
the fine tessellation: a packet intersects with a part of the structure which
consists of many more triangles that have to be tested than in case of the fairy.

The last columns of Table 5. 4lshow high efficiencies for keeping track of the
rays that did not intersect with the parent-node to save on their computation
on all lower levels of the current path. The percentage of these rays of a
packet that can be masked out this way increases for larger scenes and larger
packet-sizes. This is closely related to the statistics for intersection, because
decreasing coherence of the individual rays of a packet causes more rays to
be masked out each step, resulting in only a few rays arriving on leaf level.
As this implies that a packet has to go down lots of different paths, the
overall number of intersections increases. By using masks, the influence of
the increasing computational complexity for decreasing coherence is reduced.

5.5 Treelet Overhead

The results in Table B3 show that the building-algorithm works highly ef-
fective in terms of memory overhead: although there are usually lots of in-
completely filled Treelets (i.e. the desired size of nodes could not be grouped
together due to the topology of the acceleration tree), there is rarely more
than one Treelet where the empty allocated nodes could not be filled up with
other Treelets. Thus, the memory overhead produced usually lies well below

5.5. TREELET OVERHEAD 39

Scene #node-isecs/packet #tri-isecs/packet Y%rays masked out

4x4 | 8x8 16x16 4x4 | 8x8 | 16x16 4x4 | 8x8 | 16x16
ground 3 3 4 3 3 4 1 3 6
shuttle 6 6 2 1 1 3 10 | 32 57
wooddoll 8| 10 7 1 3 9 31| 66 86
marbles 141 17 12 2 4 16 35| 69 88
toasters 22| 25 13 4 7 18 20 | 50 76
hand 131 17 15 3 6 12 33| 67 87
bunny 16 | 23 35 41 11 82 48 | 81 94
ben 12| 18 30 3 9 53 48 | 81 94
fairy 50 | 66 89 17 32 130 25| 62 86
dragon 26 | 59 162 11| 42 473 69 | 92 98
buddha 30| 76 207 13| 51 471 70 | 92 98

Table 5.4: Traversal statistics of the BPH: average number of packet-node-
intersections, packet-triangle-intersections and average percentages of masked
out rays per packet.

1% of the total size.

The building is by definition (see Section E.Tl) very sensitive to the given
structure of the tree, which means that for certain unfortunate topologies
the algorithm may produce very different overhead for different Treelet-sizes,
which can be observed e.g. at size 512 for the bunny.

Traversal of the BPH with Treelets usually performs 10-20% more packet-
node intersections than the reference without Treelets for the smaller scenes
and 20-35% more for the larger scenes. This is largely dependent on how
the Treelets of the chosen size adapt to the given topology (see Table B.Gl).
For larger trees, the overhead of intersections that would not be performed
without the complete traversal of each Treelet grows due to more traversal
steps. However, with a suited “early miss’-test (e.g. using frustum culling)
as discussed in Section these cases should not be too expensive.

Another important aspect is the fact that on the testing machine, the
computational complexity probably outperforms the memory access and thus
reduces the effect of improved memory and cache efficiency. An adapted
implementation on a suited architecture like the CELL or any on-chip multi-
core processor was not tested but should be able to gain large amounts of
performance out of the greatly enhanced cache-efficiency in trade for this
overhead.

CHAPTER 5. RESULTS

40

Scene TL2 | TL3| TL7| TL8| TLI16| TL64 | TL256 | TL512 | TL10K
ground 0(0) | 0(0) | 32(1) | 64(1) | 320(1) | 2K(1) | 8K(1) | 16K(1) | 320K(1)
shuttle 0(0) | 0(0) | 0(0) | 192(2) | 192(1) | 192(1) | 4K(1) | 4K(1) | 308K(1)
wooddoll 0(0) | 32(1) | 96(1) | 192(1) | 448(1) | 2K(1) | 2K(1) | 10K(1) | 215K (1)
marbles 32(1) | 64(1) | 0(0) | 32(1) | 32(1) | 544(1) | 3K(1)| 3K(1) | 142K(1)
toasters 0(0) | 0(0) | 64(1) | 128(1) | 384(1) | 384(2) | 384(1) | 9K(1) | 99K(1)
hand 0(0) | 64(1) | 64(1) | 128(2) | 384(1) | 896(1) | 9K(13) | 1K(1) | 9K(1)
bunny 32(1) | 0(0) | 96(1) | 96(1) | 352(1) | 1K(1) | 1K(1) | 10K(32) | 315K (1)
ben 32(1) | 64(1) | 160(2) | 224(2) | 224(1) | 224(1) | 6K(1) | 15K(1) | 91K(1)
fairy 32(1) | 64(2) | 192(2) | 96(1) | 352(1) | 2K(1) | 4K(1) | 12K(1) | 173K(1)
dragon 32(1) | 32(1) | 0(0) | 96(1) | 96(1) | 2K(1) | 8K(1) | 16K(1) | 265K (1)
buddha 32(1) | 32(1) | 64(1) | 32(1) | 32(1) | 1K(1) | 3K(1)| 3K(1) | 136K(1)
AVG incTL | 055 0.73] 091] 127 1] 1.09] 209 3.82 1
AVG bytes 18] 32 70| 116 | 256 1K K 9K | 191K

Table 5.5: Memory overhead introduced by usage of Treelets in Bytes. TLx indicates that each Treelet consists of x
inner nodes, brackets denote the number of incomplete Treelets, “AVG incTL” the average unfilled Treelets and “AVG
bytes” the corresponding average overhead in terms of additional memory requirement compared to the underlying
index structure. For example the bunny has one incomplete Treelet when using 256 nodes/Treelet, resulting in
approximately 1KB overhead and for a Treelet-size of 8 the scenes have an average of 1.27 incomplete Treelets
resulting in an average of 116 bytes overhead.

Scene BPH || TL2 | TL3 | TL7 | TL8 | TL16 | TL64 | TL256 | TL512 | TL10K
ground 3 3 3] 3] 3 3 3 3 3 3
shuttle 6 6] 6| 6| 6 6 7 7 7 7
wood-doll 8 91 9| 9] 9 9 9 9 9 9
marbles 14| 14| 15| 15| 15| 15| 15 15 15 16
toasters 22| 23| 24| 23| 23| 23| 25 25 25 28
hand 13 16| 16| 14| 14| 15| 16 17 18 22
bunny 16| 18| 19| 19| 19| 20| 20 21 22 25
ben 120 14| 15| 14| 14| 15| 14 14 14 16
fairy 50 60| 56| 59| 61| 58| 61 63 63 64
dragon 26| 31| 33| 43| 35| 30| 34 33 33 38
buddha 30| 44| 43| 56| 53| 39| 41 39 41 43
| AVG | 18] 22 22| 24| 23] 21| 22 22| 23] 25 |

Table 5.6: Traversal overhead introduced by usage of Treelets, measured as the average number of packet-node-
intersections. BPH denotes the reference without usage of Treelets, TLz indicates the Treelet-size (each Treelet
consists of = inner nodes). Packet size was set to 4.

AVAHYHAAO LHTAAYL 66

v

42

CHAPTER 5. RESULTS

Chapter 6

Drawbacks

This chapter gives an overview of the most important factors limiting this
thesis’s implementation. For one thing the BPH inherits some general draw-
backs of Bounding Volume Hierarchies that are a topic of current research
and for another thing there are some algorithmic techniques that were not
used (Surface Area Heuristic, “early hit test” and frustum culling). Finally,
the SSE instruction set does not supply certain operations that could have
been useful.

6.1 Construction Using First Frame

For a static scene it is easily possible to find a good acceleration structure
that matches the scene’s topology. If rendering an animation without a
priori knowledge of its deformations however, the only way to construct the
hierarchy is to use the first frame. This frame of course not necessarily
describes a state of the scene that is in any case representative, resulting in
a possibly inefficient topology for the complete set of frames.

An illustration for such a case can be given by a person with folded arms:
In the first frame, his/her left hand is on his right side and vice-versa, so
the structure will be built with primitives of the left hand inside a subtree
where mostly parts of the right half of the body reside. However, usually the
person’s left arm will be on his left side and vice-versa, so the bounds of both
arms will not represent a common state of the animation. This will result in
a scenario like the one described in the next section that can only be avoided
if the structure is somehow (at least partially) rebuilt during rendering.

43

44 CHAPTER 6. DRAWBACKS

6.2 Updating Without Rebuilds

If primitives of the same subtrees move to opposing corners of the scene,
their corresponding bounding volumes enlarge and enclose large parts of the
scene. Thus, they have to be intersected with many more incoming rays than
just the few that actually hit the primitives. This has no critical influence if
the primitives reside in different subtrees that merge relatively high up in the
tree, as this will only result in a few more cases where all rays miss the next
subtree (one “early hit test” and one “early miss” as explained in Section 6.3,
but if primitives of a subtree close to leaf level are affected, this complete
part of the tree has to be traversed by all rays, eventually resulting in major
performance decrease.

A detailed model of a large city serves as a good example: Suppose in the
beginning of the animation a group of people is standing in an elevator that
descends from the top of a skyscraper down to the ground floor. They would -
depending on the depth of the BVH - be grouped together at a relatively low
level not far above the leaf nodes. Now let all people be moving to different
corners of the scene, maybe even one on top of another skyscraper and one
down into the subway.

In such a case, the bounding volume of the group will be enlarged over
the whole city and with it all parent nodes up to the root node. For a BVH-
depth of N and the group being one level above the leaf nodes this would
lead to N-1 additional early hit tests plus one frustum exit. The breakpoint
is that this overhead has to be computed for every ray shot into the scene,
while maybe only 1% or even none of the rays will really have an intersection
with one of the people from the group. Figurele.dl shows a simplified example
of such a scenario.

Nevertheless there is a lot of research focusing on partial [WBS07] or com-
plete [LYTMO6] rebuilds that are only used if the topology of the acceleration
tree (or of a subtree) is being considered too inefficient by some metric. These
rebuilds make efficient rendering of many more kinds of animation possible
than just coherent deformations and are a topic for future enhancements of
the BPH.

6.3. EARLY HIT TEST & FRUSTUM CULLING 45

\\ < && 4

o

Figure 6.1: Simplified example of a situation where updating of a BVH
without complete rebuilds results in inefficient topology. Left: only two rays
intersect with the AABB in the upper right. Right: one of the triangles of
that subtree has moved to the lower left. Now all rays intersect with the box
and thus have to test for intersection with both children although only one
ray really hits.

A

AR Y

6.3 Early Hit Test & Frustum Culling

Basically all algorithmic techniques used for BVHs or other derivations should
be applicable to the BPH as well. Yet, the algorithmic complexity is higher
and especially the need for a stack-based traversal scheme can impose prob-
lems to certain optimizations like an “early hit test” in the style of [WBS07]:
This optimization checks for an intersection of the first ray and immediately
enters the corresponding child, sequential testing of all rays is only done if
this test fails. This possibly introduces overhead in terms of rays traversing
nodes they don’t hit (rays that would usually be masked out) but on the
other hand saves all intersection computation of the remaining rays of the
packet.

This test has shown to be especially useful in combination with a frustum
test that, if the early hit test fails, conservatively checks if the complete packet
misses the box. This way, lots of individual ray-box-tests can be spared. See
Section for an explanation of how this could be applied to the BPH.

46 CHAPTER 6. DRAWBACKS

6.4 Surface Area Heuristic (SAH)

The current implementation does not pay attention on how to build a good
acceleration structure in the first place. This means a simple “spatial median”
split is used in each step of the building phase, subdividing the scene in
two equally sized parts and then fitting the AABBs to the corresponding
underlying geometry. It has been shown that using heuristics to choose the
possibly best splitting-plane to adapt to scene topology usually results in
significant performance increase. Although there is still no proven “best”
way to do this, the so-called “Surface Area Heuristic” (SAH) [GS87] has
shown to be very effective, resulting in up to two times speedup over spatial
median and up to six times over object median (i.e. choosing the splitting
plane where it divides the objects equally) [WBS07].

When building a BVH/BPH using a SAH-based algorithm, the plane that
subdivides the current node is chosen heuristically as the one that minimizes
the expected time of a random ray intersecting the bounding volume. This
expected time is estimated by the SAH:

A(Sr)

A(S)
T = 2T N(S;) i
'AABB + (Sp) Ty + AS)

A(S)

N(SR)TtM',

where T is the execution time for an average ray intersecting with the root
node, Thagp and Ty.; are the times for intersection with an axis-aligned
bounding box and a triangle, S is the set of triangles in the root node, S
and Sg are the subsets of the two child nodes, A(S) is the area of the bounds
of the triangles in set S and N(S) is the number of triangles in set S.

Given a root node and a splitting plane, this heuristic computes for both
child-nodes the ratio of the AABB-surface area to the root-surface area and
multiplies each with the corresponding intersection time for all triangles in-
side the child. These times are added up together with the time for the two
AABB-ray-intersections of the two child-nodes.

6.5. SSE INSTRUCTION SET 47

6.5 SSE Instruction Set

The “Streaming SIMD Extensions” for current CPUs do not provide certain
desirable functions that could have been helpful for the implementation of the
intersection-algorithm of the BPH and could possibly make the code much
faster.

As an example, a “conditional select”-function would be very useful. Such
a function would construct a SIMD-vector A out of two other SIMD-vectors
X and Y depending on boolean evaluation of a third SIMD-vector (or a 4bit-
immediate constant) B for each entry of the vectors:

_mm_select_cond_ps(__m128 A, __m128 X, __ml128 Y, __m128 B) :=
{

A[0] = B[0] ? X[0] : Y[0];

Al1] = B[1] 7 X[1]1 : Y[1]1;

A[2] = B[2] 7 X[2] : Y[2];

A[3] = B[3] 7 X[3] : Y[3];

}

An even more suitable variant would be to swap values depending on a
boolean evaluation:

_mm_swap_cond_ps(__m128 X, __mi128 Y mi28 B) :=
{

if B[0] then swap(X[0], Y[01);

if B[1] then swap(X[1], Y[11);

if B[2] then swap(X[2], Y[21);

if B[3] then swap(X[3], Y[31);

}

| J—

The intersection-algorithm needs to accommodate to cases where rays
come from directions with negative signs on some or all axes. In such a case,
at first the min- and max-planes of those dimensions with negative signs
have to be switched. Afterwards these planes have to be mapped to the
node’s left and right child which is done by using the encoded information of
the node. Both steps perform operations that could nicely be handled with
such conditional-load- or conditional-switch-operations. The sign correction
is shown in the example code of Figure 62

48 CHAPTER 6. DRAWBACKS

//bounding planes of children, saved as SSE-vectors
__m128 planes_min = node.planes_min;
__m128 planes_min = node.planes_max;

//direction signs of packet, negative sign if (dir < 0)
__m128 packet_dir_sign = _mm_cmplt_ps(packet.dir, _mm_zero);

WITHOUT SELECT/SWAP-INSTRUCTION:
float planes_min_x, planes_min_y, planes_min_z;
float planes_max_x, planes_max_y, planes_max_z;

//check signs & correct planes

if (((floatx*)&packet_dir_sign) [0]) {
planes_min_x = ((float*)&planes_max) [0];
planes_max_x = ((float*)&planes_min) [0];

} else {
planes_min_x
planes_max_x

((float*)&planes_min) [0];
((float*)&planes_max) [0];

}

if (((floatx*)&packet_dir_sign) [1]) {
planes_min_y = ((float*)&planes_max) [1];
planes_max_y = ((float*)&planes_min) [1];

} else {
planes_min_y
planes_max_y

((float*)&planes_min) [1];
((float*)&planes_max) [1];

}

if (((floatx*)&packet_dir_sign) [2]) {
planes_min_z = ((float*)&planes_max) [2];
planes_max_z = ((float*)&planes_min) [2];

} else {
planes_min_z = ((float*)&planes_min) [2];
planes_ma_xz = ((float*)&planes_max) [2];

3

//write back sign-corrected planes

planes_min = _mm_load_ps(planes_min_x, planes_min_y, planes_min_z, 0);
planes_max = _mm_load_ps(planes_max_x, planes_max_y, planes_max_z, 0);

WITH SELECT-INSTRUCTION:

_mm_select_cond_ps(planes_min, planes_max, planes_min, packet_dir_sign);
_mm_select_cond_ps(planes_max, planes_min, planes_max, packet_dir_sign);
WITH SWAP-INSTRUCTION:

_mm_swap_cond_ps (planes_min, planes_max, packet_dir_sign);

Figure 6.2: Example-code for the sign-correction of BPH-planes without and
with conditional-select and conditional-swap instructions

Chapter 7

Conclusion

This thesis introduces two new techniques to improve memory efficiency of
spatial indices for Ray Tracing.

The Bounding Plane Hierarchy reduces the size of previous index struc-
tures by up to 75% while still running at interactive frame rates and sup-
porting animated scenes. Theoretically, the BPH even increases the basic
traversal operations by a factor of two compared to a standard BVH that
clips against each child’s box.

Treelets introduce a technique of clustering nodes that allows for a new
way of traversal which operates completely independent on subsets of the
index structure. This is perfectly suited for multi-core architectures like
the CELL where several subsets can be traversed in parallel. Additionally,
Treelets are not restricted to the BPH and can easily be applied to most
acceleration structures.

Both algorithms were shown to allow for efficient implementation using
packet tracing with SIMD-instructions, although there are several things left
for optimization (see Section B) and it still has to be shown how Treelets
perform in an appropriate environment.

The BPH achieves a major improvement of the memory requirement of
spatial index structures that works towards bridging the “memory gap” for
Realtime Ray Tracing, Treelets are capable of enhancing memory efficiency
even more on multi-core architectures. This leads to the conclusion that this
thesis’s contributions are very likely to increase performance in the future
as the additional computational complexity will become negligible while the
enhanced memory efficiency will have a strong, increasing impact.

49

50

CHAPTER 7. CONCLUSION

Chapter 8
Future Work

As discussed in Section [f, There are several things that are worth of imple-
mentation or further research, as will be summed up in the following.

8.1 BPH Optimization

The Bounding Plane Hierarchy is currently lacking some of the possible op-
timizations that have proven to result in major performance increases for
BVH implementations, most importantly the “early hit test” and conserva-
tive frustum culling for an “early miss test” as described in Section 63 While
frustum culling is directly convertible to the BPH, the early hit test is more
complicated.

8.1.1 Early Hit Test

It is not possible to implement the early hit test the same way as done in a
standard BVH because the hit-distances of each ray with the parent box are
needed when intersecting a child using a slabs-like algorithm. If only the first
ray’s intersection was computed in a previous traversal step, the necessary
information for a ray-by-ray intersection is no more available in subsequent
steps. Nevertheless, the test can be done differently, although with a little
more overhead:

For adaptation to the BPH, it is necessary to keep track of the complete
current box that is traversed with the help of the stack. This means that
a box is kept on the stack that is updated in every traversal step with the
planes of the corresponding child. If an early hit test was successful, a flag
is set, indicating that no complete information of the exact hit-distances

o1

52 CHAPTER 8. FUTURE WORK

of all rays is available and all further individual tests are skipped. If in
a subsequent step all rays have to be tested sequentially, this flag lets the
algorithm first perform a full packet-box intersection with the box of each
child (reconstructed using the box from the stack) in order to gain complete
information again. If the flag is not set, the algorithm performs the standard
optimized intersection of both children at once.

The worst-case scenario for this algorithm are alternating early-hit- and
reconstruct-cases resulting in two full box-intersections every two traversal
steps - which amortizes to the same cost as when not using the early hit test.
In any other case the intersection of many rays of the packet is outperforming
the computational cost of one reconstruction at a lower level by far. See
Figure for a graphical illustration.

8.1.2 Rebuilds During Rendering

As discussed in Sections and 2 no rebuilding of the structure is cur-
rently implemented, which limits the variety of dynamic scenes that can be
handled efficiently. Adapting e.g. the technique of [LYTMO6] should be fairly
straightforward.

8.1.3 Surface Area Heuristic (SAH)

The building phase of the current implementation only uses a simple median
split strategy that is very likely to produce inferior topologies compared to
using a “Surface Area Heuristic”-based partitioning scheme as discussed in
Section Implementation of the SAH is not too complicated and can
increase performance for non-symmetric scenes significantly.

8.1.4 Arbitrary Primitive-Lists

In the current implementation, the number of primitives per leaf is globally
fixed (see SectionB2). This restriction can be relaxed if using additional inte-
ger fields for each node that indicate the length of the list of primitives that is
referenced by a leaf pointer. If applying the intermediate-node-optimization,
numbers of both lists of the children just have to be added as the primi-
tives lie subsequently in memory. This possibly allows for better optimized
index structures that e.g. heuristically assign several primitives to certain
leaf nodes. On the other hand, the desired integer would destroy the careful
memory-layout and thus probably worsen overall performance.

8.1. BPH OPTIMIZATION 23

ray packet
early hit fails, early miss successful

_ A
new first active

/

early hits:
- update box on stack
]

early hit fails, early miss fails:
- reconstruct box from stack
- intersect each ray until hit

- mark new ,first active™ ray

early hit
early mis

Figure 8.1: Example of the traversal-algorithm using both an “early hit test”
and frustum culling (“early miss”). The current boz has to be kept on the
stack and has to be updated in each step to be able to reconstruct it at lower
levels. In this case, 7 early hit tests are performed (one for each AABB), 4
are successful. For the remaining cases, two frustum tests succeed (no ray
hits) and one fails. Only for this one case, a reconstruction and individual
testing of all rays has to be performed. The cost of 4 cheap early hit tests is
very low compared to the spared individual ray-box-intersections.

o4 CHAPTER 8. FUTURE WORK

8.2 Treelet Optimization

There are also various ways worth trying to improve Treelets:

8.2.1 Cache-Oblivious Treelets

Most obviously using some heuristic in the building phase instead of the
simple “breadth-first” to determine what child to add next to the current
Treelet could again increase cache-efficiency during runtime. A specific metric
that e.g. always adds the child with the largest volume or that computes a
cache-oblivious layout as presented in [YLPMO05] could be worth applying.

8.2.2 Enforcing Filled Treelets

The algorithm described in Section Bl simply constructs Treelets top-down
beginning with the root of the tree, often resulting in many Treelets that can
not be filled completely for branches that do not fit exactly. Although this
does not affect memory requirement due to the clever reordering strategy,
it might be desirable to have most or even all Treelets consist of the same
amount of inner nodes.

There are two possible solutions for this problem that are obvious. The
first one is a straightforward extension to the current algorithm that counts
the remaining inner nodes of all branches before deciding what node to add
to the current Treelet. This could also be implemented by maintaining the
remaining inner nodes of each branch that has not yet been visited and by
enforcing these values to be of multiples of the chosen Treelet-size when
completing a Treelet. Possibly this could also be a part of a metric as in
Section that is used to decide what node to add next.

The other possibility is a bottom-up construction algorithm that does not
result in many unfilled Treelets on the lowest level, but only in a few unfilled
Treelets high up in the structure. However, this task is quite challenging
because neighbouring paths are not known when ascending in the tree, re-
sulting in situations where it is unclear if the algorithm should go down some
neighbouring path or ascend further in order to add the missing nodes to
complete the Treelet. If ascending further, the neighbouring path is likely
not to consist of a multiple of the Treelet-size and thus will not result in
filled Treelets. Adding nodes from that path on the other hand might affect
a subtree that would have fit exactly otherwise.

8.2. TREELET OPTIMIZATION 25

8.2.3 Finding Optimal Treelet-Size

Currently, the user has to decide for a Treelet-size. This decision could be
handled automatically by the algorithm in various ways, possibly resulting
in less overhead and an optimized Treelet-structure, also considering the
above mentioned desire for completely filled Treelets. Random or incremental
construction of several sizes (chosen e.g. in dependence of the size of the
scene) and using a metric that decides the best one by measuring the number
of incomplete Treelets, the total number of empty node-slots and their ratio
against the number of complete Treelets would be a straightforward solution.
One could also develop a heuristic that analyses the tree and based on that
selects a size. The average path-length of the tree would be an option for
obtaining such a metric, in comparison with the number of leafs this could
give a useful estimation of the branching factor.

8.2.4 Improved Traversal Order

Traversal is unordered right now, which means nodes that lie outside the
current Treelet are pushed onto the stack in the order they are encountered
and thus traversed in the same order. It is very well possible that some or-
dering after the hit-distances of the ray-packet could result in faster traversal
despite the computational overhead. A different data structure, e.g. a heap
that always has the nearest child in its root could also be used instead of the
stack. As mentioned in Section E.3), this job could be very well suited for the
PPE that is only responsible for scheduling most of its time and possibly has
resources left while the SPEs work on Treelets.

o6

CHAPTER 8. FUTURE WORK

Acknowledgement

The massive models (bunny, dragon, buddha) are part of the Stanford 3D
Scanning Repository.
http://graphics.stanford.edu/data/3Dscanrep/

All animated models were taken from the Utah 3D Animation Repository.
http://www.sci.utah.edu/wald /animrep/

The shuttle is courtesy of Viewpoint Datalabs International, Inc., Copyright
1996.
http://people.scs.fsu.edu/burkardt /data/obj/obj.html

The simple “ground.obj” is part of an assignment of the Computer Graphics
lecture at Saarland University.
http://graphics.cs.uni-sb.de/Courses/ws0506/cgl/index.html

57

o8

CHAPTER 8. FUTURE WORK

Bibliography

[AH95]

[Bas91]

[Ben75]

[BSGMO02]

[BWSF]

[ClaT6]

[DWS04]

[DWS05]

Stephen J. Adelson and Larry F. Hodges. Generating Exact
Ray-Traced Animation Frames by Reprojection. IEEE Comput.
Graph. Appl., 15(3), 1995.

F. Baskett. Keynote address. International Symposium on
Shared Memory Multiprocessing, April 1991.

Jon Louis Bentley. Multidimensional binary search trees used
for associative searching. Commun. ACM, 18(9):509-517, 1975.

William V. Baxter, Avneesh Sud, Naga K. Govindaraju, and Di-
nesh Manocha. Gigawalk: interactive walkthrough of complex
environments. In EGRW ’02: Proceedings of the 13th FEuro-
graphics workshop on Rendering, pages 203-214, Aire-la-Ville,
Switzerland, Switzerland, 2002. Eurographics Association.

Carsten Benthin, Ingo Wald, Michael Scherbaum, and Heiko
Friedrich. Ray Tracing on the CELL Processor. In Proceed-
ings of the 2006 IEEE Symposium on Interactive Ray Tracing,
pages 15-23.

James H. Clark. Hierarchical geometric models for visible surface
algorithms. Commun. ACM, 19(10):547-554, 1976.

Andreas Dietrich, Ingo Wald, and Philipp Slusallek. Interac-
tive Visualization of Exceptionally Complex Industrial Datasets.
In ACM SIGGRAPH 2004, Sketches and Applications, August
2004.

Andreas Dietrich, Ingo Wald, and Philipp Slusallek. Large-Scale
CAD Model Visualization on a Scalable Shared-Memory Archi-
tecture. In Giinther Greiner, Joachim Hornegger, Heinrich Nie-
mann, and Marc Stamminger, editors, Proceedings of 10th In-
ternational Fall Workshop - Vision, Modeling, and Visualiza-

29

60

BIBLIOGRAPHY

[FLPRO9]

(GS87]

[HHS06]

[HPO03]

[KKS6]

[LAMO3]

[LYTMO6]

[MFTO5]

[PGSS07]

tion (VMV) 2005, pages 303-310, Erlangen, Germany, Novem-
ber 2005. Akademische Verlagsgesellschaft Aka.

Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Srid-
har Ramachandran. Cache-oblivious algorithms. In FOCS ’99:
Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, page 285, Washington, DC, USA, 1999. IEEE
Computer Society.

Jeffrey Goldsmith and John Salmon. Automatic creation of ob-
ject hierarchies for ray tracing. IEEE Comput. Graph. Appl.,
7(5):14-20, 1987.

Vlastimil Havran, Robert Herzog, and Hans-Peter Seidel. On
the fast construction of spatial data structures for ray tracing.
In Ingo Wald and Steven G. Parker, editors, Proceedings of IEEE
Symposium on Interactive Ray Tracing 2006, pages 71-80, Sep
2006.

John L. Hennessy and David A. Patterson. Computer Architec-
ture: A Quantitative Approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2003.

Timothy L. Kay and James T. Kajiya. Ray tracing complex
scenes. In SIGGRAPH ’86: Proceedings of the 13th annual con-
ference on Computer graphics and interactive techniques, pages

269278, New York, NY, USA, 1986. ACM Press.

Thomas Larsson and Tomas Akenine-Moller. Strategies for
bounding volume hierarchy updates for ray tracing of deformable
models. Technical report, Feb 2003.

Christian Lauterbach, Sung-Eui Yoon, David Tuft, and Dinesh
Manocha. Rt-deform: Interactive ray tracing of dynamic scenes
using bvhs. In IEEE Symp. on Interactive Ray Tracing, 2006.

B. Minor, G. Fossum, and V. To. TRE: Cell Broadband Opti-
mized Real-Time Ray-Caster. In Proceedings of GPSx, 2005.

Stefan Popov, Johannes Giinther, Hans-Peter Seidel, and Philipp
Slusallek. Stackless kd-tree traversal for high performance gpu
ray tracing. Computer Graphics Forum, 26(3), September 2007.
(Proceedings of Eurographics), to appear.

BIBLIOGRAPHY 61

[PMS*99]

[Pur04]

[RWS80]

[SWS02]

[Wal04]

[WBS07]

[WBWSO01]

[WHO6]

[WKO06]

Steven Parker, William Martin, Peter-Pike J. Sloan, Peter
Shirley, Brian Smits, and Charles Hansen. Interactive Ray Trac-

ing. In Symposium on Interactive 3D Graphics, pages 119-126,
1999.

Timothy J. Purcell. Ray Tracing on a Stream Processor. PhD
dissertation, Stanford University, March 2004.

Steven M. Rubin and Turner Whitted. A 3-dimensional represen-
tation for fast rendering of complex scenes. In SIGGRAPH ’80:
Proceedings of the 7th annual conference on Computer graphics
and interactive techniques, pages 110-116, New York, NY, USA,
1980. ACM Press.

Jorg Schmittler, Ingo Wald, and Philipp Slusallek. Saarcor
— a hardware architecture for ray tracing. In Proceedings of
the conference on Graphics Hardware 2002, pages 27-36. Saar-
land University, Eurographics Association, 2002. available at
http://www.openrt.de.

Ingo Wald. Realtime Ray Tracing and Interactive Global Illumi-
nation. PhD thesis, Computer Graphics Group, Saarland Uni-
versity, 2004.

Ingo Wald, Solomon Boulos, and Peter Shirley. Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Hierarchies.
ACM Transactions on Graphics, 26(1), 2007.

Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp
Slusallek. Interactive Rendering with Coherent Ray Tracing.
In Alan Chalmers and Theresa-Marie Rhyne, editors, Compu-
ter Graphics Forum (Proceedings of EUROGRAPHICS 2001,
volume 20. Blackwell Publishers, Oxford, 2001. available at
http://graphics.cs.uni-sb.de/wald /Publications.

Ingo Wald and Vlastimil Havran. On building fast kd-trees for
ray tracing, and on doing that in O(n log n). In Ingo Wald and
Steven G. Parker, editors, Proceedings of IEEE Symposium on
Interactive Ray Tracing 2006, pages 61-69, Sep 2006.

Carsten Wichter and Alexander Keller. Instant ray tracing: The
bounding interval hierarchy. In Rendering Techniques 2006, Pro-
ceedings of the Eurographics Symposium on Rendering, 2006.

62

BIBLIOGRAPHY

[WMS06]

[Wo006]

(WSS05]

[YLPMO5]

[YMO6]

Sven Woop, Gerd Marmitt, and Philipp Slusallek. B-KD Trees
for Hardware Accelerated Ray Tracing of Dynamic Scenes. In
Proceedings of Graphics Hardware, pages 67-77, 2006.

Sven Woop. DRPU: A Programmable Hardware Architecture for
Real-time Ray Tracing ofCoherent Dynamic Scenes. PhD thesis,
2006.

Sven Woop, Jorg Schmittler, and Philipp Slusallek. RPU: A
Programmable Ray Processing Unit for Realtime Ray Tracing.
In Proceedings of ACM SIGGRAPH 2005, July 2005.

Sung-Eui Yoon, Peter Lindstrom, Valerio Pascucci, and Dinesh
Manocha. Cache-oblivious mesh layouts. In SIGGRAPH ’05:
ACM SIGGRAPH 2005 Papers, pages 886-893, New York, NY,
USA, 2005. ACM Press.

Sung-FEui Yoon and Dinesh Manocha. Cache-efficient layouts
of bounding volume hierarchies. In Computer Graphics Forum
(Eurographics), volume 25, issue 3, 2006.

	Introduction
	Previous Work
	Ray Tracing
	Basics
	Problems
	Interactive Ray Tracing

	Spatial Index Structures
	Memory Efficiency

	The Bounding Plane Hierarchy (BPH)
	Planes
	Leaf & Intermediate Nodes
	Compressed Node-Layout
	Construction
	Traversal
	Packet Tracing
	Masking Rays
	Equally Signed Packets
	Ordered Traversal

	Dynamic Scenes

	Treelets
	Construction
	Traversal
	Implementation On The CELL Processor

	Results
	Configuration
	Memory Requirement
	Rendering Performance
	Traversal Statistics
	Treelet Overhead

	Drawbacks
	Construction Using First Frame
	Updating Without Rebuilds
	Early Hit Test & Frustum Culling
	Surface Area Heuristic (SAH)
	SSE Instruction Set

	Conclusion
	Future Work
	BPH Optimization
	Early Hit Test
	Rebuilds During Rendering
	Surface Area Heuristic (SAH)
	Arbitrary Primitive-Lists

	Treelet Optimization
	Cache-Oblivious Treelets
	Enforcing Filled Treelets
	Finding Optimal Treelet-Size
	Improved Traversal Order

