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Abstract

Modern processor architectures provide the possibility to execute an instruc-
tion on multiple values at once. So-called SIMD (Single Instruction, Multiple
Data) instructions work on packets (or vectors) of data instead of scalar val-
ues. They offer a significant performance boost for data-parallel algorithms
that perform the same operations on large amounts of data, e.g. data encod-
ing and decoding, image processing, or ray tracing.

However, the performance gain comes at a price: programming languages
provide no elegant means to exploit SIMD instruction sets. Packet operations
have to be coded by hand, which is complicated, unintuitive, and error prone.

Thus, packetization—the transformation of scalar code to packet form—
is mostly applied automatically by local compiler optimizations (e.g. during
loop vectorization) or with a lot of manual effort at performance-critical parts
of a system.

This thesis describes an algorithm for automatic packetization that allows
a programmer to write scalar functions but use them on packets of data. A
compiler pass automatically transforms those functions to work on packets
of the target-architecture’s SIMD width. The resulting packetized function
computes the same results as multiple executions of the scalar code.

The algorithm is implemented in a source-language and target-architecture
independent intermediate representation (the Low Level Virtual Machine
(LLVM)), which enables its use in many different environments.

The performance of the generated code is shown in a real-world case
study in the context of real-time ray tracing: serial shader code written in
C++ is automatically specialized, optimized, and packetized at runtime. The
packetized shaders outperform their scalar counterparts by an average factor
of 3.6 on a standard SSE architecture of SIMD width 4.
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Chapter 1

Introduction

Modern hardware architectures for CPUs and GPUs focus on exploiting par-
allelism: multiple processors are connected on the same chip and each pro-
cessor itself can work on multiple values in parallel using SIMD instructions
(Single Instruction, Multiple Data).

A SIMD instruction performs an arithmetic or logic operation on multiple
values in parallel, e.g. N additions or N comparisons. In general, N is flexible
for types of different sizes: a SIMD register can store a fixed number of bytes
that can e.g. hold N single-precision or N/2 double-precision floating-point
values. Throughout this thesis, we will use N to refer to the number of
single-precision data items a SIMD register of the target architecture can
hold (in short: the SIMD width). On current CPUs, N is usually four (MMX,
3DNow!, SSE–SSE4, AltiVec).

These vector or packet instructions provide a significant performance
boost to data-parallel algorithms. Examples are algorithms in image process-
ing, data encoding and decoding, ray tracing, signal processing, or computer
simulations in particle physics or climate models.

Unfortunately, programming languages do not define a suitable abstrac-
tion for these instruction sets. The user is forced to explicitly use uncom-
fortable, non-portable intrinsics. Some languages even do not provide this
option (e.g. Java only allows scalar processing, although the virtual machine
might utilize available SIMD instructions).

Parallelism & Vectorization We will shortly describe and distinguish the
different notions of parallelization and vectorization. The next section defines
packetization.

• Parallelization is a general term used to describe a transformation
of scalar code to parallel code or to code that is executed in paral-

1



2 CHAPTER 1. INTRODUCTION

lel. This includes SIMD, SIMT (Single Instruction, Multiple Threads)
and MIMD (Multiple Instruction, Multiple Data) computation models.
Where SIMD describes the execution of one instruction with multiple
values on one processor that implements special instruction sets, SIMT
performs the same computation using multiple threads that work on
different scalar processor cores in parallel. Modern GPU architectures
mostly concentrate on this model of computation.

Parallelization also includes transformation of code to a MIMD model
where entirely independent parts of a program are executed in parallel
on different processors. This does not necessarily include any transfor-
mation of the scalar code itself.

• Vectorization describes transformations that enable parallelization by
exposing data parallelism. This is usually accomplished by so-called
Loop Vectorization, which comprises a number of local compiler opti-
mizations that aim at exploiting the parallelism of loops.

An example for such an optimization is combining data of several un-
rolled loop iterations to vectors. These can be exploited by vector
instructions.

This field has been widely studied and a multitude of different opti-
mization techniques have been developed.

1.1 Automatic Packetization
Packetization (also: Data Parallelization or SIMDfication) describes the pro-
cess of transforming scalar code, given by a control-flow graph (CFG) G, into
a CFG G′ that works on N scalar input values at once. One execution of G′

is semantically equivalent to N executions of G. The performance benefit of
a packetized function comes from the utilization of SIMD instructions which
are able to perform a single operation on N values in parallel.

Unfortunately, implementing packet code by hand is cumbersome and
error prone. Replacing the usual arithmetic operators with their intrinsic
counterparts is annoying but comparatively easy. The major difficulty is
modelling control flow, which can quickly become very complex:

Since we are executing N instances of the scalar code in parallel, control-
flow might diverge. For example, we might execute the then-branch of an if-
then-else for some input values and the else-branch for others. The packetized
code has to execute both branches and merge the contents of the variables
according to the branch condition. In compiler construction, this is called
predicated code.
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Similar complications occur for loops. Each loop has to be iterated un-
til the loop-exit condition is false for the last element in the packet. This
possibly involves operations that produce wrong values because the corre-
sponding instance would have left the loop if it was executed in the scalar
version. The effects of such operations have to be nullified during iteration in
order to preserve correct results. Section 2.2 describes terminology for this
and Section 4.3.1 details our solution.

Currently, programmers only employ packet code if an application is very
performance critical and the algorithm is compute-intensive and can be ex-
pressed in straight-line code.

Compiler optimizations that try to automatically exploit parallelism in
scalar programs are a topic of research since many years. However, they
only target specific local constructs and do not transform entire functions
or programs into packet code. Especially loop vectorization is a widely ap-
plied technique that transforms loops to perform several iterations in parallel.

True automatic packetization of a whole function has only been imple-
mented for compilers of a few domain-specific languages (like shading lan-
guages in the field of computer graphics). These however require the pro-
grammer to work on a special language with all kinds of restrictions and
limited portability (see Chapter 3).

To solve these problems, this thesis presents a source-language and target-
architecture independent infrastructure for automatic packetization.

1.2 Contributions

In summary, our approach has the following advantages:

• We present a platform-independent compiler pass that performs auto-
matic packetization of a source-language independent intermediate rep-
resentation. Consequently, functions can be written in a scalar fash-
ion in any language that compiles to the IR and are automatically
packetized to any packet width for any SIMD architecture. Chapter 4
presents the packetization algorithm in more detail.

• The packetizer provides a simple interface: The user only has to imple-
ment a scalar function and provide a prototype for the corresponding
packetized function. The implementation of this prototype is automat-
ically generated by the packetizer.
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• Classic compiler transformations work on the abstract syntax tree (AST)
because it is easy to use and code generation is simple. However, the
AST does not enable arbitrary optimizations, which is why we perform
packetization on the control-flow graph (CFG) of a function instead.
This allows us to perform aggressive optimization of the scalar source
code before packetization.

• We evaluate our system in the context of real-time ray tracing. The
packetizer is employed to automatically transform scalar material shaders
(programs responsible for the appearance of an object) into packet code.
The packetized shaders outperform their scalar counterparts by an av-
erage factor of 3.6 on a standard SSE architecture of SIMD width 4.
Chapter 5 presents our results.

Outline
The thesis starts with a chapter on the required foundations and terminol-
ogy, followed by an overview of the related previous work on data-parallel
programming, automatic parallelization and shading languages. The main
part introduces the automatic packetization algorithm and details its imple-
mentation. A case study shows the system’s applicability in a real world
scenario and the efficiency of the generated code. The thesis is finished by
the conclusion and a brief discussion of possible future work.



Chapter 2

Foundations

In this chapter we describe the basic concepts and terminology the reader
should be familiar with.

2.1 Control-Flow Graphs
The control-flow graph (CFG) of a function is a directed graph of basic blocks.
A block may have one or two outgoing and arbitrarily many incoming edges,
except for the entry block which has no predecessor. Each basic block holds
a list of instructions that have to be executed in order (no branching).

We only consider reducible CFGs that only contain loops with a single
entry edge. In this context there are additional important terms:

• The header of a loop is the single entry point of the loop, which has
exactly two incoming edges: one from the preheader and one from the
latch.

• The preheader of a loop is defined as the single predecessor block of
the loop header that does not belong to the loop (the entry point of
the loop).

• The latch of a loop is defined as the single predecessor block of the
loop header that belongs to the loop (the last block of the loop that is
executed before the next iteration starts). Note that the latch is not
necessarily also the block where loop is left.

We rely on a transformation (called“loop simplification” in LLVM) that guar-
antees the properties of these blocks (see Section 4.1). An example for a CFG
including a loop is shown in Figure 2.1.

5
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E

A

B

CD

R

Figure 2.1: An example CFG. The basic block E is the entry block and at
the same time the preheader of the loop that consists of blocks A,B,C, andD..
Block A is the header of this loop, D is the loop latch. Block R is the final
block that holds a return statement.

SSA Form The packetizer works on an intermediate representation that
uses the static single assignment (SSA) property. Every variable has only a
single definition in the program text. If a source code variable had many
definitions, an SSA variable is created for each definition of the original
variable. At certain points, the so-called dominance frontiers [6], φ-functions
are inserted to create a new uniform name for distinct definitions flowing into
the block. One can think of φ-functions as control-flow dependent copies.
Figure 2.2 gives an example for a usual and an SSA-form CFG.

x← · · ·A

x← · · ·B

· · · ← xC

x1← · · ·A

x2← · · ·B

x3← φ(x1, x2)
· · · ← x3

C

Figure 2.2: A CFG and its SSA counterpart
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2.2 Packet Terminology

In this thesis, we will often juxtapose scalar and packet code. In order to be
able to describe control-flow related transformations as exact as possible, we
have to define some specific terminology.

Consider an execution of the scalar function SF (Figure 2.3): The trace of
the function is the exact order of operations that are performed for specific
input values. If SF is executed four times with different input values, it
might produce four different traces, e.g. due to different branch decisions.

Now, consider an execution of the packet function PF that was generated
by the packetizer with the same four input values. As we only have one trace
now, it has to include all operations of the four scalar traces of SF : it
represents their union. Figure 2.4 shows an example for such a trace of SF
and PF .

input : a, b

x1 ← a+ a
cA ← x1 < b
cbranch cA, B,C

A

x2 ← φ(x3, x1))
x3 ← x2 + 1
cB ← x3 < b
cbranch cB , B,C

B

x4 ← φ(x3, x1)
r ← x4 − 2
ret r

C

Figure 2.3: The scalar function SF that increments x (which is 2∗input a,
represented by the SSA values x1, x2, x3, x4) as long as it is smaller than the
input b and substracts 2 before returning the result.

In the context of packet code, we will use the term n-th scalar instance or
just n-th instance in order to refer to the trace of index n. This is especially
necessary when comparing the generated packet code to the scalar code.

For example, two packets a and b of size 4 are multiplied. a holds the
values 1, 3, 5, 7 and b the values 0, 2, 4, 6. We say that the third instance of the
packet multiplication performs the same operation as a scalar multiplication
of 5 and 4.
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x1 ← < 0, 14, 6,−2 >
cA ← < 1, 0, 1, 1 >
br B
x2 ← < 0, 14, 6,−2 >
x3 ← < 1, 14, 7,−1 >
cB ← < 1, 0, 1, 0 >
br B
x2 ← < 1, 14, 7,−1 >
x3 ← < 2, 14, 8,−1 >
cB ← < 0, 0, 1, 0 >
br B
x2 ← < 2, 14, 8,−1 >
x3 ← < 2, 14, 9,−1 >
cB ← < 0, 0, 0, 0 >
br C
x4 ← < 2, 14, 9,−1 >
r ← < 0, 12, 7,−3 >

ret < 0, 12, 7,−3 >

PF (< 0, 7, 3,−1 >, < 2, 1, 9,−1 >)

x1 ← 0
cA ← 1
br B
x2 ← 0
x3 ← 1
cB ← 1
br B
x2 ← 1
x3 ← 2
cB ← 0
br C
x4 ← 2
r ← 0

ret 0

SF (0, 2)

x1 ← 14
cA ← 0
br C
x4 ← 14
r ← 12

ret 12

SF (7, 1)

x1 ← 6
cA ← 1
br B
x2 ← 6
x3 ← 7
cB ← 1
br B
x2 ← 7
x3 ← 8
cB ← 1
br B
x2 ← 8
x3 ← 9
cB ← 0
br C
x4 ← 9
r ← 7

ret 7

SF (3, 9)

x1 ← −2
cA ← 1
br B
x2 ← −2
x3 ← −1
cB ← 0
br C
x4 ← −1
r ← −3

ret − 3

SF (−1,−1)

Figure 2.4: Different traces for the scalar function SF and the correspond-
ing trace of the packet function PF (input values in brackets). The trace
of PF is the union of the scalar traces: it includes all their calculations
and produces the same results. For the sake of simplicity, masks and select
operations are omitted in the trace of PF (see Sections 4.2 and 4.3).

If control flow of the instances diverges (e.g. during execution of a loop),
we talk about active and inactive instances. This describes that specific
blocks or instructions would or would not be executed by the scalar code for
the corresponding input data.

For example, if a loop iterates a different number of times for different
input values, some instances will become inactive. These inactive instances
must not be modified until all instances have finished loop iteration. See
Section 4.3.1 for more details including an explicit example.
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2.3 LLVM
We use the Low Level Virtual Machine (LLVM) as the basis for our auto-
matic packetizer. It provides a compiler infrastructure which made it easy
to integrate our own system. The LLVM compiler framework includes:

• A language independent, typed intermediate representation in SSA

• A GCC-based C/C++ front-end

• Various backends, e.g. for X86, PowerPC, and CellSPU

• A link-time optimization framework

• A just-in-time compiler

The packetizer works entirely on LLVM’s intermediate representation
(IR), allowing the user to be source-language and target-architecture inde-
pendent as long as LLVM provides the corresponding frontend or backend.

2.3.1 The Intermediate Representation
In Chapter 4, we will show a few examples in human-readable LLVM IR
assembly that we describe in the following. LLVM’s frontends compile pro-
grams to a compressed representation of this IR which is referred to as bitcode.
The top-level construct stored in a bitcode-file is a module, which can contain
functions and global constants and variables.

The LLVM IR is quite low-level compared to languages like C/C++ or
Java: there are no such constructs as classes, if-then-else statements or ex-
plicit loops. All control-flow related constructs of a function are transformed
into basic blocks connected by edges.

Each instruction corresponds to exactly one operation and represents an
SSA value. Each value has a name that starts with “%” which is referenced
everywhere that value is used. A typical instruction looks like this:� �
%r = add <4 x float> %a, %b ; <4 x float > [uses =1]� �
The example shows the LLVM IR equivalent for the SSE2 vector addition
intrinsic ( mm add ps( m128 a, b) in C/C++). The left-hand side of the
expression is the name of the value. On the right hand side, the operation
is followed by its operands, each with its type preceding the name (if types
are equal, they can be omitted for all operands after the first). A comment
is started with the special character “;”. Comments at the end of a line usu-
ally denote the type of the value (the return type of the operation) and the
number of uses of this value.
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2.3.2 Data Types
The LLVM IR supports a large set of different data types. Table 2.1 shows
examples for the most important types and their C/C++ counterparts.

LLVM Type C/C++ Type Explanation
i1 bool truth value (true (1) or false (0))
i8 char single character
i32 int 32bit integer value
i64 long 64bit integer value
float float 32bit floating-point value
type * type * pointer to arbitrary type type
<4 x float> __m128 vector of 4 32bit floating-point values
<4 x int> __m128i vector of 4 32bit integer values
{ types } struct { types } structure of arbitrary types types
[ N × type ] type t [ N ] array of size N of arbitrary type type

Table 2.1: Examples for the most important LLVM data types and their
C/C++ counterparts.

2.3.3 Important Instructions
Most instructions of the IR are standard instructions that can be found in
most assembly languages and need not be described in detail. However, there
are a few that require some additional explanations:

• Phi
As described in Section 2.1, the phi instruction chooses a value de-
pending on which predecessor block was executed:� �
%r = phi float [ %a, %bb1 ], [ %b, %bb2 ]� �
The value of r is set to a if control flow came from block bb1 and to b

if bb2 was the executed predecessor block.

• Select
The select instruction returns either its second or third operand de-
pending on the evaluation of its condition:� �
%r = select i1 %c, float %a, float %x� �
The value of r is set to a if condition c is true and to b otherwise. If
the select statement has operands of vector type, we generate code that
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creates a new vector by blending the two input vectors on the basis of a
per-element evaluation of the condition vector (see Section 4.5.1). The
terms “select” and “blend” are thus used interchangeably for the same
operation.

• GetElementPointer (GEP)
The GetElementPointer instruction returns a pointer to a member of
a data structure. It receives the data structure and a list of indices as
inputs. The indices denote the position of the requested member on
each nesting level of the structure. In the following example, the first
GEP (r) extracts a pointer to the float element of the nested struct
SUBS of the struct S using GEP and stores 3.14 to that location:� �
%struct.S = type { i8*, i32 , %" struct.S::SUBS" }
%" struct.S::SUBS" = type { i64 , float , i32 }
%r = getelementptr %struct.S* %S, i32 0, i32 2, i32 1
store float 0x40091EB860000000 , float* %r, align 4� �
The first index is required to step through the pointer, the second index
references the third element of the struct (which is the nested struct)
and the third index references the second element of that sub-struct.

• InsertElement / ExtractElement
The InsertElement and ExtractElement instructions are required if
single elements of a packet have to be accessed:� �
%p2 = insertelement <4 x float> %p, float %elem , i32 1
%res = extractelement <4 x float > %p2, i32 1� �
The first instruction inserts the float value elem at position 1 into
packet p, the second instruction extracts the same float from the new
SSA value p2.
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Chapter 3

Related Work

This chapter summarizes previous work related to automatic packetization
and shading languages.

Data-Parallel Programming

Generating code for parallel hardware architectures is being studied since the
emergence of vector computers and array processors in the eighties. There
has been a variety of attempts to provide the user with a simple, portable
language that automatically compiles to parallel and/or packet code.

Examples are general purpose data-parallel languages such as NESL,
Ct, or CGiS [4, 10, 8]. These languages allow to write vector code using
built-in vector primitives. They compile to code that exploits the target-
architecture’s possibilities for parallel computing (e.g. SIMD instructions)
without putting that strain on the programmer.

There are also target specific languages like the Compute Unified Device
Architecture (CUDA) [20] or AMD-ATI’s Close To Metal (CTM) [3]. These
languages generate SIMT (Single Instruction, Multiple Threads) code for
GPUs by managing execution of scalar kernels (small distinct functions) by
multiple threads in parallel.

The section on shading languages gives examples of domain-specific lan-
guages (DSLs) that allow the user to program scalar code that is executed
in parallel for different input data.

These approaches each implement their own compiler tool-chain with
parsers, abstract syntax trees, classic and custom optimizations and code
generation in order to compile to parallel code, reinventing the wheel time
and time again. We avoid this by using LLVM as a compiler infrastruc-
ture that provides us with frontends, backends and optimizations while still

13
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allowing for easy integration of custom analyses and optimization passes.

Automatic Parallelization

The term Instruction-Level Parallelism (ILP) describes the implicit paral-
lelism that is available in scalar code due to instructions that do not depend
on each other and therefore can be executed in parallel. Automatic vector-
ization aims at exploiting this parallelism, usually by transforming loops to
vector form, e.g. after exposing ILP by loop unrolling.

The Parallel FORTRAN Converter (PFC) [2] that automatically trans-
lates FORTRAN programs to vector form is an early example for this. The
system uses data dependency analysis to determine where vectorization is
possible and employs if conversion [1] in order to have larger code fragments
to work on. Although PFC transforms complete programs, only innermost
loops are vectorized while the rest of the code remains scalar.

Superword-Level Parallelism (SLP) describes the occurrence of indepen-
dent isomorphic statements (statements performing the same operations in
the same order) inside a basic block. Such statements can be packed together
and executed in parallel using SIMD (Single Instruction, Multiple Data) in-
structions. Unfortunately, this introduces overhead for the packing and un-
packing of vectors that makes the approach unusable for smaller fractions of
code. Larsen and Amarasinghe [17] implemented a compiler pass that suc-
cessfully exploited SLP on AltiVec architectures, resulting in speedups of the
vectorized function over the scalar source in the range of 1.2 to 6.7. Shin [29]
extended the approach to also work in the presence of control flow by using
predicates.

Such predicated execution [21] is supported by certain hardware architec-
tures and provides the possibility of conditionally discarding results of an
operation. This can be used as an alternative to relying on the speculative
execution and branch prediction capabilities of a processor. Predicated exe-
cution also enables linearization of control flow [7] (except for loop edges) as
we need it for our packetized code.

All these approaches have in common that they do not change the seman-
tics of the program when transforming scalar to packet code. We make use
of the knowledge that a program executes the same instructions on different
data, exploiting Data-Level Parallelism (DLP) instead of ILP. Thus, we are
able to transform entire functions or even programs instead of being bound to
uncovering implicit parallelism between a few instructions inside a function.
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Shading Languages

We evaluate our system in the context of real-time ray tracing (Chapter 5)
and shading languages in general. Shading is possibly the largest bottle-
neck of rendering and thus, many approaches to shading languages, custom
compilers, and infrastructures involve some kind of parallelization.

Related work in this area can be separated into the following categories:

• The shading language is interpreted by the rendering system either
directly or by first compiling it to some intermediate representation.

• Shaders are compiled into the rendering system or are dynamically
loaded as binaries. The rendering system and the shaders are executed
on the same target platform. A separate compiler is used to translate
the shading language to a general purpose language, which is then
compiled to machine code.

• Shaders are executed on a different platform than the rendering sys-
tem (e.g. on a GPU). A shading language compiler is used to compile
machine code of the target platform.

A widely used, and de facto standard, shading language is the Render-
Man Shading Language (RSL) [25]. The RSL compilers for the REYES ren-
dering architecture, Photorealistic RenderMan, and Blue Moon Rendering
Tools (BMRT) [5, 16, 11] transform RSL programs into byte-code represen-
tation and evaluate them at run time [13]. The byte-code instruction set
is SISD (Single Instruction, Single Data) but execution happens in a vir-
tual SIMD manner. However, since parallelization is virtual and instructions
are interpreted, it is difficult to achieve maximum performance using such
approach.

In real-time rendering systems, shading language compilers leverage the
parallelism provided by the target architecture. On CPUs, this involves au-
tomatic packetization and optimization of scalar (SISD) shader programs
as implemented in RTSL [22]. On GPUs, vectorization is implemented in
hardware and Cg, HLSL, and GLSL operate in SISD [18, 23, 26]. Still, a
translator from the shading language to machine instructions is required.

Sh [19] targeted GPUs and avoided the need for a parser by using C++
meta programs as a shading language embedded in the application. However,
it still required a separate compiler to emit GPU opcode. Furthermore, the
poor capabilities of C++ to serve as a meta-language host for domain-specific
languages (e.g. the lack of control structures overloading) lead to syntactical
and practical inconveniences.
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A common deficiency of all above mentioned approaches is that they
involve the task of implementing specialized parsers and compilers. Such
complex infrastructure requires significant development effort, which has led
to restricting the features and expressiveness of the shading languages. Ad-
ditionally, specialized CPU compilers (e.g. for RTSL) have to perform most
optimizations themselves. They produce vectorized C code and essentially
use a standard compiler as a machine code emitter.

In contrast to all custom languages that involve compilation, our approach
did not require building our own parser, intermediate representation and
optimizations. We can benefit from every additional optimization that is
implemented in LLVM directly.

Those approaches that circumvent compiler issues by interpreting the lan-
guage directly suffer from bad performance penalties which largely limit the
applicability of more sophisticated optimization techniques. Our system is
able to optimize the scalar source code before packetization and can inte-
grate the generated code seamlessly using inlining and specialization — the
just-in-time compiler allows to even do this at runtime.

Considering portability, we are also much more flexible than the ap-
proaches we discussed. Due to the fact that the packetizer works on LLVM’s
IR, we can make use of all existing frontends and backends for LLVM. If
support for a new language or target is required, it can build on LLVM’s
infrastructure that was designed to easily allow such expansions.

Finally, our approach transforms the control-flow graph of an already
optimized function. This allows us to perform aggressive optimization of
the scalar source code that might even restructure the CFG. In a structural
approach (as usually employed by domain-specific languages), such optimiza-
tions are not possible because the correspondence to the AST is lost.



Chapter 4

Automatic Packetization

This chapter describes how our system automatically generates data-parallel,
packetized functions from scalar code.

The algorithm receives three inputs: the scalar function, the (empty)
prototype of the packetized function and the packetization size n. It replaces
the prototype with packet code that produces the same results as calling the
scalar function n times in parallel.

The packetization algorithm consists of six phases:

1. Preparatory transformations (Section 4.1)

2. Mask generation (Section 4.2)

3. Select generation (Section 4.3)

4. CFG linearization (Section 4.4)

5. Instruction packetization (Section 4.5)

6. Wrapper generation (if required) (Section 4.6)

First, preparatory transformations like scalar optimizations and loop sim-
plification are performed. Then, masks that model control flow by keeping
track of the active and inactive instances are computed for each block. Select
instructions required to blend values of different instances are inserted. Lin-
earization of the control-flow graph removes all control flow except for loops.
Finally, the scalar instructions that are required to be executed in parallel are
transformed to their packet counterparts. If the packetization size exceeds
the SIMD width of the target architecture, a wrapper around the packetized
function is generated.

The rest of the chapter is organized as follows: First, a short descrip-
tion explains how the system can be used by a programmer, followed by an

17
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overview of supported types and constructs. Then, each step of the packeti-
zation is explained in detail. The last section lists the current restrictions of
the system.

Usage of the System
The packetizer is implemented in C++ as an LLVM module pass. Figure 4.3
shows an example of how the packetizer can be used from within standard
C/C++ with linked LLVM and packetizer libraries. The file “program.bc”
is compiled from any source language that is supported by LLVM to target-
independent bitcode. Figure 4.2 shows C code for this file that is compiled
to bitcode using llvm-gcc. It runs a small test that compares results of the
scalar and packetized functions. Note that all the programmer has to do is to
implement the scalar function, declare a prototype for the packet function,
use it as if it was implemented, and run the packetizer with the corresponding
function names.

Figure 4.1 shows an overview of the whole process.

Supported Language-Constructs
The current implementation of the system includes support of the following
constructs:

• Arithmetic and logic instructions
• Conditional branches
• Loops (including multiple exits)
• Calls to built-in packetized functions (sin, cos, log, exp, sqrt, rcp, ...)
• Calls to user-defined packetized functions (optionally masked)
• Load/store/scalar calls (“extract-execute-insert”)
• Switch statements (through lowering)

It is basically capable of handling most code generated by the llvm-gcc fron-
tend. The most significant remaining limitations are detailed in Section 4.7.
The next section explains type restrictions that are necessary to allow pack-
etization.
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• declare stub for packetized function

• implement main program using the stub

• implement scalar function

compile to LLVM bytecode

implement wrapper in C++

compile wrapper to target of choice

execute wrapper
(loads/packetizes/compiles/executes bytecode)

source file (language of choice)

filename

.bc
.cpp

executable

Figure 4.1: Overview of how the packetizer can be used by a programmer.
See Figures 4.3 and 4.2 for concrete code examples.
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� �
#include "xmmintrin.h" // SSE2 intrinsics

// extract ith element of a __m128

inline float get(__m128& v, unsigned idx) {

return ((float *)&v)[idx];

}

// empty prototype of packet function

__m128 generatedFn(__m128 a, __m128 b);

// implementation of scalar function

float scalarFn(float a, float b) {

float x = a + b;

float y = x * x - b;

return x + y;

}

int main(int argc , char** argv) {

// set vecA to 0.5/0.6/0.7/0.8

__m128 vecA = _mm_set_ps (.5f, .6f, .7f, .8f);

// set vecB to 1.0/2.0/3.0/4.0

__m128 vecB = _mm_set_ps (1.f, 2.f, 3.f, 4.f);

// compute result of generated function

__m128 generatedRes = generatedFn(vecA , vecB);

// compute results of scalar function

float scalarRes0 = scalarFn (.5f, 1.f);

float scalarRes1 = scalarFn (.6f, 2.f);

float scalarRes2 = scalarFn (.7f, 3.f);

float scalarRes3 = scalarFn (.8f, 4.f);

// compare results

bool equal = scalarRes0 == get(generatedRes , 0) &&

scalarRes1 == get(generatedRes , 1) &&

scalarRes2 == get(generatedRes , 2) &&

scalarRes3 == get(generatedRes , 3);

return (int) equal;

}� �
Figure 4.2: Example C-code that could be compiled to LLVM bitcode by the
llvm-gcc frontend. In Figure 4.3, this bitcode file (“program.bc”) is loaded and
the packetizer replaces the call to the prototype generatedFn by calls to the
packetized version of scalarFn.
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� �
#include "packetizationWrapper.h"

int main(int argc , char** argv) {

// 1. create module from bitcode file

const std:: string filename = "program.bc";

llvm:: Module* mod = Wrapper :: createModuleFromFile(filename );

// 2. packetize desired function

const unsigned packetSize = 4;

const std:: string sName = "scalarFn";

const std:: string pName = "generatedFn";

Wrapper :: packetizeFunction(packetSize , sName , pName , mod);

// 3. get pointer to main () in module

void* mainPtr = Wrapper :: getPointerToFunction(mod , "main");

// 4. compile with JIT , execute main and return result

return Wrapper :: executeMain(mainPtr , argc , argv);

}� �
Figure 4.3: Example how the packetizer can be used. The file “program.bc”
contains LLVM bitcode compiled from an arbitrary frontend (e.g. from llvm-
gcc as shown in Figure 4.2). The packetizer is used to transform the function
scalarFn of this program. Afterwards, the program’s main, which now con-
tains calls to the newly packetized function generatedFn, is executed.

Data Types
The packetizer currently only allows functions as input that use the following
data types:

• scalar types (float, int)

• pointers

• flat structs (no nesting)

• arrays

Figure 4.4 shows the set of rules that determine how scalar types are mapped
to their packetized counterparts.

The packetizer uses these rules to determine if the function types of the
scalar function and the packetized target signature specify a correct map-
ping. It also performs a check whether any instructions of the scalar function
have unsupported types. Note that this especially does not allow usage of
packetized types in the scalar code. For example, instead of using an SSE
float vector to represent a coordinate, the user is required to use a struct or
three or four separate floating point variables.

The checker allows two exceptions from these rules: First, packetized
parameters are allowed to match their scalar counterparts in order to allow
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packetize(float) → < N × float >
packetize(int) → < N × int >
packetize(τ ∗) → packetize(τ) ∗

packetize({ τ }) → { packetize(τ) }
packetize([ τ ]) → [ packetize(τ) ]

Figure 4.4: Type packetization rules for SIMD width N . Less-than and
greater-than “brackets” denote a packet, curly brackets a struct, square brack-
ets an array.

per-packet constant parameters. Second, boolean values are allowed to map
to vectors of integer type.

4.1 Preparatory Transformations

This section briefly summarizes the required preparatory transformations.
They are basically simple standard-transformations and therefore not de-
scribed in detail. Note that all transformations preserve the semantics of the
scalar code.

Classic Optimizations Before starting any packetization related transfor-
mations, the scalar function is optimized using LLVM-internal classic opti-
mizations like constant propagation, global value numbering, or control-flow
simplification.

These optimizations are likely not to have a large impact if applied to
packetized code, which lacks important explicit information (e.g. control-flow
information is encoded in masks).

Return Unification The function is required to only have a unique return
statement because some instances might return earlier than others. This
way, the function is guaranteed to only return in a synchronized way after
all instances finished their computations. Figure 4.5 depicts a situation that
requires this transformation.

All return statements are transformed into unconditional branches that
lead to a new exit block which holds a single return. In case the function has
a non-void return value, the return statement references a φ-function which
selects the correct value from all different incoming edges.
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A

B

C

x1← · · ·
return x1

D
x2← · · ·
return x2

E

A

B

C

x1← · · ·D x2← · · · E

x3← φ(x1, x2)
return x3

R

Figure 4.5: The return unification pass transforms the CFG on the left to
the CFG on the right. The transformation guarantees that the function only
has one return statement. This is necessary because the packetized function
must not return if any instance is active on a different path.

Loop Simplification The loop simplification step ensures that each loop
(and each nested loop) has exactly one incoming edge and one backedge.
This implicitly guarantees the existence of a loop preheader (the block from
which the loop is entered) and a loop latch (the block from which an edge
leads back to the header).

The transformation is required in order to reduce the generated code
during select generation: If a loop was allowed to have n backedges, we would
have to generate n times as many select statements (see Section 4.3).

Having a single preheader and a single latch also reduces the complexity
of the mask and select generation and CFG linearization algorithms that
benefit from the simplified recursive CFG traversal when loops are involved.
For example, it would be far more complicated to find the correct order of
blocks of a loop which has multiple preheaders and/or multiple latches (see
Section 4.4.

Phi Canonicalization During packetization, all φ-functions have to be re-
placed by blend operations that select from two values based on a condition
(see Section 4.5). However, a φ-function may in general have arbitrarily many
incoming values whereas a select operation can only blend two values at
once. Hence, we insert dummy blocks with φ-functions that have at most
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two incoming values.

This issue could also be handled at the packetization stage by transform-
ing φ-functions with n incoming values into n− 1 select instructions.

4.2 Mask Generation

As already mentioned, control flow may diverge because a condition might
be true for some of the elements of the packet and false for other ones.
Consequently, all code is executed. The explicit transfer of control is modeled
by mask variables (in short: masks, also often called predicates) on control-
flow edges. If a mask of a CFG edge B → B′ is set to true at position i, then
the i-th instance of the code took the branch from B to B′. Thus, the mask
denotes which elements in a packet contain valid data on the corresponding
control-flow edge.

The edge masks implicitly define entry masks on blocks: The entry mask
of a block is either the disjunction of the masks of all incoming edges or—
in case of a loop header—a φ-node with incoming values from the loop’s
preheader and latch. The masks of the control-flow edges leaving a block
are given by the block entry mask and a potential conditional. If a block
exits with an unconditional branch, the mask of its single exit-edge is equal
to the entry mask. If the exit branch is conditional, the exit mask of the
“true edge” of the block is the conjunction of its entry mask and the branch
condition. The exit mask of the “false edge” is the conjunction of the entry
mask and the negated branch condition.

Figure 4.6 shows three basic blocks A,B,C with corresponding block
entry masks (mA, . . . ), edge masks (mA→B, . . . ) and their computation.

The algorithm recursively traverses the CFG bottom-up, starting at the
exit block of the function. If the currently processed block already has an
associated mask, that mask is returned and recursion stops. Loops are han-
dled by keeping track of all visited blocks, stopping recursion if a block is
encountered a second time.

4.3 Select Generation

At control-flow merge points, packets might need to be blended, i.e. combined
to a single one. Consider the example in Figure 4.6. The variable x has been
defined in the left and the right predecessor of B. In the packetized version,
control flow is no longer present and all code is executed. Hence, the correct
contents of the packet for x in B have to be produced by masking out the
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mA← · · ·
...

x1← · · ·
c← · · ·

mA→B ←mA ∧ ¬c
mA→C ←mA ∧ c
cbranch c,B,C

A

mB ←mA→B

x2← · · ·
...

mB→C ←mB

B

mC ←mB→C ∨mA→C

x3← φ(x1, x2)
· · · ← x3

C

Figure 4.6: Edge and block entry masks. mA, mB, and mC are the entry
masks of the corresponding blocks A, B, and C. mA→B, mA→C, and mB→C

are the block exit masks connected to the edges A→ B, A→ C, and B → C.
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irrelevant parts of each edge and combining the results. This is usually done
with and, or, and xor operations; some architectures (such as SSE4.1) feature
special blend instructions (see Section 4.5.1).

The select generation pass replaces a subset of the φ-functions of LLVM’s
SSA form (see Section 2.1) by scalar select instructions (described in Sec-
tion 2.3.1).

All φ-nodes are replaced except for those related to values in loops. These
are still required after packetization because loop headers still have more than
one incoming edge.

The select instruction is generated by using the mask of one incoming
edge of the block as the condition and the corresponding incoming value of
the φ-function as the first operand of the select. The second operand is
set to the other incoming value, whose elements are selected if the mask is
false.

4.3.1 Loops

Generating select operations for loops requires special attention. In the
packetized version, the loop condition is a packet, not a scalar value. Hence,
the loop iterates until the last element in the condition’s packet becomes
false (see Figure 4.7). This means that the loop is still running although
(in the scalar version) an instance might already have left it. By using special
loop-exit masks and corresponding blend operations we make sure that all
elements of packets of such an instance are not modified after the instance
leaves the loop.

Loop-Exit Masks First, a φ-function is generated in the loop header for
each edge leaving the loop (loop exits). This φ-function holds the mask of
that exit for the current iteration. The mask is true for each scalar instance
that has left the loop through this exit. This implies that when the loop is
finally left in the packetized version, all exit masks combined have exactly
one value per index that is true (not considering instances that initially did
not enter the loop).

When the loop is entered, all elements of all exit masks are initialized with
false. At the time an instance leaves the loop, the corresponding new exit
mask is computed as the disjunction of the exit condition and the mask of the
current iteration (which is the result of the φ-function connected to this exit
mask). If the backedge of the loop is taken and the header is executed again,
the corresponding φ-function returns this new mask. Figure 4.10 shows how
exit masks are computed and updated.
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� �
int x;

while (x < 8) {

++x;

}� �� �
int x0, x1, x2, x3;

while (x0 < 8 || x1 < 8

|| x2 < 8 || x3 < 8) {

if (x0 < 8) ++x0;

if (x1 < 8) ++x1;

if (x2 < 8) ++x2;

if (x3 < 8) ++x3;

}� �� �
VEC x;

VEC cond = x < VEC (8);

while (some element of cond is true) {

VEC tmp = x + VEC (1);

x = select(cond , tmp , x);

cond = x < VEC (8);

}� �
Figure 4.7: C code for a scalar loop, a scalar implementation that mimicks
the required behavior of the packet code, and pseudo-code for a possible packet
implementation. The packet code performs one (vector) addition, followed by
a select operation that resets the values of all inactive instances (those where
the element of the packet x is larger than 8): If the scalar version is executed 4
times on the input values 0, 2, 4, 6, the scalar loop iterates 8, 6, 4, and 2 times
respectively. The packet loop on the other hand iterates 8 times on a packet
input with the same values, but only in the first two iterations all instances
are active (and thus the select returns all elements of tmp). After the second
iteration, instance four becomes inactive, after the fourth iteration instance
three and so on until all have finished. The state of all inactive instances is
“freezed” by the select operation.
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Loop Live Values In order to be able to generate the correct select in-
structions, we need to know what values have to be blended. All local values
of the loop can be ignored because they do not have any effect visible outside
the scope of a single iteration. The values remaining for select generation are
all those that are live across loop boundaries.

A value is defined as live across loop boundaries if it is used either in a
subsequent iteration or outside the loop. In favor of better readability, the
term live in the following always stands for live across loop boundaries.

Live values are collected per block of the loop by iterating over the uses
of all instructions of that block. If an instruction has at least one use outside
the loop or a use in the loop header that is a φ-function, it is considered live
across loop boundaries.

If a live value is not connected to a φ-function in the loop header (e.g. a
value that is defined in the loop body but only used outside the loop) a
dummy φ-node is generated. This is required in order to be able to blend
with the value of the last iteration.

Figure 4.8 shows code for the collection of loop live values.� �
LiveValueMap findLoopLiveValues(Loop* loop , PHINode* maskPhi) {

LiveValueMap liveValues;

forall blocks BB in loop {

forall instructions I in BB {

if (findUseOutsideLoopBoundary(I, loop)) {

// found live value with use outside loop -boundary

PHINode def = findLoopPhiForInstruction(I, loop);

if (def not found) {

// generate dummy phi

def = generateLoopPhiForInstruction(I, loop);

} else if (def is loop mask phi) {

// preceding def for value is loop mask phi -> ignore!

continue;

} else if (def is loop induction variable) {

// preceding def for value is induction phi -> ignore!

continue;

}

// found preceding def for value , add to map

liveValues.insert(std:: make_pair(I, def));

}

}

}

return liveValues;

}� �
Figure 4.8: Pseudo-code for collecting all values of a loop that are live across
loop boundaries
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� �
void generateLoopSelectsForExitingBlock(BasicBlock* exitingBB) {

forall live values LV {

//if exitmask is true , conserve result of previous iteration

//if it is false , blend iteration -result

PHINode* resultPhi = getLiveValuePhi(LV);

Value* trueVal = resultPhi;

Value* falseVal = resultPhi ->getIncomingValue(latchBB );

SelectInst* select = SelectInst :: Create(

combinedLoopExitMask , trueVal , falseVal , latchBB );

// make sure we do not generate a select that is not

// dominated by its second operand

//(first operand is phi -> always dominates select)

if (isDominatedBy(falseVal , select ))

falseVal ->moveBefore(select );

// now we have to set the corresponding resultphi

//to the appropriate last definition

resultPhi ->setIncomingValueForBlock(latchBB , select );

}

}� �
Figure 4.9: Pseudo-code for select generation of a loop exit.

Loop Selects To preserve correctness of all different instances in the pack-
etized function, select instructions have to be added to the loop latch. These
selects guarantee that the state of all instances that left the loop remains
stable even if the loop is still being iterated for other active instances.

The state of an instance inside a loop is defined as the set of all values of
that instance that are live across loop boundaries.

Maintaining a stable state for an inactive instance is achieved by“freezing”
all corresponding live values at their state after the last complete iteration
before leaving the loop. This is obtained by generating a select instruction
for each live value in the loop latch. Before the loop is executed again,
these selects reset all live values of inactive instances to their freezed state
of the last iteration, discarding all effects of the current iteration: If the
corresponding loop-exit mask (the condition of the select) is false, the
instance is still active and the new value computed in the current iteration
is selected. If the mask is true, the instance has left the loop at this exit
and thus the value of the previous iteration is selected. Figure 4.10 gives an
example and 4.9 shows pseudo-code for the algorithm.
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mA← · · ·
x1← · · ·

...
mA→B ←mA

A

x2← φ(x4, x1)
mB ← φ(mB→B,mA→B)
mphi← φ(mexit, 0)

...
x3← · · ·
cB ← · · ·

mB→B ←mB ∧ cB
mB→C ←mB ∧ ¬cB
mexit←mphi ∨mB→C

x4← select(mexit, x2, x3)
cbranch cB, B, C

B

mC ←mexit
...

· · · ← x4

C

Figure 4.10: Mask and select generation for a loop. In general, each exit is
assigned a mask operation mexit and a φ-function mphi. The mask operation
updates the exit mask by setting elements of instances that leave the loop in the
current iteration to true. The φ-function holds the current exit mask. Note
that, after this pass, the mask of the edge B → C is mexit instead of mB→C.
The stable state of all instances that leave the loop early is maintained by the
select instruction x4 in the latch. As long as the packetized loop iterates,
all inactive instances are always reset to the value of the last iteration (the
result of the φ-function x2) by this select.
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Multiple Loop-Exits Allowing loops with multiple exits leads to the fol-
lowing problem: Select statements that blend values coming from different
paths may produce wrong results for elements which belong to instances that
are active on a distinct, third path. In a CFG without loops, those garbage
values are corrected by other select statements in the block where the paths
join later.

However, if such a situation occurs inside a loop and the third path leaves
the loop through a different exit, the garbage value is not masked out. This is
because the mask that is used for blending only incorporates the information
of the last loop-exit before the latch, so the incorrect value is transferred into
the next iteration. Figure 4.11 illustrates the problem.

A

B

C

D

< 0, 0, 1, 1 >

< 1, 1, 0,0 >

< 0, 0, 1,0 >

< 0, 0, 0, 1 >

Figure 4.11: Example CFG where packetization of a loop with multiple
exits would produce incorrect code without maintaining a combined loop-exit
mask. The vectors show a snapshot of the masks of all edges when control
flow reaches block C. It can easily be seen that the two joining masks from
A and B are not complementary: both of their last indices are false. The
selects at the entry of this block produce wrong values for this instance by
selecting a value from one of the two paths although the instance has left the
loop. Without additional modifications, these garbage values would not be
reset before the next iteration. Thus, select operations in the latch reset all
inactive instances to their state of the last iteration. By using a combined
mask, it does not matter where they left the loop.

Our solution for this is to mask out results of inactive instances inde-
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pendent of where they left the loop. To this end, an additional, combined
loop-exit mask is required that combines the masks of all loop exits: after
each update of an exit mask, the combined mask is also updated. This way,
the combined loop mask keeps track of all inactive instances, which allows
us to maintain their stable state with only one select instruction per live
value. This select resets all effects on the corresponding live value for all
instances that are inactive, no matter where they left the loop. Figure 4.12
gives a more complex example of a CFG with a multiple-exit loop.

4.4 CFG Linearization
After all mask and select operations are inserted, all control flow except for
loop backedges is effectively encoded by data flow and can thus be removed.
To this end, the basic blocks have to be put into a sequence that preserves
the execution order of the original CFG G: If a block A executed before B in
every possible execution of G then A has to be in front of B in the flattened
CFG G′. If the CFG splits up into two paths, one path is chosen to be
executed entirely before the other. The decision which path to execute first
is currently non-deterministic, other possibilities are discussed in Section 7.2.

Such an order is determined by topologically sorting the blocks recursively
over the loop tree of G. The result is a CFG that only has conditional
branches remaining at loop exits and unconditional branches at loop entries.
All other branches can be removed. Figure 4.13 shows the flattened CFG of
the example in Figure 4.6.

4.4.1 Block Ordering

The linearized block ordering is computed by a recursive bottom-up traversal
of the CFG and stored in a list.

First, all blocks that do not belong to a loop are collected in execution
order. This is straightforward, as we only have to add all those blocks to the
list that do not belong to a loop while we return from recursion.

Then, ordered block lists of all top-level loops are computed, including
recursive ordering of all subloops. Each loop by itself is ordered by adding all
blocks to the corresponding list that belong to the same loop and have the
same loop depth. This is again obtained by a bottom-up traversal of the CFG
starting at the latch of the loop. The algorithm keeps track of the visited
blocks and stops recursion if it encounters a block that does not belong to
the current loop or a block that was visited before. After all orderings of
subloops and the ordering of the loop itself are determined, the ordered list
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mP ← · · ·
x1← · · ·

...
mP→A←mP

P

x2← φ(xnew4 , x1)
xphi3 ← φ(xnew3 , undef)
mA← φ(mB→A,mP→A)

mphiA← φ(mexitA, 0)
mphiB ← φ(mexitB, 0)
mphiL← φ(mexitL, 0)

...
x3← · · ·
cA← · · ·

mA→B ←mA ∧ cA
mA→C ←mA ∧ ¬cA
mexitA←mphiA ∨mA→C

mexitL←mphiL ∨mexitA

cbranch cA, B, C

A

mB ←mA→B
...

x4← · · ·
cB ← · · ·

mB→A←mB ∧ cB
mB→C ←mB ∧ ¬cB
mexitB ←mphiB ∨mB→C

mexitL←mphiL ∨mexitB

xnew3 ← select(mexitL, xphi3 , x3)
xnew4 ← select(mexitL, x2, x4)
cbranch cB, A, C

B

x5← select(mexitA, x3, xnew4)
mC ←mexitA ∨mexitB

...

C

Figure 4.12: Mask and select generation for a loop with multiple exits. The
stable state of all inactive instances is maintained by the φ-functions x2 and
xphi3 together with the combined mask mexitL and the select instructions.
For each live value we need one select in the latch, e.g. xnew4 discards the
results of x4 for all inactive instances by setting the corresponding elements
back to x2.
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mA←
...

x1← · · ·
c← · · ·

mA→B ←mA ∧ ¬c
mA→C ←mA ∧ c
mB ←mA→B

x2← · · ·
...

mB→C ←mB

mB ←mB→C ∨mA→C

x3← select(mB→C , x1, x2)
· · · ← x3

Figure 4.13: The flattened control-flow of Figure 4.6 with value blending.

of each subloop is merged into the list of the parent loop at the position
behind its preheader. The preheader is guaranteed to be in the list because
it belongs to the parent loop by definition.

Finally, all top-level loops are merged into the final list by the same
technique.

4.4.2 Linearization

After a correct ordering is determined, linearization is straightforward. Each
block in the ordered list is first tested for a backedge to a loop header.

If it has none, the block’s branch (no matter if conditional or uncondi-
tional) is replaced by an unconditional branch to the next block in the list.
In combination with the select generation pass, this implicitly performs if
conversion.

If the block has a conditional branch with a backedge, the other edge that
leaves the loop is replaced by an edge to the next block in the list.

If the block only has a backedge to the header, its unconditional branch
is replaced by a conditional branch with edges to the header and the next
block in the list with the exit mask of the block as the branch condition.

Figure 4.14 shows the linearization of a CFG with complex control flow.
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� �
void scalarFn(float a, float b, Color& color) {

float x = a + b;

float y = x * x - b;

float z = y;

for (int i=0; i<y; ++i) {

z += a;

if (z / a < x) z += a;

else {

z -= b;

if (a > b) z -= b;

else {

z *= z-y;

if (b == a) {

z = a+3;

} else {

++z;

}

}

for (int j=0; j<100; ++j) {

if (i < j) z += a;

else z -= 13.2f;

}

}

}

z = z-y;

color = Color(z);

}� �

Figure 4.14: A function with complex control flow and its corresponding
CFGs before and after transformations. The left CFG is the (optimized)
input of the packetizer, the right CFG shows the same function after the
linearization pass.
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4.5 Packetization
After blocks have been linearized, the scalar instructions are transformed
into their packetized counterparts. The instructions to be packetized are
determined by dependence analysis on the function’s outputs (return, store,
and call instructions). All operations that are data-dependent on packetized
inputs (parameters of the function) are packetized as well. Finally, all ex-
pressions that mask computations depend on are also packetized.

By this, we ensure that all paths that are packet-invariant and therefore
do not require packetization are left untouched.

Packetizing a single instruction is basically a one-to-one translation from
the scalar instruction to its SIMD counterpart (see Figure 4.15). This holds
for all instructions except for GetElementPointer (GEP), Select, Load, Store,
and Call that have to be handled separately. This is because they require
more complex operations, which will be described in the following sections.� �
define <4 x float> @generatedFn(<4 x float> %a, <4 x float> %b) {

entry:

%0 = add <4 x float> %a, %b ; <<4 x float >> [# uses =3]

%1 = mul <4 x float> %0, %0 ; <<4 x float >> [# uses =1]

%2 = sub <4 x float> %1, %b ; <<4 x float >> [# uses =1]

%3 = add <4 x float> %0, %2 ; <<4 x float >> [# uses =1]

ret <4 x float> %3

}� �
Figure 4.15: LLVM assembly produced by packetization of scalarFn from
Figure 4.2.

4.5.1 Select Instructions
Architectures supporting SSE4.1 provide the BLENDVPS intrinsic that per-
forms a vector select on the basis of a mask in a single operation. If this
(or similar intrinsics known by the LLVM code generator) is not available,
bitwise operations have to be used for blending the vectors:� �
define <4 x float> @blend(<4 x float> %a, <4 x float> %b, <4 x float> %m) {

entry:

%m2 = bitcast <4 x float> %m to <4 x i32>

%a2 = bitcast <4 x float> %a to <4 x i32>

%b2 = bitcast <4 x float> %b to <4 x i32>

%xor = xor <4 x i32> %m2, < i32 -1, i32 -1, i32 -1, i32 -1 >

%and1 = and <4 x i32> %b2, %xor

%and2 = and <4 x i32> %m2, %a2

%or = or <4 x i32> %and2 , %and1

%res = bitcast <4 x i32> %or to <4 x float>

ret <4 x float> %res

}� �
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On current CPU architectures including our test system (see Section 5.4),
BLENDVPS unfortunately is only a compound instruction and therefore does
not result in noticeable speedup over the bitwise operations.

On the code generation side, LLVM (as of version 2.5) unfortunately is not
able to generate code for select instructions that receive three vectors of type
float. The code generator only accepts vector selects with a condition
of type <4 x i1> which would require insertion of additional comparison
operations. Hence, we implemented packetization of select instructions by
hand, replacing each vector select either by the bitwise operations or the
BLENDVPS intrinsic depending on the architecture’s support of SSE4.1.

Pointer Selects

Select instructions that have pointers as input values can not be packetized
on SSE architectures. This is because vectors of pointers are not allowed
(there is no need for such constructs without scattered loads/stores).

There are two methods for dealing with such constructs apart from forcing
the frontend not to generate them in the first place (if an appropriate flag
exists). One way is to“pull the uses through the select”. This means to first
load from each of the input values of the select and then blend the loaded
values instead. However, this results in unnecessary loads. Thus, we chose to
have the packetizer split such selects and their uses into scalar code. Uses
may only be load or store instructions or additional pointer selects. Due
to the fact that load and store instructions in most cases have to be split up
anyway (Section 4.5.3), the performance overhead is negligible.

The algorithm works as follows: First, each select is split into N scalar
selects. Each use that is a load is split into N scalar load instructions that
load from the results of the different scalar pointer selects. The results
are then inserted into a vector using N InsertElement instructions. Each
use that is a store is split into N scalar instructions that store to the results of
the different scalar pointer selects. In case the select is used by another
pointer select, the algorithm recurses.

4.5.2 Native Function Calls

If the function contains any calls that could not be inlined, the packetizer
first tries to find a native, packetized version of that function. Such versions
can either be built-in or supplied by the user.

Built-in packetized functions currently include: sine and cosine, loga-
rithm, exponential function, square root and inverse square root, reciprocal,
and round/floor/ceil.
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An example for user-supplied functions are API calls of a shader that
call renderer-specific functions (see Section 5.2.2). These functions can also
specify an additional parameter for a mask, allowing called functions to profit
from that information.

The packetizer currently does not perform recursive packetization of un-
known functions (see Section 7.2).

4.5.3 Instructions with Side-Effects
Calls to scalar functions that cannot be packetized, as well as loads and
stores, have to be split into N masked scalar statements. This is because we
have to conservatively expect these instructions to produce side effects that
we do not want to occur for inactive instances. Thus, we have to guard each
scalar execution by an if construct that skips the instruction if the mask of
that packet-index is false. Figure 4.16 shows such an if-cascade.

Unfortunately, this involves a lot of extract- and insert-operations that
reduce the overall benefit of packetization. The only way to circumvent this
is hardware support through conditional load/store instructions (see Sec-
tion 7.2).

When packetizing a call instruction, scalar values might have to be repli-
cated. If the call expects a packet argument but the supplied value is scalar,
the packetizer automatically generates a packet by replicating the value N
times.

4.5.4 GetElementPointer Instructions
A GEP instruction can only be transformed directly if it has no packetized
index. In such a case the instruction remains untouched because it still
returns a pointer to a valid element after packetization. A packetized index
implies that several elements that possibly reside at different locations in
memory should be accessed by load or store instructions.

This requires splitting of all such GEP instructions because LLVM cur-
rently does not support scattered loading or storing and thus does not allow
vectors of pointers.

The splitting algorithm works as follows: First, each GEP is replaced by N
GEP instructions that return scalar pointers. Then, all its uses that are either
loads or stores are also split into N scalar instructions that use the scalar
GEP of the corresponding instance as their pointer operand. If the use was a
load, the results of the N load instructions are gathered by InsertElement

instructions to form a single result vector of size N . An example is shown in
Figure 4.17.
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Figure 4.16: The last blocks of the CFG of a shader function (Chapter 5):
An if-cascade stores back result values to a pointer argument of a packetized
function. This is necessary because we can not store back the entire packets:
inactive instances must not modify the result.
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� �
%struct.Color = type { float , float , float }

%r = getelementptr %struct.Color* %color , i32 0, i32 2

store float 0x40091EB860000000 , float* %r, align 4� �� �
%struct.ColorVec = type { <4 x float>, <4 x float>, <4 x float> }

%r = getelementptr %struct.Color* %color , i32 0, i32 2

store <4 x float> 0x40091EB860000000 , <4 x float>* %r, align 16� �� �
%struct.ColorVec = type { <4 x float>, <4 x float>, <4 x float> }

%m0 = extractelement <4 x i32> %mask , i32 0

%m1 = extractelement <4 x i32> %mask , i32 1

%m2 = extractelement <4 x i32> %mask , i32 2

%m3 = extractelement <4 x i32> %mask , i32 3

%r0 = getelementptr %struct.ColorVec* %colorvec , i32 0, i32 2, i32 0

%r1 = getelementptr %struct.ColorVec* %colorvec , i32 0, i32 2, i32 1

%r2 = getelementptr %struct.ColorVec* %colorvec , i32 0, i32 2, i32 2

%r3 = getelementptr %struct.ColorVec* %colorvec , i32 0, i32 2, i32 3

if (m0) store float 0x40091EB860000000 , float* %r0, align 4

if (m1) store float 0x40091EB860000000 , float* %r1, align 4

if (m2) store float 0x40091EB860000000 , float* %r2, align 4

if (m3) store float 0x40091EB860000000 , float* %r3, align 4� �
Figure 4.17: LLVM-code that stores 3.14 to the second element of struct
Color. The first code-snipped shows the scalar code, the second shows the
one-to-one packetization, which is illegal due to the packetized index to the
GEP. The third snipped depicts the valid packet code (with pseudo-guarded
store operations for better readability, see Figure 4.16). In the packetized
code, the struct contains three packets instead of scalar values. The stores

must not be executed for inactive instances, so they have to be split and
guarded by if constructs using the block’s mask. As the GEP returns a pointer
to a packet, it also has to be split and receive an additional index for the
element of the packet.
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4.6 Wrapper Generation
After packetization is finished, a cleanup phase performs a few optimizations,
e.g. removing redundant bitcast instructions, control-flow simplification and
dead code elimination. This finishes the generation of the packetized function
that works on packets of size N .

If the desired packetization size S is a multiple of N , a wrapper is gen-
erated. This wrapper basically loops over the generated function i times,
where i is given by division of S by N as can be observed in Figure 4.18.

In order to call the function with the correct arguments it performs ex-
tract operations using the loop iteration index. If the function has struct
parameters, the wrapper also allocates memory for the “smaller” structs that
the function is called with. In each iteration, the values of the struct that cor-
respond to the current iteration are extracted and stored to that temporary
struct.

Additionally, the wrapper needs to allocate memory both for the result (if
the function does not return void) and all pointer arguments because it has
to make sure that no effects of the function are lost. To this end, the result
and all values of pointer arguments are stored back after the call returns.

4.7 Restrictions
While our system is able to packetize a large fraction of the bitcode generated
from C/C++, it does have some restrictions.

Trivially, the packetized function, and everything that is called by it, must
allow to be executed in parallel. We do not analyze for parallelizability but
leave the choice to the user.

Furthermore, the used data types must be restricted to what is supported
by the SIMD architecture on the target machine. For example, on SSE,
double arithmetic cannot be used, if the packet size is 4.

Chapter 7 explains additional features that are not implemented yet,
e.g. recursive packetization and support for nested structs.
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� �
const unsigned size = packetizationSize / simdWidth;

struct S {

__m128 x[size];

__m128 y[size];

__m128 z[size];

};

struct SUBS {

__m128 x, y, z;

};

__m128 generatedFn(__m128 a, __m128 b, SUBS* s);

__m128* wrapperFn(__m128* a, __m128* b, S* s) {

__m128* ret = new __m128[size];

SUBS subs;

for (unsigned i=0; i<size; ++i) {

subs.x = s->x[i];

subs.y = s->y[i];

subs.z = s->z[i];

ret[i] = generatedFn(a[i], b[i], &subs);

s->x[i] = subs.x;

s->y[i] = subs.y;

s->z[i] = subs.z;

}

return ret;

}� �
Figure 4.18: C code that corresponds to the the wrapper that we gener-
ate directly in LLVM’s IR. generatedFn is the generated function that only
works on SIMD packets that are “smaller” than the arguments of the desired
function by a factor of “size”. This means we have to extract values for each
iteration from the argument-arrays and the struct. In case of a struct, this
means we have to use a temporary struct of the “smaller” size (extract ele-
ments from struct of type S and build struct of type SUBS). In case of a
pointer argument, we also have to store back the corresponding value(s) after
the call returns.



Chapter 5

AnySL: Language-Independent
Shading

Figure 5.1: Scenes rendered with our ray tracer: glass teapot on a checker-
board, refractive starball on parquet, whitted teapot on a brick wall, phong
teapot, dented teapot in front of wood, metal screen in front of granite.
All surface shaders are written in scalar C++ and compiled to a platform-
independent intermediate representation. The renderer loads, specializes, op-
timizes, and packetizes the shaders at runtime. The packetized shaders out-
perform their scalar counterparts by an average factor of 3.6.

This chapter presents a case study where automatic packetization is suc-
cessfully applied to the shading system of an interactive ray tracer.

43
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AnySL is a shading system that provides a poweful environment to shader
programmers: shader code can be written scalar, using the language of choice,
and independent of the target platform while matching the performance of
hand-optimized, target-specific packet code.

We integrated AnySL into the shading system of the generic ray tracer
RTfact [9].

5.1 Overview of the System

Our system uses LLVM to load, optimize, specialize, packetize, and link
scalar shaders at runtime. First of all, we expose the functionality available
to shaders (like shooting new rays, iterating over light sources, etc.) by a
simple API that hides the internals of the renderer from the shader. Other
renderers that provide an adapter for this API can reuse the shaders.

The shader itself is also wrapped by an adapter that implements wrapper
functions to adapt to all packet sizes available in the renderer. For example,
RTfact supports packet sizes of 1, 4, 16, 64, and 256. The shader itself is
only compiled to a scalar version and to a packet version whose size matches
the SIMD width of the architecture. Wrappers for other packet sizes are
provided by the shader adapter.

Both adapters are not a part of the renderer binary but are separately
available as bitcode. When the renderer wishes to instantiate a new shader,
it loads the bitcode files of the shader and the adapters. All function calls
between the adapters and the shader are removed by inlining. The remaining
calls to the renderer core are linked. Possible calls to special functions (sin,
cos, noise, floor, ceil, etc.) are inlined as well. If the user specifies con-
stant parameter values, the shader is specialized by replacing the occurrences
of the corresponding parameter variables with the concrete values.

Then, the complete machinery of LLVM optimizations is applied to the
shader before the packetizer transforms the shader to packet code.

Finally, LLVM generates machine code for the packetized shader and
returns function pointers (one per packet size) for the compiled code. The
shader can then simply be invoked via a function pointer.

5.2 AnySL Infrastructure

In order to connect some shading language to the AnySL infrastructure, its
front end needs to emit a bitcode file. In the examples in this section we use
C++ and its LLVM frontend. Features typical to existing shading languages,
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Figure 5.2: Schematic overview of our system

such as RSL’s “illuminance” statement, have to be translated to calls to the
renderer API which we describe below in more detail.

5.2.1 Shaders and the AnySL API
Since our system is shading language independent, we cannot directly use
special language constructs (e.g. RSL’s illuminance loop) or implicit glob-
ally available variables (e.g. RSL’s Ci and Co). The functionality available
to the shading languages is specified in a C++ header file, which defines
a shading API in the form of functions, and provides the usual data types
used in shaders – 3D vector, point, normal, and color, with appropriately
overloaded operators.

In order to provide the appropriate“look and feel”to the shader writer, we
also provide some common shading language features in the form of functions
and macros. Utility functions, such as the RSL-compatible SmoothStep, or
FaceForward, are directly implemented in the API header file. Some of the
more advanced functionality, such as SampleTexture and Noise, is available
as bitcode in our system. Functions, such as TraceRay, are forwarded to the
rendering backend. These differences, however, are completely transparent
to the shader writer. Figure 5.3 illustrates a shader written in C++ that
uses our shading API.

5.2.2 Renderer API
The renderer API provides a small set of functions describing the required
functionality from the renderer, such as tracing rays and querying light
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� �
#include "Shader.hpp"

PARAMETER float ringscale = 10.0f;

PARAMETER Color lightWood = Color (0.3f, 0.12f, 0.03f);

PARAMETER Color darkWood = Color (0.05f, 0.01f, 0.005f);

PARAMETER float Ka = 0.2f;

PARAMETER float Kd = 0.4f;

PARAMETER float Ks = 0.6f;

PARAMETER float roughness = 0.1f;

SURFACE_SHADER

{

const Point P = origin + hitDistance * dir;

const Vector & IN = dir; /* normalized incident vector */

const Normal & N = normal; /* surface normal */

/*

* Compute the forward -facing normal NN and the vector

* toward the ray orgigin V, both normalized .

* These vectors are used by "specular" and "diffuse ". */

Normal NN = FaceForward(N, IN);

Vector V = -IN;

Point PP = P;

PP += Noise(PP);

/* compute radial distance r from PP to axis of "tree" */

float r = Sqrt (PP.y * PP.y + PP.z * PP.z);

/* map radial distance r into ring position [0, 1] */

r *= ringscale;

r += Abs (Noise(r));

r -= Floor (r);

/* use ring poisition r to select wood color */

r = SmoothStep (0.f, 0.8f, r)

- SmoothStep (0.83f, 1.0f, r);

Color Ci = Mix(lightWood , darkWood , r);

/* shade using r to vary shininess */

Color C_diffuse (0.0f, 0.0f, 0.0f);

Color C_specular (0.0f, 0.0f, 0.0f);

float invRoughness = 1.0f / roughness;

BEGIN_ILLUMINANCE_LOOP(P) {

C_diffuse += diffuseComponent(L_dir_norm , P, NN, Cl);

C_specular += specularComponent(L_dir_norm ,

P, NN , V, Cl,

roughness ,

invRoughness);

} END_ILLUMINANCE_LOOP ;

result = Ci * (Ka + Kd * C_diffuse)

+ (0.3f * r + 0.7f) * Ks * C_specular;

}� �
Figure 5.3: An AnySL wood shader written in C++
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sources, as well as how shaders are invoked. The shading API hides all
renderer-specific functions and data types from the shader. Hence, shaders
in both source and bitcode representation are portable among all renderers
that implement the renderer API.

5.3 Shader Instantiation

To instantiate a shader, the renderer is provided with the shader’s name and
a list of parameter name/value pairs. The renderer employs LLVM to load
the corresponding bitcode file and make the code and data of the bitcode file
accessible as data structures inside the renderer.

The instantiation starts by specializing the shader with respect to its pa-
rameters: Every load instruction in the shader’s bitcode that loaded a global
parameter variable is replaced by an instruction that directly produces the
value the parameter was bound to. This does not only optimize away costly
memory accesses but also exposes further optimization potential: variables in
the shader code are replaced by their actual values. Depending on the shader,
aggressive constant propagation and dead code elimination can remove large
parts of the shader’s code [12].

If the shader makes use of the AnySL API (see Section 5.2.1), the bitcode
of the AnySL API adapter is loaded. All calls to the API are inlined into
the shader. This removes one level of call indirection and allows for further
optimization of the adapter in the context of the shader.

After specialization and adapter inlining, we perform several of LLVM’s
optimizations on the shader code, such as: Conditional constant propagation,
conditional expression propagation, global value numbering, control-flow sim-
plification, and dead code elimination. Especially constant and conditional
propagation and dead code elimination prove to be very useful in improv-
ing the shader after specializing the parameters and inlining the adapter. If
needed, the user can add further passes implemented in LLVM, or extend
LLVM by its own optimizations.

The scalar shader is now optimized and ready to use. If the ray tracer is
able to exploit SIMD architectures by shooting packets of rays, the packetizer
generates optimized packet code for the shader. The performance boost
obtained by automatic packetization is shown in the next section.
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5.4 Results

In this section we discuss the performance of RTfact including the AnySL
shading system with respect to rendering and compilation time. All exper-
iments were conducted on a Core 2 Quad at a clockrate of 2.8GHz, the
resolution was set to 512x512 pixels and all scenes include two point light
sources.

We compare the rendering performance of automatically packetized shaders
against scalar shading where packets are split and the scalar shader is exe-
cuted sequentially. Most of the shaders we evaluate are very complex and
would require a substantial amount of time to convert to a packet version
by hand. The development and debugging of scalar shader code is already
time consuming and difficult. Converting complex shaders to packet code by
hand requires even more effort. This is mainly because the programmer has
to implement all masking and blending code (see Sections 4.2 and 4.3) by
hand.

Scene Scalar (fps) Packetized (fps) Speedup
brick 3.7 14.9 4.0x
checker 4.1 18.3 4.5x
checker2 2.5 12.0 4.8x
glass 1.3 6.5 5.0x
glass2 0.73 4.2 5.7x
granite 2.8 2.9 1.0x
parquet 3.3 4.2 1.3x
phong 25.0 68.0 2.7x
screen 1.9 9.3 4.9x
starball 2.1 5.2 2.5x
starball2 0.19 0.56 3.0x
whitted 1.7 7.7 4.5x
whitted2 1.2 5.7 4.8x
wood 3.6 7.3 2.0x

Table 5.1: Performance of our ray tracer in different scenes, measured
in frames per second. Packetization is most effective for shaders with high
computational density while it is ineffective for noise due to the indexed array
accessing which requires scattered loads. The packetized shaders also profit
from calls to the renderer API (shoot secondary ray, get light contribution)
which are also available as packet code and use available mask information.

Although still lacking some optimizations, the packetized versions of the
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Shader Scalar (ms) Packetized (ms)
brick 470 550
checker 390 450
glass 540 500
granite 580 700
parquet 1180 1300
phong 360 500
screen 450 420
starball 430 550
whitted 500 530
wood 760 870

Table 5.2: Compilation times of the just-in-time compiler in milliseconds.
The shader compilation time is short enough to allow for runtime recom-
pilation, e.g. for specialization of the shader code to interactively changed
parameters.

shaders already outperform their scalar counterparts by an average factor
of 3.6 (see Table 5.1). Compute-intensive shaders and shaders that use the
packetized API calls to the renderer can be significantly sped up. In combina-
tion with the amplified cache coherence that comes with the packet shading,
we achieve speedups of factors up to 5.7.

Shaders using the noise function cannot profit as much from packetization.
This is because Perlin noise [24] makes many accesses to a permutation table.
Due to the lack of a scattered load in the SSE instruction set, these table
accesses cause scattered loads and long sequences of instructions that break
packets apart and reassemble them. Several inlined calls to the noise function
also substantially increase the size of the shader code, which may exceed the
instruction cache. This limits the performance gained by packetization for
shaders that use the noise function.

The scalar shaders are loaded from unoptimized LLVM bitcode files at
runtime. Before packetization, they are optimized using LLVM’s internal
passes and specialized into our shading system as described in Section 5.3.
The whole procedure is efficient and allows for recompilation at runtime
(see Table 5.1). This enables features like dynamic modification of shader
parameters without sacrificing performance (see Section 7.3).

Although the speedup is quite good already, the code size growth of some
shaders during packetization (Table 5.3) indicates a lot of untapped potential
for further optimization.
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Shader LOC C++ LOC BC LOC VEC
brick 75 403 829
checker 46 193 397
glass 118 317 486
granite 38 742 1230
parquet 151 2252 2686
phong 50 160 850
screen 55 214 389
starball 37 310 843
whitted 55 270 668
wood 57 1185 1712

Table 5.3: Code size of 10 different AnySL shaders written in C++ (Lines
of code, LOC), the corresponding scalar bitcode (LOC BC) and the packetized
bitcode (LOC VEC). Note that the bitcode in contrast to the C++ code has all
calls inlined. There is a clear connection between code size and packetization
time visible. Compilation of large shaders that inline one or more calls to
the noise-function (granite, parquet, wood) requires much more time (see
Table 5.2). It is also clearly visible that the packetizer still has a lot of
potential for optimization as the code size still grows too much for some of
the shaders (e.g. phong, starball).



Chapter 6

Conclusion

This thesis presented an algorithm for automatic packetization of scalar func-
tions.

The system is implemented in a source-language and target-architecture
independent intermediate language (LLVM), which makes it highly portable
and easily extendable and provides a large and growing set of compiler opti-
mizations.

A simple interface is provided that does not require any knowledge about
a special language, data parallelism, or the target architecture: The user
only has to implement a scalar function and declare a prototype for the
corresponding packetized function. The implementation of this prototype is
automatically generated by the packetizer.

A case study in the context of shader packetization for real-time ray
tracing showcased the applicability of the system: Although it is still in
an early stage and not optimized, the ray tracer already runs on average
3.6 times faster with the generated, packetized shaders than with the scalar
source shaders on a standard SSE architecture of SIMD width 4.
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Chapter 7

Future Work

The packetizer currently is in a “working prototype“ state. Although the first
results are very good already, there is plenty of tasks left to be done. This
section describes possible directions for future work.

7.1 Data Types

Support for structs is still immature and does not allow any nesting. However,
the task is not too difficult as it only requires recursive functions for the
generation of correct extract operations.

Much more interesting is to give the user a larger degree of freedom for
packet data types, e.g. to chose array-of-structs layout instead of struct-
of-arrays. One way of achieving this goal is to generate a mapping out of
the specified data types of the scalar and packetized functions’ arguments.
The system then automatically tries to apply this mapping to all data types
and build the appropriate transformation rules that are currently fixed (Sec-
tion 4).

7.2 Code Generation

This section will detail the addition of missing functionality, interesting fea-
tures, and optimizations for the packetizer.

Recursive Packetization An important addition is to implement support
for recursion. This includes supporting packetization of recursive functions
on one side and recursive packetization on the other.
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Packetization of recursive functions is only a small modification that adds
the currently packetized function to the included native functions. This way,
a recursive call to the function can be packetized without any further modi-
fications.

Recursive packetization could be interesting if inlining of functions is not
enforced but coupled to a heuristic that takes into account code size (which
is already available in LLVM). The system would recursively packetize those
functions and add another parameter for a mask. This way, the packetized
function could include calls without sacrificing performance by splitting pack-
ets or losing the advantages of masked execution.

Exploiting Homogeneous Masks One very obvious optimization is to
exploit cases where the condition of a branch decision is entirely true or
false. Generating jumps around the specific code segments can result in
large performance gains as possibly very complex code is skipped at the cost
of only a comparison and a jump [28].

It would also be possible to only generate these jumps for paths that
exceed a certain length or computational complexity.

Conditional Load/Store The packetizer currently explicitly computes masks
and stores them as usual values. However, special hardware architectures
provide support for predicated execution, i.e. each instruction has a mask as-
sociated and blending is performed automatically on a per-instruction basis.

In order to support such architectures, the mask generation pass has to
be abstracted and provide different interfaces to the user.

Parallel Path Linearization The CFG linearization pass currently ran-
domly choses what path to execute first if a branch is encountered. Employ-
ing a special heuristic instead is likely to improve the generated code. Such
a heuristic can e.g. take into account the code size or register pressure of the
different paths.

Additional Native Functions Adding more native functions is a natural
extension for the packetizer: These functions can be implemented as efficient
as possible and tuned by hand while at the same time providing the func-
tionality independent of the target-architecture. If desired, it is still possible
to include additional, tailored versions of native functions for specific archi-
tectures. Important examples include mathematic functions such as cross
product, dot product, or vector normalization. Adding noise as a native func-
tion is especially interesting for shading languages.
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7.3 Ray Tracing & Shading
The case study demonstrated the applicability of the packetizer to shading
(Chapter 5). In the long term, we are aiming at packetizing a complete scalar
ray tracer.

Additionally, we would like to extend the approach to include support for
ray tracing on GPUs as well as targeting Larrabee [27] as soon as possible.
AVX [15] and the Cell Broadband Engine [14] are two other interesting target
architectures that we might consider in the future.

In the context of shading, there are also a few interesting follow-ups pos-
sible. Interactively changing shader parameters using sliders is only a small
step ahead with the packetizer already being integrated into RTfact and
RTSG and all functionality basically being ready.

A more complex topic could be to enhance the system to provide function-
ality for interactive shader debugging [30]. This could include functionality
that lets a shader programmer run the renderer and then interactively select
a specific pixel or area of pixels for investigation. The system could respond
by e.g. displaying information about the executed shader, geometry proper-
ties, lighting information or neighboring pixels/geometry areas. One could
even think about including parameters of the ray, highlighting paths through
an acceleration structure, or recursively following sampling directions to light
sources.
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