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Compiler-gestützte Optimierungen für Daten-parallele Paradigmen
in hipSYCL:

Die wachsende Verbreitung heterogenen Programmierens macht die weitere
Verbesserung der Performance Portabilität unerlässlich. SYCL bietet das nd-
range parallel-for Paradigma, um Daten-parallele Kernel zu schreiben. Wie in
CUDA und OpenCL Kerneln, erlaubt es die Verwendung von Barrieren für lokale
Synchronisation. Auf GPUs kann dies effizient umgesetzt werden, während auf
CPUs die erforderlichen Fortschrittsgarantien die Nutzung von vielen (leicht-
gewichtigen) Threads in Implementierungen, die als reine Bibliothek umgesetzt
werden, nötig machen, was inakzeptabel ineffizient ist. Durch die Integration
zweier Compiler-basierter Ansätze, die dies beheben, verbessert diese Arbeit die
Performance des nd-range parallel-for Paradigmas in hipSYCL für CPUs um
mehrere Größenordnungen auf verschiedenen CPU Architekturen. Das bedeutet,
dass hipSYCL die erste SYCL Implementierung ist, die dabei gute Leistung auf
CPUs liefern kann, auf denen kein OpenCL CPU Treiber zur Verfügung steht.
Die beiden Alternativen werden bezüglich ihrer funktionalen Korrektheit und
Performance verglichen. Zusätzlich werden Strategien vorgestellt, wie der Daten-
Parallelismus effektiv auf SIMD Einheiten abgebildet werden kann. Hierbei wird
festgestellt, dass explizite Verwendung von Daten-parallelen Typen und die Vek-
torisierung innerer Schleifen bereits gute Optimierungen sind, wohingegen die
Vektorisierung äußerer Schleifen sub-optimal sein kann. Außerdem wird gezeigt,
dass mithilfe erzwungener Vektorisierung mittels des Region Vectorizers, SYCL’s
sub-group auf die SIMD Ebene abgebildet werden kann.

Compiler-assisted optimizations for data-parallel paradigms in
hipSYCL:

With heterogeneous programming continuously on the rise, performance portabil-
ity is still to be improved. SYCL provides the nd-range parallel-for paradigm for
writing data-parallel kernels. This model allows barriers for group-local synchro-
nization, similar to CUDA and OpenCL kernels. GPUs provide efficient means to
model this, but on CPUs the necessary forward-progress guarantees require the
use of many (lightweight) threads in library-only SYCL implementations, render-
ing the nd-range parallel-for unacceptably inefficient. By adopting two compiler-
based approaches solving this, the present thesis improves the performance of the
nd-range parallel-for in hipSYCL for CPUs by up to multiple orders of magnitude
on various CPU architectures. Thereby, hipSYCL is the first SYCL implementa-
tion to provide a well performing nd-range parallel-for on CPU, even if no OpenCL
runtime is available. The two alternatives are compared with regard to their func-
tional correctness and performance. Additionally, strategies for effective mapping
of the data-parallelism to the SIMD paradigm are evaluated. It is found that
explicitly using data-parallel types and inner-loop vectorization already provides
good optimizations, whilst outer-loop vectorization can be sub-optimal. SYCL’s
sub-groups traditionally model the warps of GPUs. It is shown that the forced
vectorization of the Region Vectorizer enables mapping the sub-groups to the
SIMD level instead.
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1 Introduction

Parallel and heterogeneous programming have brought the most notable advances
in computing over the last decades. One of the major challenges with heterogeneous
programming is the performance portability of code on the various computing re-
sources. Open standards like OpenCL or SYCL provide means to program various
classes of processing units using the same kernel. While CPUs expose up to 64
physical cores at this point in time, GPUs are usually programmed with thousands
of threads. This difference makes it challenging to efficiently use CPUs as fallback
or as additional computing resources using the same kernels as with GPUs.
The hipSYCL implementation of the SYCL standard currently provides unified

access to CPUs and GPUs but the nd-range parallel-for paradigm is far from efficient
on CPUs. This is due to the necessary forward-progress guarantees that have to be
made so that barriers can be correctly implemented. This problem is a common
issue with most heterogeneous programming models when also targeting CPUs.
This thesis will explore two approaches that were originally developed to solve

this issue with OpenCL by applying them to the hipSYCL nd-range parallel-for
implementation. Their implementation is presented and their feasibility for pro-
duction usage is examined. The performance evaluation shows that with certain
optimizations both approaches can reach multiple orders of magnitude performance
improvements over the current implementation. Those benefits are shown to be
independent of the CPU architecture used. With these improvements, hipSYCL is
the first SYCL implementation achieving decent nd-range parallel-for performance
on CPUs without requiring the availability of an OpenCL CPU runtime.
The programming models for GPUs are traditionally single-program multiple-

threads (SPMT) focused. This is also the case for SYCL’s nd-range parallel-for.
CPUs do not provide efficient realizations of this paradigm but instead excel with
single-instruction multiple-data (SIMD) programming. Using auto-vectorizers it is
attempted to map the SPMT kernels onto the SIMD model, which is more favor-
able to CPUs. For this, the LLVM inner-loop vectorizer as well as the outer-loop
vectorization capabilities of the Region Vectorizer from Moll and Hack [2018] are
considered and experimentally evaluated.
The Region Vectorizer also provides intrinsics that, in conjunction with its forced

vectorization, can be used to implement SYCL’s sub-group hierarchical level on
CPUs. This level is mapped to warps on GPUs. This thesis discusses the map-
ping of the sub-groups to SIMD units and the necessary improvements to enable
performance-beneficial use of this extension.
Finally, SYCL is a single-source programming model, i.e. the host application

code as well as the kernel code both reside in the same C++ compilation unit. This
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opens the opportunity to utilize information from the surrounding host code inside
a kernel. As an example, the propagation of host-side constant work-group sizes
into the kernel is discussed. 1

1This work used the Isambard 2 UK National Tier-2 HPC Service (http://gw4.ac.uk/isambard/)
operated by GW4 and the UK Met Office, and funded by EPSRC (EP/T022078/1)
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2 Background and related work

SYCL is an industry-standard, hosted by the Khronos group. It specifies a DSL
inside C++ to enable developing heterogeneous, data-parallel applications with a
single-source model. The current version at the time of writing is SYCL 2020 [The
Khronos® SYCL™ Working Group et al., 2021]. Multiple implementations of the
standard provide access to various accelerators.
While Intel’s DPC++, presented in Bader et al. [2019], provides access to their

CPUs, GPUs, and FPGAs through OpenCL or Level0, Codeplay enabled the open-
source variant of it with support for Nvidia [Reyes, 2020] and recently AMD GPUs
[Macfarlane, 2021] through CUDA and HIP runtimes respectively. Codeplay also
develops ComputeCpp, an embedded-systems focused SYCL implementation with
support for specific OpenCL versions, including Intel and Arm GPUs as well as
application-specific processors like Renesas R-Car. Support for RISC-V Vector ac-
celerators is underway [Burns, 2020]. Xilinx works on an experimental SYCL im-
plementation with support for its FPGAs, called triSYCL [Keryell and Yu, 2018].
Alpay and Heuveline [2020] present hipSYCL, a multi-backend SYCL implemen-

tation that supports Nvidia, AMD as well as Intel GPUs by reusing the respective
Clang toolchains for CUDA, HIP, and DPC++. All CPUs are supported as long as
a modern OpenMP capable compiler is available for it.

2.1 SYCL execution model

The SYCL standard defines an interface that enables accessing heterogeneous com-
pute resources. The chosen abstractions are similar to those of the OpenCL and
CUDA programming models. A queue is used to communicate tasks to the accel-
erator. buffers are used to allocate host and device memory. By using accessors
a dependency on a buffer is created, the memory is moved to the device and ker-
nels can access it. On the device, these buffers are then located in global memory.
Accessors can be used to allocate local and constant memory as well.
Local memory is relevant when using hierarchical parallel execution models. These

are nd-range and hierarchical parallel-for in the standard. Each id in the execution
range, for which the kernel is executed in the parallel-for models, results in a work-
item that is executed. Work-items are equivalent to CUDA threads. All variables
and arrays defined in the kernel are implicitly in work-item private memory. This
implies that only the one work-item has access to those values.
For the hierarchical models, the work-items are grouped into equally sized work-

groups which in CUDA would be called blocks. On this hierarchical level the local
memory can be shared between the contained work-items. Additionally, to make
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these potentially parallel memory accesses to local memory well-defined, work-items
of a work-group can synchronize with each other at work-group barriers. Note, as
with CUDA or OpenCL, it is not possible to synchronize between the work-groups
inside a kernel.
A main focus of SYCL is to provide an interface for data-parallel kernels. For this

the three main execution models are:

basic parallel-for executes a kernel function in parallel across a plain n-dimensional
iteration space, is non-hierarchical

nd_range parallel-for allows manually managing the partitioning of the global range
into work-groups of parallel work-items. This kernel invocation mechanism is
similar to models from other heterogeneous programming languages such as
OpenCL or CUDA.

hierarchical parallel-for enables formulating kernels using a nested parallelism model.
A first invocation of parallel_for_work_group launches parallel work-groups,
while contained parallel_for_work_item calls launch parallel work-items
within a group.

Additionally, single_task is available for task-parallelism and for example FPGA
programming.

2.1.1 Semantics of parallel-for paradigms

Basic parallel-for

The basic parallel-for paradigm lets a user specify the dimensionality of their prob-
lem and the number of work-items to execute for each dimension. Basic parallel-for
provides easy access to a single-program multiple-data (SPMD) like parallelism and
is useful if a task has to be executed independently for multiple data elements. A
simple example is the map shown in the listing 2.1.

cgh.parallel_for(sycl::range<1>(global_size),
[=](sycl::id<1> id) {

out[id] = map_fn(in[id]);
});

Listing 2.1: Invocation of a basic parallel_for. It performs a map operation on
global_size items.

Hierarchical parallel-for

Hierarchical parallel-for allows cooperative solving of problems. For this, the prob-
lem is divided hierarchically. The first level is the work-group level. As seen in the re-
duction sample in listing 2.2, this level is initiated by invoking the parallel_for_work_group
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function with the number of groups to launch and the size of each group. The kernel
function is then executed once per work-group, potentially in parallel. All variables
declared in this scope are work-group local memory.
Inside the work-group function, parallel_for_work_itemmay be used to execute

a work-item function in parallel, similar to the basic parallel-for paradigm. The main
difference is that this is launched for every work-group with the earlier specified work-
group size. parallel_for_work_item can be executed multiple times. Each call is
synchronous with regard to the work-group. This means the work-item function is
run for every work-item before the work-group function continues. Effectively this
implies a work-group level barrier after the work-item function so that all work-items
have to converge again.
The work-item function may reference the work-group local memory. Using this

local memory, multiple parallel_for_work_item calls can iteratively solve a prob-
lem, like the reduction seen in listing 2.2. Work-item private values can be for-
warded between parallel_for_work_item calls using the sycl::private_memory.
On CPU this allocates a heap array with as many elements as the work-group has
elements. Each work-item can then index this with its id, to set and load its value.

cgh.parallel_for_work_group(sycl::range<1>{num_groups}, sycl::range<1>{group_size},
[=](sycl::group<1> wg) {

int scratch[group_size];
wg.parallel_for_work_item([&](sycl::h_item<1> item) {

scratch[item.get_local_id()[0]] = acc[item.get_global_id()];
});
for(size_t i = group_size/2; i > 0; i /= 2) {

wg.parallel_for_work_item([&](sycl::h_item<1> item) {
const size_t lid = item.get_local_id()[0];
if(lid < i) scratch[lid] += scratch[lid + i];

});
}
wg.parallel_for_work_item([&](sycl::h_item<1> item) {

const size_t lid = item.get_local_id()[0];
if(lid == 0) acc[item.get_global_id()] = scratch[0];

});
});

Listing 2.2: Sample reduction kernel using the hierarchical parallel for paradigm.

nd-range parallel-for

The nd-range parallel-for paradigm can solve the same problems as hierarchical
parallel-for but uses better-known semantics for it. Instead of first starting a work-
group function and then nesting invocations to work-item functions, the nd-range
paradigm allows specifying a global and a work-group size directly. This specifi-
cation is then used to partition the global size into work-groups of the requested
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size and execute the SPMD kernel function in parallel. Work-group local mem-
ory has to be allocated upfront using a SYCL accessor. Synchronization between
work-items of a work-group, to safely use the local memory, is implemented via
group-barriers, which can be invoked using either sycl::nd_item::barrier() or
sycl::group_barrier(work_group). The listing 2.3 shows this, implementing an
equivalent reduction as with the hierarchical kernel earlier.

cgh.parallel_for(sycl::nd_range<1>{global_size, group_size},
[=](sycl::nd_item<1> item) noexcept {

const auto lid = item.get_local_id(0);
scratch[lid] = acc[item.get_global_id()];
for(size_t i = group_size / 2; i > 0; i /= 2) {

item.barrier();
if(lid < i) scratch[lid] += scratch[lid + i];

}

if(lid == 0) acc[item.get_global_id()] = scratch[lid];
});

Listing 2.3: Sample reduction kernel using the nd_range parallel for paradigm.

2.1.2 parallel-for implementation in hipSYCL

Basic parallel-for implementation

The basic parallel-for paradigm is implemented in hipSYCL on CPU by iterating
over the work-items with nested for-loops, which are annotated with OpenMP’s
#pragma omp for. This is done inside a #pragma omp parallel scope. On GPU a
hardcoded work-group size is used while enqueuing the kernel function.

Hierarchical parallel-for implementation

For the hierarchical parallel-for paradigm, the implementation on CPU is rela-
tively straightforward. The work-group function is run inside an OpenMP par-
allel for loop nest, iterating over the number of work-groups. Thus the work-
group function is executed in parallel exactly once for each work-group. The nested
parallel_for_work_item calls are directly implemented by a loop nest, depending
on the dimensionality of the kernel.
The innermost loop of the loop nest is annotated with the #pragma omp simd

directive to suggest that the iterations do not depend on each other and instruct the
auto-vectorizer to vectorize the work-item function, if possible. These inner loop
nests are called work-item loops (wi-loops). By executing all work-items before the
loop nest is exited by iterating over them in a single thread, the implicit barrier at
the end of the parallel_for_work_item call is satisfied by design.
The GPU implementation of hierarchical parallel-for is not completely standards

conforming, as it executes the work-group function for each work-item as well. As
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the code is completely uniform, it should not impact functional correctness. The
work-item functions are executed directly by the very same work-items. On CUDA
__syncthreads1 is invoked to satisfy the barrier requirement.

nd-range parallel-for implementation

The nd-range parallel-for variant is very similarly implemented on GPU. The work-
group size is directly mapped to the block size of CUDA or HIP and the kernel
function is executed directly for all work-items. The work-group barriers are imple-
mented by calls to __syncthreads. In the following the historic and current CPU
implementation variants are introduced.

Naive implementation On CPUs an efficient implementation of the nd-range
parallel-for is inherently more difficult. It cannot be implemented by using an
OpenMP parallel for loop for the work-group and an inner loop nest for the work-
items. Only one work-item would make forward-progress at a time, which makes
implementing the group barrier impossible. For this reason, hipSYCL formerly
implemented this pattern by switching the hierarchical levels. An outer-loop rep-
resented the work-items and was parallelized with OpenMP using as many threads
as there are work-items. An inner loop nest iterated over the work-groups and exe-
cuted the kernel. Group barriers were implemented using OpenMP’s #pragma omp
barrier.
As SYCL is usable for both GPUs and CPUs, it is likely that users develop a kernel

focused on GPUs but aim to execute on CPUs as well, if no GPU is present. For
good performance on GPUs, it is usually necessary to use high work-item counts per
work-group. The typical maximum is 1024 with CUDA and HIP. If this is directly
mapped to the CPU, it would imply that 1024 operating-system-managed threads
are launched to execute the nd-range kernel. This comes with a high overhead due
to the necessary context switching.

Boost.Fiber based implementation In 2020 an alternative nd-range implemen-
tation on CPU was added. It is based on Boost.Fiber which provides lightweight
concurrency by means of so-called fibers. Instead of expensive OS thread context
switches, the fibers are executed in a single thread. At certain points in the program,
like reaching a barrier or finishing execution of the executed function, the stack con-
text is switched and the next fiber is executed. At first, this was done by executing
a #pragma omp parallel region, which usually only spawns as many threads as the
CPU provides cores, and from there launching as many fibers as a work-group has
work-items. Those fibers then again executed the work-groups in a loop internally.
The main benefit, therefore, was the lower number of required threads.

1CUDA kernel synchronization documentation: https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html#synchronization-functions
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An additional improvement has been made to greatly improve performance for nd-
range kernels without any barrier. For this, the iteration space was inverted again.
This means the work-groups are the outer iteration space again, which is statically
partitioned for execution by a reasonable number of OpenMP threads. Initially,
only a single fiber is spawned, which iterates over the assigned work-groups and for
every work-group executes its work-items by using a for-loop nest. It only does this
until a barrier is hit.
If a barrier is encountered, more fibers are spawned so that there are as many

fibers as work-items in a work-group. These fibers then cooperatively execute the
kernel, still using just a single thread. Effectively this means, if a kernel contains no
barrier, it can achieve acceptable performance as no context switches of any kind
are necessary. As soon as a barrier is reached, the penalty of fiber context switches
is present again.
This optimization is discussed in Alpay and Heuveline [2021, slide 20]. The per-

formance improvements are also observed by Lin et al. [2021]. This thesis aims to
further improve on this by adding compiler support to hipSYCL to transform the
nd-range parallel-for paradigm to be similar to the hierarchical one, in that it only
executes barrier-free work-item loops inside a small number of threads.

2.2 LLVM

The LLVM infrastructure originally was presented in Lattner and Adve [2004]. It
provides the Clang C++ front-end and a retargetable optimization and code genera-
tion infrastructure. In this thesis LLVM is used as the compiler framework of choice
as it is easily extensible using front-end and optimizer plugins. It is also already
relied on by hipSYCL for its GPU support.
LLVM’s optimizer framework relies on the LLVM IR immediate representation of

programs. The IR is organized hierarchically. The outermost level is the module,
which in C++ terms is equivalent to the compilation unit. A module contains
functions, the functions again contain basic blocks (BB). A basic block is an ordered
list of instructions that always are executed sequentially without any conditionals
or branching. The last instruction of a BB always has to be a terminator, which can
be either a (conditional) branch to other basic blocks, a return or an unreachable
instruction. Based on the branching terminators, the control flow between the BBs
is modeled.
The IR is in single-static assignment (SSA) form, i.e. a value can only be assigned

to once and the value does not change afterwards. Also values can only be used if
the definition of the value dominates the use. Domination means that all paths to
reach the use contain the definition of the value. This might not always be possible,
e.g. if a variable is updated in a conditional and the original or the new value have
to be used afterwards. For these cases, there are the so-called PHI nodes. A PHI
node has a list of values it selects from, depending on the incoming branch to the
BB. The value either has to be constant or dominate the terminator of the BB the
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cond: 
%org = 5 

br %cond, %then,
%end 

then: 
%new = add %org, 5

end: 
%final = phi 

[%org, %cond],
[%new, %then]

(a) CFG of a conditional with just a then
block. The then block does not domi-
nate the end block, as there is a path
to end without then. cond dominates
end, as it always comes before. As val-
ues cannot be updated, the then block
creates a %new value for the add. The
PHI node then selects the %org or %new
value, depending on the incoming branch
being from cond or then respectively.

header: 
%i = phi [0, 

%preheader], [%inc,
%latch]

latch:
%inc = add %i, 1 

body:

preheader:

exit:

(b) CFG of a loop. Illustrates the naming
conventions. All edges are dominating
except the latch to header edge. The
header has two incoming branches. For
each branch it has to select a value for
the %i value. 0 is selected when com-
ing from the preheader, the %inc value
from the latch. The %i value definition
dominates its use: the add instruction in
the latch.

Figure 2.1: Simplified control flow graphs illustrating domination and the use of PHI
nodes. Dominating edges are solid lines, dotted lines do not dominate.

branch is coming from. In this way, the SSA form can be kept even for loops, where
the iteration (induction) variable depends on the value of the last iteration. This is
visualized in 2.1.
Loops in LLVM have a BB called the header. This header dominates all other

BBs in the loop. The loop body consists of the header and potentially more BBs.
BBs from which a branch back to the header originates are called latches. The
header therefore usually contains a PHI node that selects either the initial value for
the induction variable if the block before the loop is the predecessor or the updated
value if a latch is the source of the branch to the header. If this value starts with 0
and is incremented by 1 every iteration, it is called a canonical induction variable.
Blocks that have a branch that leaves the loop are called exiting blocks. The block
targeted by the leaving branch is called exit block, i.e. the first block after the loop.
Instructions in LLVM can have metadata attached. This can be used to propagate

hints about optimization strategies through the optimization pipeline. An example
for this is the llvm.loop metadata, that can be used to store user directed hints
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about loop transformations. The #pragma unroll annotation in C++ code would
lead to the llvm.loop.unroll.enable metadata being added to the operands of
llvm.loop. This is then used as a hint by the optimization passes that perform the
loop unrolling.
The LLVM optimizer is composed of many passes that perform certain trans-

formations on the IR. There are module passes that operate on the whole module,
function and loop passes only operate on their respective part of the module. A pass
manager is used to order the execution of the passes. Plugins can add IR passes at
predefined extension points.

2.3 Related work

Earlier work in the context of CUDA and OpenCL CPU implementations had to
solve the same barrier issue. In Kaeli et al. [2015] the author describes the implemen-
tation of the AMD APP SDK’s OpenCL CPU runtime. They use custom lightweight
threads that allowed them to optimize stack location and alignment. Support for
vectorization is only present when using OpenCL’s explicit floatN vector data types
which have overloaded mathematical operations that are mapped directly to vector
instructions.
MCUDA by Stratton et al. [2008] is a CUDA CPU implementation using source-

to-source transformations on an AST to perform deep loop fission, moving both
loops and conditionals out of the work-item loops.
Patel et al. [2021] introduces an emulated GPU target for OpenMP offloading,

achieving respectable performance despite mapping the work-items to single threads.
The work-group size is usually auto-selected, so a reasonable thread count is achiev-
able.
In Jäskeläinen et al. [2010] an OpenCL implementation is presented that aims to

enable using OpenCL on application-specific processors (ASP). As OpenCL’s kernel
language includes work-group barriers as well, the work-group barrier issue had to be
solved. The target processors were mostly FPGAs and not so much general-purpose
CPUs, hence the kernel compiler tried to increase instruction-level parallelism (ILP)
as far as possible. In Jääskeläinen et al. [2015] a continuation of this project, called
portable OpenCL (POCL), is presented, aiming for high-performance execution of
OpenCL kernels on CPUs. A CUDA backend also allows using POCL with Nvidia
GPUs, where potentially no OpenCL driver is present. The POCL device compiler
is discussed in more detail in 2.3.1.
POCL currently uses manually managed pthreads for parallelizing kernel execu-

tion on CPU. Baumann et al. [2021] analyzes whether using TBB as runtime instead
could improve performance. They also find that LLVM’s new VPlan and outer-loop
vectorizer show promising performance uplifts.
A different approach to the work-group barrier problem was presented as continuation-

based synchronization (CBS) in Karrenberg and Hack [2012]. The kernel is divided
in barrier free sub-CFGs that are surrounded by a while loop with a switch statement
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that selects the next to be executed sub-CFG. More on this in 2.3.2.
Vectorization of the data-parallel kernels plays a big role in CPU performance.

Karrenberg and Hack [2011] presents a whole function vectorization approach for
the kernel function which is more extensively discussed in Karrenberg [2015]. Tian
et al. [2017] introduces implementation techniques for OpenMP’s parallel and vec-
torization directives.
Currently an effort to refactor the LLVM vectorization infrastructure is underway.

This new VPlan infrastructure has been introduced in Rapaport and Zaks [2017].
In the long run this should enable adding an outer-loop vectorizer in LLVM. Until
the outer-loop vectorizer is ready, the Region Vectorizer (RV), implemented with
Moll and Hack [2018], can add outer-loop vectorization to an LLVM based build.
The inner-loop vectorizer and RV are discussed in more detail in 4.2.

2.3.1 POCL’s device compiler

POCL implements an OpenCL kernel compiler that uses Clang’s OpenCL C support
as front-end and implements additional LLVM IR passes to transform the kernel
functions, enabling well-performing execution on various targets.
The preferred way of handling kernels in POCL is:

1. create a program, which mostly represents the source

2. from this, create a kernel, a specific function from the source

3. compile the kernel

4. enqueue the kernel for execution

Step (3) in POCL is just an invocation of something similar to clang -x cl
kernel.cl -emit-llvm to parse the OpenCL C(++) kernel language into LLVM
IR and only in (4) does the actual target-specific optimization happen. For CPU
targets step (4) involves transforming the scalar kernel function to a so-called work-
group function. Hereby the scalar function works only on a single work-item and
the work-group function contains work-item loops (wi-loop) that execute the kernel
for each work-item in a work-group. As this target-dependent compilation happens
at kernel enqueue time, the work-group size is also known, thus allowing the wi-loop
to have compile-time constant bounds.

Transformations

As mentioned above, the target-dependent compilation step for CPUs involves gen-
erating wi-loops around the kernel to execute it for each work-item. This loop is
then executed by a single thread, thus the work-items cannot guarantee forward-
progress, as they are executed one after another. As OpenCL allows work-group
barriers inside the kernel function, this leads to the same issues as in hipSYCL. To
solve this, POCL implements a set of LLVM IR passes that transform the kernel

20



function into separate parallel regions, where each region starts and ends either at
the kernel entry, exits, or at a barrier inside the kernel.
Each region eventually gets a wi-loop generated around it. The wi-loops are

then chained after each other, leading to each parallel region being executed for
every work-item of a work-group before any instruction of the next parallel region
is executed. That way the synchronization guarantees required by the group barrier
are met.

for(f : functions)
if(isKernel(f))

flattenKernel(f)
O3(f)
uniAnalysis = phisToAlloca(f)
isolateRegions(f)

for(l : f.loops())
addImplicitBarriers(l)

replicateBarrierTails(f)
uniAnalysis += phisToAlloca(f)
canonicalizeBarriers(f)
isolateRegions(f)

for(r : dfsParallelRegions(f))
fixMultiRegionValues(r, uniAnalysis)
if(containsConditionalBarriers(r)

peelFirstWorkItem(r)
createWorkItemLoopAround(r)

removeBarrierCalls(f)
O3(f)

Listing 2.4: Simplified summary of POCL kernel transformations.

In the following the transformation steps required are summarized. An outline
gives the pseudo-code in listing 2.4. At first the kernel function is simplified and all
call trees are inlined to make the barriers directly visible inside the kernel function.
After a first round of the standard LLVM -O3 pipeline, most PHI nodes are demoted
to stack allocations, and dummy basic blocks are added at region entries to make
the CFG transformations simpler.
Then, to handle loops inside the kernel that contain barriers, additional barriers

are added to the loops’ headers and latches. Hereby the loop control flow is handled
as any other control flow without requiring special handling later. To retain the
semantics of barriers in conditionals, tail replication is performed for the possible
paths through conditionals to a barrier. In doing so every combination of visited
barriers has its own kernel exit. Afterwards the barriers are split into barrier blocks,
i.e. basic blocks with only a barrier and a terminator, which are then used as the
beginning and end-points of the so-called parallel regions.
These regions are formed by conducting a DFS starting at the kernel’s exits. At
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every barrier found, all basic blocks visited since the last barrier, are pronounced
a parallel region. Each parallel region could then be executed in parallel without
having to consider any further synchronization.
In the final transformation the work-item loops are generated around the parallel

regions. If a parallel region contains a conditional leading to a barrier, the region is
replicated to execute it once for the first (0,0,0) work-item. This selects the uniform
control flow to follow. After a barrier tail is selected, the parallel region is stripped
of the conditional branches that led to selecting the parallel region. The tail is then
wrapped in a wi-loop, starting with the second to be executed work-item. This
retains the control flow and thus also the semantics of a kernel with barriers, given
the requirement that every work-item has to execute a barrier if any one does so.
For full optimization of the new control flow, another LLVM -O3 pipeline is run by
the OpenCL compiler.
One caveat is the additional, not OpenCL 3.0 C conforming, assumption that

a loop containing a barrier (b-loop) is always executed the exact same number of
iterations for every work-item. A loop with a barrier inside that is guarded by a
conditional might not fulfill this requirement but could be allowed in OpenCL 3.0
C. More on this limitation in 3.3.
Using a simple variable uniformity analysis, uniform and varying values are iden-

tified. After the parallel region formation, the varying values that span multiple
regions are stored in stack arrays. Existing varying allocas are widened. The
stack arrays are indexed with the work-item id so that the work-items’ state can
be retained over the region boundaries. The arrays are 64byte aligned for optimal
vectorization opportunities.
As most PHI nodes are demoted to stack values before any transformations, all

ex-PHI allocas would be subject to being widened, as determining the uniformity
of an alloca is difficult and often leads to pessimized results. To prevent this,
the PHI demoting pass stores the uniformity value of the demoted PHI node for the
corresponding alloca to the uniformity analysis. This can be looked up later before
unnecessarily widening the alloca.

2.3.2 Continuation-based synchronization

A different approach to the work-group barrier problem was presented as continuation-
based synchronization (CBS) in Karrenberg and Hack [2012]. Karrenberg proposes
to define the entry and exits of the kernel as barriers and to split all barriers out
of their basic blocks, so that only a barrier and a terminator form a so-called bar-
rier block. Thereafter, a depth-first search (DFS) from the entry barrier through
the CFG is then performed until all paths again reach a barrier. Every discovered
barrier is given a unique ID. All blocks reached during the traversal outgoing from
one entry form a sub-CFG. This process is then repeated starting with all newly
discovered barriers.
The blocks of the sub-CFGs are replicated so that each sub-CFG forms a kernel

on its own, which is completely barrier-free. The kernels are identified by the ID

22



of their respective entry barrier. At the exit points of the kernels, the exit barrier’s
ID is stored. This matches the ID of the sub-CFG that has to be executed next to
resemble the original CFG.
Around each sub-CFG a wi-loop is generated to iterate over the work-items. The

sub-CFG to be executed is selected by a switch statement in a while loop, that
executes until a kernel exiting barrier is encountered. This handling of the control
flow works well with the OpenCL and SYCL barrier definitions: if a barrier is hit by
any work-item of a work-group, it has to be encountered by all work-items of that
work-group. The while loop is executed for each work-group, which can be done in
parallel.
To accommodate for private variables that are used in multiple sub-CFGs, a

similar approach as in POCL is chosen: they are stored in an array, which, in the
case of Karrenberg’s implementation, is allocated by the driver, not directly on the
stack.
Karrenberg expands this with an extended uniformity analysis, linearization of

control flow, and explicit whole function vectorization of the sub-CFGs.
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3 Comparison of loop fission approaches
for synchronization

In the following the goal is to present compiler-based transformations that make
the nd-range parallel-for paradigm execute more like the hierarchical paradigm on
CPUs and thus more efficient. For this a work-group loop nest is parallelized using
OpenMP. A non-parallelized loop nest for the work-items is inside the work-group
loop nest. By performing deep loop fission on this inner loop nest, the required
work-group barrier semantics can be realized.
For the deep loop fission, the two approaches taken by the POCL device compiler

and the continuation-based synchronization (CBS) method are presented. Figure 3.1
gives an initial example of the differences between the two techniques for a simple
kernel containing a loop with a barrier. At the end of this chapter, the two loop
fission implementations are compared, while the performance evaluation is done in
chapter 6.

3.1 Integration of the POCL device compiler into
hipSYCL

The open-source OpenCL implementation POCL, presented for example in Jääskeläi-
nen et al. [2015] and briefly introduced in 2.3.1, employs an OpenCL kernel compiler
based on the LLVM infrastructure. As the to-be-supported capabilities for OpenCL
and SYCL kernels are very similar, this open-source compiler has been adopted into
hipSYCL. Figure 3.2 shows the transformations done by the kernel compiler for
two additional example kernels. There are some changes that had to be made for
the integration, due to differences in the compilation flow and programming model.
Listing 3.1 on page 27 therefore shows the steps that were adopted to hipSYCL in
pseudo code.
In OpenCL the kernel code is traditionally written as a scalar function, completely

separate from the host and driver code. The OpenCL driver usually compiles the
kernel function and its dependencies on the fly as the host application prepares to
use the kernel. Alternatively, the kernel can be pre-compiled to either an IR, like
SPIR-V, or target specific binaries. Intel’s ahead-of-time compiler, for example,
supports offline binary compilation for Intel GPUs, FPGAs, and CPUs.
In contrast, the SYCL code is single-source, which means the kernel source is

part of the host program’s compilation flow. For accelerator targets like GPUs or
FPGAs, the compilers detect and extract the kernel code and compile it to either IR
or pre-compiled binaries for use on the targets. On CPUs, there are two options for
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(a) CFG of a
kernel with a
barrier (red
line) inside
a kernel
loop. LH/LL
mark the
inner loop’s
header/latch,
which is
enclosed in
the wi-loop.
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(b) The POCL compiler inserts
three implicit barriers, as
seen on the left: before the
loop header, after the loop
header in the body, and af-
ter the loop latch. Splitting
the regions at these barri-
ers and creating a wi-loop
around each region leads to
the CFG on the right. The
kernel loop’s back-edge is
taken outside the wi-loop
and links back to the first
wi-loop.
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Next: 1
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(c) For CBS, the kernel has two sub-
CFGs. One from the wi-loop body
to the barrier or exit and one from
the barrier to the barrier or exit.
Around each sub-CFG, a wi-loop is
generated. The next sub-CFG to
execute is determined by the edge
taken to the wi-loop latch. The
outer while header switches to the
target sub-CFG.

Figure 3.1: The same kernel with a loop containing a barrier, split once using POCL
and once using CBS.
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(a) Single barrier in simple kernel. The
original body is split at the barrier and
the parts are wrapped in a rotated wi-
loop each, which are chained after each
other.
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(b) Barrier in conditional. The two paths
that hit different barriers (in C or none),
are replicated. The first parallel region
is peeled to select the path, the wi-loops
are peeled to select the tail to execute.

Figure 3.2: Two example kernels inside the wi-loop with a barrier each, showing the
CFG after applying the transformations of the POCL device compiler.

a SYCL stack design: (1) Using an external runtime, like OpenCL, that implements
the required execution paradigms and can work with an IR or native kernel binary.
For this a compiler again has to extract the kernel to a format supported by the
runtime. (2) Integrating the runtime directly into the SYCL framework, e.g. by
using OpenMP or TBB to execute the inline kernels.
Due to SYCL’s kernel submission approach, the latter variant can be mostly

implemented in a library-only SYCL implementation without any compiler support
and a compiler could perform combined host and kernel code optimization. In this
case the kernel code is fully compiled to machine-specific code in a single pass.
This is different from POCL’s implementation, where a first simplifying pass for the
IR generation is done, followed by another optimizing pass for the machine code
generation at enqueue time. The optimizing pass also performs the -O3 pipeline of
LLVM twice: once before the work-item loop creation and once after.
POCL benefits from the already optimized IR, as the kernel function is already

simplified and optimized before the CFG transformations are done. Another down-
side of the offline compilation in variant 2 is that the number of work-items is
generally not known at kernel compile-time, except if compile-time constants are
explicitly used at the kernel submission site, which could be propagated by a spe-
cialized compiler, or special attributes (commonly reqd_work_group_size) are used
to indicate a fixed local size. Knowing the work-item bounds may improve perfor-
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SAA = identifyKernelAndBarrierFunctions(module)
for(f : module.functions)

if(SAA.isKernel(f))
wiloop = findWiLoop(f)
inlineBarriers(wiloop, SAA)
uniAnalysis = phisToAlloca(wiloop)
isolateRegions(wiloop)

for(l : wiloop.inner_loops())
addImplicitBarriers(l)

replicateBarrierTails(wiloop)
uniAnalysis += phisToAlloca(wiloop)
canonicalizeBarriers(wiloop)
isolateRegions(wiloop)

for(r : dfsParallelRegions(wiloop))
fixMultiRegionValues(r, uniAnalysis)
if(containsConditionalBarriers(r)

peelFirstWorkItem(r)
copyWorkItemLoopAround(r, wiloop)

removeOldWiLoop(wiloop)
removeBarrierCalls(f)
if(isO3)

flattenKernel(f)
O3(f)

Listing 3.1: Simplified summary of kernel transformations in hipSYCL using the
POCL pipeline. hipSYCL adapted variant of 2.4 from p. 21.

mance and code size, as unnecessary bound checks and scalar epilogue loops, in case
of successful vectorization, can be eliminated.
The hipSYCL project strives to provide a library-only implementation or other-

wise rely on existing stacks. Consequently, it was decided to use the 2nd approach
for this thesis. OpenMP is used to parallelize the loop nest over the work-groups.
The work-item loop nest is located inside a dedicated kernel launcher function which
is called directly from within the parallel work-group loop nest. For each dimension
of the nd_range, a nested loop in both the work-group and work-item loop nests is
present. Inside the innermost work-item loop, the kernel functor is called with the
locally constructed nd_item as its parameter.
All transformations added to the hipSYCL kernel compiler pipeline are thus done

directly on the work-item loop. To simplify these transformations, the work-item
loop nest is annotated with #pragma omp simd collapse(N), to merge the loop
nest into a single loop.1

1In general using #pragma omp ... collapse(N) is considered a possible optimization, as the
loop iteration count that OpenMP could parallelize on is bigger and branches are eliminated.
Note, that for the simd variant, notable slowdowns have been observed, compared to just
marking the innermost loop with #pragma omp simd. See 3.2.3 where the CBS pipeline gains
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[[clang::annotate("hipsycl_nd_kernel")]] is used to mark the dedicated
kernel launcher function. Therefore, by reading the llvm.global.annotations
table of the LLVM IR module, all kernel function can be reliably identified in the
compiler plugin. To ensure that the function is not inlined too early, it is also marked
with __attribute__((noinline)). This attribute is removed after the strictly
necessary transformations are completed. To easily identify the barrier functions,
the same annotation mechanism is used, but with the "hipsycl_splitter" string
value instead. Another benefit of using the annotations for the kernel launcher and
splitter is that the compiler passes are not dependent on the runtime using OpenMP
or the function names. Hence, a TBB backend or the new sycl::group_barrier
functions could be added without modifications to the compiler.
The new kernel transformation passes in hipSYCL are run at the earliest possible

extension point in the pass pipeline so that the full pass pipeline can optimize the
transformed CFG afterwards. Compared to the POCL compiler, where the kernel
function is optimized, transformed and optimized again, this implies that the IR
input to the transformation passes is not as optimized (and simplified), yet. The
first pass done by hipSYCL is the identification and marking of the wi-loops as such,
so that they can be identified by the transformations later. To enable the required
transformations for the loop fission, the kernel functor and recursively all functions
inside the kernel, which transitively lead to a work-group barrier, are inlined into
the wi-loop.
The difference between working on a dedicated kernel function and working inside

the wi-loop required some, mostly technical, adjustments to the POCL LLVM passes.
While being integrated into the hipSYCL LLVM plugin they were enabled to restrict
their transformations to the work-item loop. Also, the variable uniformity analysis in
the current version of hipSYCL is not as effective as in POCL, because the nd_item
encapsulates both: uniform values and varying values, with respect to the wi-loop,
like the work-group size or id and the work-item id respectively.
OpenCL on the other hand these values are encapsulated inside global functions

like get_group_id. Uses of these functions are replaced in POCL by loads from
variables with well-known names, which are then marked as uniform. As potentially
more values can be marked uniform in POCL due to this difference, the OpenCL
compiler might have fewer stack arrays. The stack arrays are a known source of
missed optimizations, therefore less of them might benefit the OpenCL version’s
performance overall. The OpenCL approach could be partially re-used in hipSYCL
as well, but given the possible alternative of using simplifying passes, as shown in
section 3.2.2 for the CBS pipeline, the added complexity to the nd_item outweighs
the short-term benefits.
Apart from that, the main changes are that the wi-loop structure is copied, instead

of being created by the compiler. The POCL compiler also supports fully unrolling
the wi-loop, which it does if requested via an option or if the work-group size is below

the ability to manually create the wi-loop in the compiler so that the innermost loop can be
vectorized.
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a certain threshold. This is not possible with hipSYCL, as the number of work-items
is usually not compile-time known. Also, while creating the wi-loops, the OpenCL
compiler performs partial unrolling to achieve higher instruction-level parallelism if
an unroll factor greater than 1 can be found without leaving a remainder for the
work-group size. This optimization is again dependent on knowing the work-group
size at compile-time.

3.2 Integration of CBS into hipSYCL

In hipSYCL only the core transformations required for correctness as proposed in
Karrenberg and Hack [2012] were implemented at first. The kernel launcher function
is shared with the POCL pipeline. Therefore, the main differences between the
paper and hipSYCL were, again, working with an already present work-item loop,
although rotated to a do-while loop, as there has to be at least a single work-item for
execution, missing on optimization opportunities due to the more complex nd_item,
and using the stack allocation mechanism for work-item private values as in POCL.

3.2.1 Base implementation

On the following pages, the specifics of the CBS implementation in hipSYCL are
outlined. Figure 3.3 depicts the CFGs of two simple kernels and how the described
transformations affect them. Listing 3.2 shows the CBS pipeline’s steps in pseudo
code.

Canonicalization

The CBS implementation in hipSYCL re-uses most transformations from the POCL
pipeline. Thus, similarly, the CBS pipeline starts by identifying the kernel and bar-
rier functions. An analysis pass called SplitterAnnotationAnalysis (SAA) collects
the "hipsycl_nd_kernel" and "hipsycl_splitter" entries from the llvm.global.
annotations table for this. Note, in hipSYCL terms the kernel function is the ker-
nel launcher, containing the wi-loops and construction of the nd_item and not the
user-provided kernel function.
The next step is marking the already present work-item loop. For this, custom

metadata is appended to the so-called loop id, which is the llvm.loop metadata at-
tached to the terminator of the loop’s latch. The work-item loop is simply identified
by being the outermost (and only) loop inside the kernel function.
With the wi-loop being identified, a recursive search for all work-group barriers

inside the kernel is performed. The search makes use of the SYCL kernel function
restriction that all functions called inside a kernel have to be visible in the com-
pilation unit. All call instructions inside the wi-loop are followed to their function
definitions, which then again are searched for call instructions. The called functions
are checked with the SAA to identify barrier functions.
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(a) Single barrier in simple kernel. Two
sub-CFGs are formed. The first con-
tains the contents of the loop body until
the barrier and unconditionally stores
that the 2nd sub-CFG should be exe-
cuted. This sub-CFG is executed for
each work-item before continuing, thus
ensuring the semantics of the barrier.
The 2nd sub-CFG then executes all in-
structions after the barrier before stor-
ing a -1 as next sub-CFG, indicating
that the kernel is done after executing
this sub-CFG.
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(b) Barrier in conditional. Two sub-CFGs are
formed: the first one executes A, B, and
depending on the conditional B, C1 or D.
If D was executed, the kernel is finished
and thus the next case for the switch is -1,
i.e. the exit. If C1 is selected, execution
continues until the original barrier. Then
it is stored, that the 2nd sub-CFG has to
be executed next. The 2nd sub-CFG un-
conditionally executes C2 and D, as this
is the only control flow left after hitting
the barrier.

Figure 3.3: Two example kernels inside the wi-loop with a barrier each, showing the
CFG after applying the transformations for the CBS.
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SAA = identifyKernelAndBarrierFunctions(module)
for(f : module.functions)

if(SAA.isKernel(f))
wiloop = findWiLoop(f)
inlineBarriers(wiloop, SAA)
if(!isO0)

flattenKernel(wiloop)
phisToAlloca(wiloop)
canonicalizeBarriers(wiloop)

subCFGs = identifySubCFGs(wiloop)
instAllocaMap = storeMultiSubCFGValuesToAllocas(subCFGs)

for(subCFG : subCFGs)
newWiLoop = copyWiLoop(wiloop)
blocks = cloneBlocks(subCFG, newWiLoop)
newInstAllocaMap = remap(blocks, instAllocaMap)
loadMultiSubCFGValues(newWiLoop, instAllocaMap)

createWhileSwitchAround(subCFGs)

widenAllocas(f)
fixSingleSubCFGValues(subCFGs, newInstAllocaMap)

removeOldWiLoop(wiloop)
O3(f)

Listing 3.2: Simplified summary of kernel transformations in hipSYCL using the
CBS pipeline.

If a barrier function is identified, the call tree is stored while unwinding from the
recursive search. Given the functions to be inlined, the pass performs a fixed-point
iteration, inlining all relevant call instructions in the kernel function. This is done
until no further calls to functions that should be inlined are left.
When a call to a barrier function is encountered, it is replaced by an undefined

dummy function with the known name __hipsycl_barrier(). This simplifies later
passes, as they can check for the function name only and do not have to check the
function in the SAA. Another benefit is that uses of the nd_item parameter are
eliminated, the effect of which will be discussed later.
As a next step, depending on the optimization level, the kernel is fully flattened,

i.e. all functions are recursively inlined. Afterwards a pass is run, promoting allocas
to SSA values.
Again taken from the POCL pipeline, all PHI nodes, except the wi-loop induction

variable, are demoted to allocas. This greatly simplified the development of the
following passes, as control flow changes can be performed without having to insert
and update PHI nodes. After a loop simplify pass, the barrier canonicalization from
POCL is performed. As a reminder, the main goal of this is to ensure that a call to
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the __hipsycl_barrier() is the only instruction inside a basic block, apart from
the terminator. This in return greatly simplifies later control flow changes, as the
transformations can work on a basic block granularity.
A major difference between the POCL and CBS barrier canonicalization is that

CBS requires the BB terminators to be simple branches or ret instructions, as the
barrier blocks are discarded later. This would lead to invalid transformations if
the branch was conditional. POCL uses barrier blocks with conditional branches
to enable kernel loops. Apart from this in-block canonicalization, a barrier block
is inserted to be the first basic block of the wi-loop body and right before the wi-
loop latch, i.e. the last blocks of the kernel are ensured to be barrier blocks as
well. These barriers are used as entry and exit barriers later, removing the need for
custom handling of the entry and exit blocks.

Sub-CFG and dependency identification

With the barriers canonicalized, the sub-CFGs are formed. The first step is identi-
fying all kernel exit barriers, which are equivalent to the predecessors of the wi-loop
latch. Each of these barriers is inserted as a key to a map, with the exit barrier id -1
as the value. The single entry barrier is also stored with the special id 0. Afterwards
all unknown barriers in the kernel are identified by iterating over all blocks in the
wi-loop. Each new barrier is inserted in the map with a unique id.
For each of the non-exit barriers a sub-CFG is created. This is done by using each

barrier as CFG entry once. From this, a simple DFS is performed, adding all visited
non-barrier BBs to the sub-CFG. For every sub-CFG exit, i.e. the last BB before
a barrier, the id of the following barrier is stored to a map. The barrier blocks are
not included in the sub-CFG.
As the sub-CFGs are identified, it is now possible to determine which SSA values

are defined in one sub-CFG and used in another. Still working on the original
BBs, all users of every instruction in a sub-CFG are analyzed. If the instruction
and the user do not reside in the same BB and the user is (also) contained in
any other sub-CFG, the value has to be marked. If the instruction is a load or a
getelementptr (GEP), it is checked, whether the pointer is already from a widened
alloca instruction. In this case the alloca is re-used. Otherwise, a new alloca
with an array length of 1024 is added to the function entry. The length is the
arbitrarily defined maximum of work-items in a work-group for the hipSYCL CPU
backend. It is chosen to match the number of allowed threads in a block in the
CUDA programming model. As with the POCL implementation, the alignment is
set to 64 bytes.
Immediately after the instruction that should be stored a GEP is inserted, which

uses the wi-loop induction variable to index into the just created alloca. The GEP
is followed by a store, writing the value of the instruction to the pointer returned
by the GEP. The instruction to alloca relation is stored in a map for later use.
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Sub-CFG replication

Only now the sub-CFGs are replicated. This is done by first cloning the wi-loop
header and latch, which take care of the control flow and appropriate iteration count.
Afterwards all blocks that were found by the DFS to belong to the sub-CFG are
cloned. If a successor of an original BB is an exit barrier, a new block is created
that writes the id of the exit barrier to a pre-created alloca. This alloca is called
LastBarrierId and contains the last encountered barrier id, as the execution has
to continue from that barrier later. After storing the barrier id, the new block
branches to the wi-loop latch. The new block replaces the barrier as a successor in
the replicated block. The original to new block and value mappings are stored in
a value to value map. With the help of this, a new instruction to alloca map is
filled, where the original instructions are looked up in the value to value map, and
its clone is used as the new key to the same alloca.
Subsequently, an empty load block is created at the entry of the loop body. This

load BB is then used to restore the values from the loop state allocas. To do so,
the original instruction to alloca map is iterated over. For every instruction that
is not part of the sub-CFG that is operated on, it is checked whether any of the
users are part of the sub-CFG. If this is the case, a GEP to the respective alloca,
indexed with the new wi-loop induction variable, is created in the load BB, followed
by a load from this GEP-returned pointer. The value of the load is then stored
to the value to value map, with the key being the instruction value that had to be
restored.
With the value to value map filled, the values in the wi-loop header, latch, and all

the replicated sub-CFG blocks are remapped according to the value to value map.
This means, that wherever an instruction that had to be loaded from a loop state
alloca is used, the use is replaced by the load and so on. This also connects the
BBs among each other in the sub-CFG, as the original BBs that are still used as
targets inside the cloned branches are replaced by the new, cloned BBs.
Thereafter, the wi-loop is rotated to a do-while style loop as it is known that there

will always be at least a single work-item, if executing the kernel at all. For this, the
wi-loop induction variable is moved to be the first instruction of the earlier created
load BB, which from now on serves as the wi-loop header. The cloned wi-loop
header is now dominated by the latch. Therefore, the uses of the induction variable
have to be replaced by the updated value that was used as an incoming value to
the induction PHI node. The moved PHI node inside the load BB has to update its
incoming block from the latch to the former header. For the LLVM LoopInfo the
former header is now the latch. Thus the loop id, containing the loop annotations,
like vectorization hints and so on, has to be copied to the header’s terminator.
The last step of the replication is to store the load BB as the entry block (wi-loop

header), the former wi-loop header as exit block, and the new induction variable for
the while-switch generation.
After all sub-CFGs are replicated, the control structure is generated to re-instantiate

the original control flow. The structure can be described as a while loop contain-
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ing a switch expression. The switch selects the sub-CFG depending on the barrier
id stored in LastBarrierId. For this a header block is created that contains a
load from LastBarrierId, the value of which is then used in a following switch
instruction.
The default target is a block which only contains an unreachable instruction,

as this should never be selected. For every sub-CFG, a new case is added. The
to-be-matched value is the id of the entry barrier of that sub-CFG. The target of
the branch is the load BB of the sub-CFG, that was stored as the entry earlier. The
wi-loop induction PHI node incoming block has to be rewritten from the original
pre-header to the while header. The exiting target of the conditional branch in the
exit of the sub-CFG, i.e. the wi-loop latch, aka the former wi-loop header, has to
be changed to the while header.
Aside from the entry barrier id cases, a special case has to be added to the switch:

the exit id. The target thereof is the original wi-loop’s exit block. Finally, to get
the while loop started, the initial entry barrier id is stored to the LastBarrierId in
the original wi-loop pre-header. The branch is changed to point to the while header,
instead of the original wi-loop’s header.
As the original wi-loop is now no longer needed and also not reachable anymore,

it is cleaned up by a call to llvm::removeUnreachableBlocks.

Widening allocas and fixing sub-CFG internal dependencies

The last two steps to fix up the kernels are again related to correctly keeping track
of work-item private values.
The first of the two fixes already existing allocas. For this it is assumed all

alloca instructions are in the function entry block. All alloca instructions are
widened if they neither have metadata attached identifying them as loop state
allocas from earlier steps, nor have a user that is not inside any sub-CFG, nor
have all transitive pointer users inside a single sub-CFG. Widening means a new
alloca with the predefined 1024 elements and 64 byte alignment is created. For
every sub-CFG, a getelementptr instruction is inserted that indexes the alloca
with the induction variable. The sub-CFG local GEP then replaces all uses of the
original alloca in its sub-CFG. The alloca must not have any uses left and can be
erased.
The second value fix-up step is required for e.g. induction variables of kernel

loops that contain barriers. As visualized in figure 3.4a, the second sub-CFG starts
with the kernel loop’s body and latch. Both of these potentially use the kernel
loop’s induction variable. As the header and thus the definition of the induction
variable is only in the first sub-CFG or in the second sub-CFG after the body and
the latch, the uses of the induction variable are not dominated there. The fact that
the induction variable is defined in one sub-CFG (1) and used in another (2), leads
to it being stored to a loop state alloca already. It is not restored yet, however, as
the second sub-CFG contains both: a definition and uses of the induction variable.
This is fixed by the next steps.
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%i.in = load %ip 
%i = add %i.in, 1 

store %i, %ip

Split

0 
%ip_gep = gep %ip, %indvar 

%ip2_gep = gep %ip2, %indvar 

Next: -1

%i.in = load %ip_gep 
%i = add %i.in, 1 

store %i, %ip2_gep 

1 
%ip_gep = gep %ip, %indvar 

%ip2_gepp = gep %ip, %indvar 

store %i, %ip_gep

%i.in = load %ip_gep 
%i = add %i.in, 1 

store %i, %ip2_gep 

Next: -1

Next: 0

-1

Next: 1 

Next: 1

store 0, %ip

store 0, %ip_gep

(a) On the left a kernel with a loop. The induction variable is
stored and loaded using %ip, a pointer to an alloca. The loop
induction variable %i already incremented in the header but
used in the body and stored to %ip in the latch. After forming
the sub-CFGs and creating the while-switch structure around
them, the value %i does no longer dominate all its uses in the
2nd sub-CFG. No load from %ip2_gep is emitted yet, as both
the user and definition are contained in one sub-CFG.

1 
%ip_gep = gep %ip, %indvar 

%ip2_gep = gep %ip2, %indvar 

%i_ld = load %ip2_gep 
%inc = add %i_ld, 1 
store %inc, %ip_gep

%i.in = load %ip_gep 
%i = add %i.in, 1 

store %i, %ip2_gep 

Next: -1
Next: 1

(b) The 2nd sub-CFG,
but with the re-
quired load from
%ip2_gep emitted.
The existing alloca
is re-used, ensuring
that the correct
value is already
stored, when first
entering the 2nd
sub-CFG.

Figure 3.4: Handling of non-dominating values with definition and use in the same
sub-CFG.

All instructions in a sub-CFG are checked whether the operands dominate the
instruction. If one operand does not dominate the use, it has to be loaded from the
loop state alloca. For this, a lookup into the earlier filled map that maps the new
instructions to their loop state alloca is performed. If the operand is a load, the
pointer is traced through the GEP to a loop state alloca, if possible. With the
alloca already present, just a GEP and load instruction have to be emitted.
Note the position: the load should be added immediately before the user of the

operand that on the one hand dominates the currently analyzed instruction and on
the other hand is not dominated by any other user of the operand. This is relevant
e.g. for loops that only conditionally enter a barrier. This leads to the loop being
intact but rotated in the second sub-CFG. Thus the induction variable no longer
dominates the latch, which is not only reachable from the load block but also from
within the sub-CFG. Thus the load has to happen in the latch so that it uses the
updated value of the induction variable.
The last strictly necessary step of this pipeline is removing the possibly leftover
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barrier functions. As this pass is shared again with the POCL pipeline, it first
searches any calls to the __hipsycl_barrier function and purges them. This should
not trigger for the CBS pipeline as all barriers should have been eliminated by the
sub-CFG formation already. Thereafter, it is checked whether the dummy barrier
function still has any users. If not, the function is removed, as otherwise the linker
would error due to the function missing a definition.
For optimization purposes another kernel flattening pass is invoked, and all mem-

ory accesses inside the wi-loops are marked parallel with respect to the corresponding
wi-loop. The wi-loop id is extended with the llvm.loop.vectorize.enable meta-
data as well, to hint the LLVM loop vectorizer to vectorize the wi-loops. This also
leads to LLVM emitting a warning, if it could not vectorize a loop, transparently
informing the user of hipSYCL about the possible performance issue.

3.2.2 Variation: Invoking SROA before sub-CFG formation

As the wi-loops are parallel in nature, the best performance on CPUs is expected
to be achieved by successful vectorization of the wi-loop. One issue that prevented
successful vectorization of the wi-loops is that by inlining the kernel function, a
call to llvm.memcpy is generated copying the nd_item from one stack allocation to
another to satisfy the by-value semantics of a trivially copyable C++ type. The
call to llvm.memcpy is currently not vectorizable by LLVM and thus led to the
first wi-loop never being vectorized. The first wi-loop usually contains the index
calculations and initial reads from global memory to e.g. shared memory which
intuitively seem well vectorizable. In the default LLVM pipeline this would likely
not occur for this certain type, as the nd_item alloca would be replaced with
allocas of its components by scalar replacement of aggregates (SROA). A memory
to register promotion pass could easily replace those allocas with SSA values as
well.
The hipSYCL plugin has to hook into the LLVM pipeline at some point. Prefer-

ably this should be an extension point where CFG and loop transformations can be
done with ease, LLVM optimizations later can optimize the added structures, and
the assumptions on the input are manageable for all optimization levels. Therefore
currently the EP_EarlyAsPossible or PipelineStartEP extension points are used
for the legacy and new pass manager respectively. At this stage the SROA pass
has not yet been run. Therefore the nd_item is still a single structure positioned in
one or more allocas. In the sub-CFG formation, the nd_item allocas are widened
as they are work-item private. With this change in place and the nd_item being
used across multiple wi-loops, the standard -O3 pipeline is no longer able to replace
the nd_item with SSA values. Thus the llvm.memcpy stays inside the first wi-loop,
preventing its vectorization.
To solve this, a minimal set of passes necessary to be run to eliminate the nd_item

alloca were identified. These are run in the new pass manager pipeline after iden-
tifying the original wi-loop, inlining all function calls and replacing the calls to
nd_item::barrier and group_barrier with __hipsycl_barrier inside the ker-
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nel. The latter is required to eliminate all uses of the nd_item as such. The
required passes are IPSCCP (interprocedural sparse conditional constant propaga-
tion and merging), InstCombine (combining of redundant instructions) and SROA.
Afterwards a CFG simplify pass is run for clean-up of leftovers, but the three afore-
mentioned passes lead to the nd_item stack allocations and llvm.memcpy call being
eliminated for most kernels. Note, this is not done for the legacy pass manager, as the
IPSCCP pass is a module pass, which cannot be added to the EP_EarlyAsPossible
extension point used.
All in all, enabling the use of SROA before the CFG transformations significantly

increased the chances for the first wi-loop to be vectorized by the LLVM loop vec-
torizer.

3.2.3 Variation: Scalar kernel function

During evaluation of another hipSYCL feature (scoped parallelism v22), it was dis-
covered that #pragma omp simd collapse(N) does not perform as well as just
adding this hint without collapse(N) to the innermost loop. After some investiga-
tion it became apparent that the same loop nest, with the position of the OpenMP
directive altered, would either not be vectorized at all or with a smaller vector width
and / or interleave count if the outer loop was annotated with the collapse(N) ver-
sion.3

To enable testing whether this had an effect for the nd-range kernels as well, the
CBS pipeline in hipSYCL was altered to allow a kernel function without any wi-loop
as input.
The kernel launcher work-group function was changed to create the local id and

nd_item, and directly call the user kernel function with the latter as an argument,
without any wi-loop around it. As the work-item induction variables are missing,
the local id is constructed by using the three declaration-only globals with the well-
known names __hipsycl_local_id_x,y,z, depending on the dimensionality.
In the LLVM plugin, the two modes are supported simultaneously: in the pass

that usually marks the wi-loop as such, the user kernel is not yet inlined. Thus it
is known that if there is any loop in the kernel function, it must be the wi-loop,
which can then be marked as such. All later passes just have to check whether any
loop is marked as wi-loop. If a marked loop is found, it is re-used and only the
wi-loop body is considered the kernel. Otherwise the whole function is considered
the kernel. This implies, for example, that the kernel exits are now the function
exits and not the predecessors of the wi-loop latch, which has to be considered in
the barrier canonicalization.

2https://github.com/illuhad/hipSYCL/pull/619
3Note the compiler remarks in the examples https://godbolt.org/z/3T5Mna3e4 and
https://godbolt.org/z/coY97PGfd.
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Creation of work-item loops for barrier free kernels

Nonetheless, the main changes are found in the sub-CFG formation. First of all,
with an existing wi-loop, it is possible to check whether the wi-loop body contains
any barrier at all and if not, the kernel is skipped. With the wi-loop missing, the
sub-CFG formation pass has to create a loop structure around the kernel in all cases.
If there is no barrier in the kernel, a new and empty function entry and a common
function exit BB are inserted. All allocas in the function are moved to the new
function entry. Thereafter, the dimensionality of the kernel is detected by parsing
the mangled name. The parsing currently only supports Itanium ABI.
With the dimensionality known, the local range values are searched. For this,

knowledge about the kernel launcher function is required. The local_size argu-
ment of type sycl::id<N> is identified. An inter-procedural argument optimization
might be performed, where the contained integers are passed on separately without
the class hull. In this case, the arguments are called local_size.coerce with either
0, 1, or 1 as suffix. For the one dimensional ids the suffix is not present. In the
optimized case, the argument values are directly used as the work-group size for
their corresponding dimension. Otherwise the local_size argument is casted to
an array of N integers of the largest size allowed for the target architecture, which
should match the internally used size_t type. GEPs and loads are added to the
function entry as required, to access the components of the array.
Having identified the necessary bounds for the wi-loop, it is created around the

kernel body. Depending on the dimensionality, only the necessary loop nesting depth
is created. To achieve this, the innermost loop is initially created by adding a new
header, containing just a PHI node as the loop induction variable and a branch to
the kernel body. Additionally a latch is added that increments the induction variable
and conditionally branches to the header or to the earlier created function exit BB.
This is repeated for each dimension, branching from the new headers to the last
created header instead. Note that the innermost loop represents the last dimension
N−1 of the SYCL range and id. After all headers and latches are created, the inner
latches of depth D are updated to branch to the latch of the D − 1 wi-loop instead
of to the function exit block. The innermost loop is marked as wi-loop so that later
passes, like the parallel marking and vectorization hint adding, work on this loop
only, leading to the innermost loop being vectorized, similar to adding #pragma omp
simd to the innermost loop.
All uses of the __hipsycl_local_id_* globals are replaced by the corresponding

dimensions’ loop induction variables. In the pass that usually cleans up the dummy
barrier function, the globals are also removed if present, and all users are gone.

Adaptation to kernels with barriers

The case with barriers inside the kernel works rather similarly. The barrier canon-
icalization already took care of isolating the entry and exits. Thus, the function
entry can immediately be used as the entry barrier, compared to first having to
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identify the wi-loop body entry. In contrast to the wi-loop being present already, no
contiguous induction variable exists at first. To enable the transformations detailed
earlier that rely on the induction variable, a dummy load instruction is added to
the function entry that serves as a placeholder and is removed again at the end of
the pass.
Nonetheless, the main change to the wi-loop case is the sub-CFG replication.

Here, the BBs of the sub-CFG are cloned immediately, without the wi-loop header
and latch. The load BB is inserted before the other blocks and then the same loop
creation routine from the non-barrier case is used to create the wi-loop nest. After
creating the loops, a contiguous index calculation from the induction variables and
the local size is inserted to the innermost header. This contiguous index replaces the
dummy induction variable and is from now on used to create the loads and stores
from the loop state allocas.
The while-switch structure is created in almost the same way, as in the case of the

already present wi-loop, the sole difference being the source of the BBs to be used
as pre-header and exit. In the non-wi-loop case these BBs are the function entry
and one of the exit barrier blocks. In the wi-loop case, the wi-loop pre-header and
exit block are used.

3.2.4 Variation: Uniformity Analysis

Another identified issue with the code generated by the CBS pipeline is that con-
tiguous values that might be used to index memory accesses are stored to loop state
allocas. As loop vectorizers mainly take the to be vectorized loop into account
when analyzing uniformity and contiguity, the loop state allocas hide this informa-
tion as the vectorizer only sees a load of a potentially random value. To improve
this, the uniformity analysis presented in Rosemann et al. [2021] and implemented
by Moll in the open-source implementation of the Region Vectorizer4 was pulled into
hipSYCL.
The region that is taken into account is either the wi-loop or the whole kernel

function, depending on the modus operandi, before sub-CFG replication. The anal-
ysis calculates the shape of a value with regard to a parallel region. A defined shape
can be either uniform, strided (contiguous, if the stride equals the type size), or
varying. For each value, it is analyzed whether it will have the same value for all
work-items (i.e. uniform), or has a fixed increment between them, or may vary.
The uniformity analysis has to be seeded with basic initial information. For

example, the kernel launcher function arguments can always be considered uniform.
Additionally when a wi-loop is already present, all instructions that are not part
of the wi-loop can be considered uniform with regard to the wi-loop. In case no
wi-loop is present, the wi-loop induction variable or the dummy local id loads are
pinned to a contiguous shape, as they are known to always increment by one. alloca
instructions are initially considered uniform, until a non-uniform value is written to

4https://github.com/cdl-saarland/rv
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a location inside an alloca’s frame.
With this information seeded, the uniformity analysis performs a fixed-point it-

eration to adjust the shapes of all non-pinned values. This, for example, leads to
an add instruction being marked contiguous, if it has a uniform and a contiguous
operand, like the work-group’s offset to the global id and the wi-loop induction
variable respectively.
For now, this information is used in hipSYCL, to restore the information required

by the vectorizer to determine whether a memory access is contiguous or not. In
theory, all uniform values that are put into loop state allocas could be stored in
single element allocas as the value is equal for all work-items. This is currently
only partially implemented requiring the changes from 3.2.5. Instead, for all con-
tiguous values that are to be stored in a loop state alloca, the operands are traced
recursively, until all discovered values are uniform or a loop induction variable. The
visited contiguous instructions are collected and the uniform values are stored to a
single element alloca.
While replication of the sub-CFGs, a new basic block is created as a pre-header to

the outermost wi-loop. This is the uniform value load block. The uniform base values
stored earlier are loaded here so that the load only happens once and the loaded
value stays the same for all work-items throughout the sub-CFG. Thus work-items
updating the alloca do not affect the value for the next iterations.
Inside the load BB, which is in the wi-loop body, the earlier collected contiguous

instructions are restored. The clones are remapped to use the load values from the
uniform load BB as well as the already replicated wi-loop induction variable. With
this in place, a vectorizer should be able to determine more often that a certain
memory access is contiguous and thus efficiently vectorizable.

3.2.5 Variation: Keeping PHI nodes

While evaluating the uniformity analysis from the last section, another problem be-
came apparent: demoting the PHI nodes inside the kernel leads to a large number
of allocas which pessimize the uniformity analysis. One case where this happened,
was the linear id calculations. For this, hipSYCL uses a for loop over the dimen-
sions to multiply the accumulator with the local size of a dimension and add the
dimensions’ id component to the accumulator.
This would lead to an initial value of 0 being stored to the ex-phi alloca, marking

it as uniform. In the loop body, a contiguous value would always be added before
continuing past the loop. Thus the value after the loop would always be contiguous,
but a pointer that has both a uniform and a contiguous shaped value stored to it, has
to be marked varying. This causes contiguous values to not be correctly identified.
A first mitigation was to loop-rotate the id and range calculations in the C++ code.
As there is always at least one dimension, the first dimension’s id is the initial value
and the other values are then added in the for loop that starts at index one. With
that change, this particular issue was solved.
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For multi-dimensional kernels and other occasions, it would be useful to not de-
mote the PHI nodes in the first place. To achieve this, the pass that performed the
demotion is not added to the pipeline anymore. In the sub-CFG formation, there
are mainly two places that required changes.
Firstly, the PHI nodes have to be considered whenever CFG transformations are

done. For example in the case that a barrier divides the CFG, so that no back-
edge for a loop is present in one sub-CFG, the PHI node still expects the incoming
edge, which is invalid. Therefore, after replicating the sub-CFG and remapping the
instructions, so that the control flow is intact again, all PHI nodes’ incoming blocks
are cross-checked with the actual predecessors of the block. As the predecessors will
always be a subset of earlier existing incoming blocks, the old incoming block entries
that no longer correspond with a predecessor can be purged.
The second place, where PHI nodes need special attention, is the fixing of single

sub-CFG values. As the missing dominance of operands of an instruction is the
main criterion for action here, this has to be refined. PHI nodes explicitly do not
require incoming values to dominate the PHI node itself, but the terminator of the
incoming block has to be dominated. This has to be checked to prevent storing all
PHIs in allocas again.
With PHI nodes being retained in the single sub-CFG handling, it is possible to

move the load from the alloca to the load BB, instead of requiring it to be executed
immediately before the using instruction, which would be unnecessarily often. This
is possible because the PHI nodes were never demoted and for example, the initial
value (the incoming value from the kernel loop pre-header) is the only operand that
needs replacing and can be replaced by the load in the load BB. The value that
comes from the latch still is handled as usual through the PHI node.
For further improvements on this end, a PHI node is manually inserted for the

direct successor of the load BB, if it has another predecessor. This can be the case,
for example, when the kernel contains a for loop with a barrier inside a conditional.
Here, the increment of the induction variable in the latch was originally dominated
by the loop header and therefore by the induction variable as well, and no PHI node
was necessary. If the barrier was a direct predecessor of the latch, the latch might
now be a direct successor of the load BB but other branches from the next loop
iteration that might not hit the barrier also point to the latch. Therefore a selection
has to be made whether the induction value of the last iteration, i.e. a load in the
load BB, or a sub-CFG internal iteration, i.e. from the former loop header that no
longer dominates the latch, is to be incremented. For this, a PHI node is added in
the latch, which has multiple predecessors.
This last change is the missing piece to allow storing uniform values to a sin-

gle element alloca instead of a loop state array. The value from that alloca is
then loaded inside the wi-loop pre-header, alongside the uniform values required for
restoring the contiguous values as discussed in section 3.2.4.
With all these variations combined, the number of loop state alloca arrays is

reduced from 24 to a single one, for the blocked SYCL DGEMM implementation
from Deakin et al. [2021]. The vectorizer is able to correctly identify all memory
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accesses as contiguous. Not demoting PHI nodes is currently only fully supported,
when the wi-loops are created by the compiler.

3.3 Direct comparison

The POCL device compiler and Karrenberg both present solutions to the work-group
barrier problem, which were originally used for OpenCL C kernels. Both methods
have been adapted into hipSYCL’s LLVM plugin. As some analyses could not be
directly adopted, the comparison will concentrate on their general solution to the
barrier synchronization problem in data-parallel languages.
Both techniques follow a similar approach: they use a single thread to execute

all work-items inside a work-group, eliminating the need for cross-thread synchro-
nization. The work-item synchronization is implemented by splitting the wi-loop at
the barriers instead. As the wi-loops are executed serially, this is an implicit form
of synchronization between the work-items. POCL relies on barrier tail replication
and work-item peeling to achieve correct execution of the control flow, whereas CBS
splits the CFG into sub-CFGs, fully agnostic of conditionals or loops.
While CBS only requires that all work-items of a work-group reach the exact

same barriers in the same order the same number of times, POCL adds another
requirement: loops with barriers in them must execute the exact same number of
iterations. Although the example given in listing 3.3 neither calculates something
useful nor is it likely to be encountered in practice, it still is allowed by the OpenCL
3.0 and SYCL specifications.

[=](sycl::nd_item<1> item) noexcept {
const auto lid = item.get_local_id(0);

scratch[lid] = acc[item.get_global_id()];
item.barrier();

for(size_t i = 0; i < 2 + lid; i++) {
scratch[lid] += i;
// only call the barrier if all work-items still run the loop.
if(i < 2) item.barrier();

}
acc[item.get_global_id()] = scratch[lid];

}

Listing 3.3: Example of a kernel that is correctly executed when using the CBS
pipeline, but not with POCL.

Apart from this admittedly pathological case, the base pipelines both validate all
SYCL code that has been tested so far. This includes benchmark suites like SYCL-
Bench [Lal et al., 2020] and parallel research kernels [Hammond and Mattson, 2019],
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as well as the hipSYCL adapted SYCL-BLAS5 and oneDPL6 libraries.
By performing the barrier tail replication and fully selecting the conditional

paths to a barrier via peeling the first work-item, POCL’s pipeline eliminates most
branches in the hot work-item loops, exposing simpler control flow and more instruction-
level parallelism. This benefits both, vectorization and targeting non-CPU targets
like FPGAs, while yielding 14-45% higher instruction count before vectorization.
The CBS pipeline, on the other hand, is likely to produce harder to predict control

flow as all conditional branches in the wi-loops are retained and the while-switch
structure around the wi-loops adds additional complexity.
The uniformity analysis used in the CBS pipeline stems from an improved ver-

sion of the uniformity analysis originally presented in Karrenberg and Hack [2012]
and is comparatively precise in combination with keeping PHI nodes and executing
SROA before the transformations. The theory behind the improved version has its
correctness and runtime optimality proven in Rosemann et al. [2021] for reducible
control flow. This uniformity analysis could be adopted for the POCL pipeline as
well, but this is out of scope for this thesis.
The POCL pipeline could probably benefit from some of the variations imple-

mented for the CBS pipeline, like performing more optimizations before the CFG
transformations, keeping the PHI nodes, and supporting POCL’s original wi-loop
creation mechanism. Not demoting the PHI nodes would probably be a higher ef-
fort, as the pipeline performs more CFG transformations that would have to take the
PHI nodes into account. Another issue with the POCL implementation is that the
fixing of un-dominated values relies on the SSA value names being preserved, which
usually is not the case when compiling without debug information for compilation
performance reasons. Therefore, -fno-discard-value-names has to be added to
all Clang invocations.
Due to the conditionals and loops needing explicit attention, the complexity and

maintenance cost for the POCL implementation is probably higher than for CBS,
where the core algorithm is very straightforward. For the CBS pipeline, the biggest
code overhead is created by the uniformity analysis. The analysis is already inte-
grated into upstream LLVM from version 12 on.7 The main reason for pulling in the
analysis from the Region Vectorizer is that currently LLVM 11 is still a supported
target compiler for hipSYCL. Thus, as soon as LLVM 11 is removed as a supported
compiler for hipSYCL, LLVM 12’s divergence analysis might be usable with custom
seeding to remove the additional maintenance overhead.
A performance evaluation will follow in chapter 6.

5https://github.com/codeplaysoftware/sycl-blas
6https://github.com/hipSYCL/oneDPL
7https://reviews.llvm.org/D84413
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4 Finding the right vectorization strategy

To achieve peak throughput on CPUs, their vector units have to be used. These
work in a single instruction, multiple data (SIMD) fashion. This requires either
manually writing vector code with compiler intrinsics or relying on automatic vec-
torization by the compiler. Manually vectorized code tends to be hard to maintain,
hence auto-vectorization is often relied on. At first, a vector type-based approach
to auto-vectorization is briefly presented, and afterwards options for the wi-loop
auto-vectorization are discussed.

4.1 Vector type based vectorization

One level of data-parallelism that is exposed by the SYCL standard is the sycl::vec<DT,
N> type, where DT is an arithmetic type and N one of 1, 2, 3, 4, 8, 16. These vectors
are required to be sizeof(DT)*N aligned. With this alignment requirement satis-
fied, the Clang frontend e.g. decomposes the struct sycl::vec<float, 4> into two
vectors of <2 x float>. This seeds the IR with vector instruction, which will most
likely end up in the generated code.
To further improve this and allow the same kind of optimization for other data

types than floats, it might be worth exploring explicit vector type annotations as
provided by Clang.1 This would closely match the behavior of OpenCL’s float4
and similar types. Additionally, types annotated as vectors support common arith-
metic instructions, which will be mapped natively to the vector ISA, if possible.
vec<float, 4> operator*(vec<float, 4>, vec<float, 4>), for example, could
be directly mapped to a multiplication of the underlying vector types of float4
which, on x86 with AVX enabled, is directly implemented by the vmulps instruc-
tion.
Kaeli et al. [2015] explains that this vector type-based vectorization was, for ex-

ample, implemented in the AMD APP SDK OpenCL CPU driver, where a similar
approach as with the fiber-based hipSYCL back-end was chosen for work-item par-
allelization. To make use of CPUs’ vector resources, one had to use OpenCL’s vector
types, like float4.
Using the proposed vector type annotation would probably be beneficial to speed

up the fiber implementation in hipSYCL, if the sycl::vec type is used. For all other
kernels, this would not change anything. Also, if the compiler support with loop
fission is enabled, this might interfere with loop vectorization. One prime example
is that the Region Vectorizer crashes if any vector types are already present in the to

1See the documentation: https://clang.llvm.org/docs/LanguageExtensions.html#vectors-and-
extended-vectors.
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be vectorized region. Possible benefits of this technique are therefore left for future
evaluation.

4.2 Loop vectorization

The other, and even more prominent, data-parallelism exposed through SYCL is the
use of parallel-for, for kernel submission. Due to the data-parallel nature (SPMD)
of this paradigm, it is usually well mappable to the vector units. For this, a small
number of work-items is grouped and each work-item is interpreted as a vector
lane, so the instructions of the kernels only have to be widened and operate on the
respective work-items’ data.
To achieve this, there are two main approaches: relying on the LLVM loop vec-

torizer to successfully optimize the wi-loop, or secondly manually performing whole-
function-vectorization on the user kernel [Karrenberg and Hack, 2011] or outer-loop
vectorization [Nuzman and Zaks, 2008] on the wi-loop. These two main alterna-
tives will be considered in sections 4.2.3 and 4.2.2. The outer-loop vectorization
implementation used is the Region Vectorizer [Moll and Hack, 2018]. Before div-
ing into the actual vectorization techniques, SYCL’s sub-group hierarchical level is
considered, as it might be a good candidate to expose manual vectorization level
optimizations.

4.2.1 Considerations regarding SYCL sub-groups

The SYCL programming model assumes a multi-level hierarchy of execution re-
sources. When submitting an nd-range parallel-for kernel, these are from the outer
to the innermost scope: the full work-item space is divided into work-groups, which
then again can be divided into sub-groups.
On GPUs, this closely matches e.g. the CUDAmodel, where the full grid is divided

into thread blocks (max. 1024 threads), i.e. work-groups, which are implicitly
divided into warps (32 threads), mapped to sub-groups. Certain SYCL functions,
like group barriers or reductions, scans and more, are defined for both the work-
group and sub-group level. On the sub-group level, the barrier on a GPU does not
have to perform any operation, as the warp is usually executed in lockstep.2 The
scan and reductions can be implemented using efficient warp shuffle operations.
On a CPU, the mapping of work-groups and work-items is not as clearly defined.

In general, a work-item could be mapped either to a thread or a fiber, ensuring
forward-progress, but especially for bigger work-group sizes this would add schedul-
ing overhead. The barrier synchronization is not as efficient as on GPUs and the
SPMD data-parallelism of work-items cannot be mapped as easily to the vector
units, leading to non-optimal performance.
As opposed to the above, this thesis proposes to map full work-groups onto a

single CPU thread and execute its work-items in a loop in the work-group’s thread.
2On newer NVIDIA GPUs, __syncwarp should be called.
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By vectorizing that wi-loop, the work-item data-parallelism is directly mapped onto
the CPUs vector units, providing better utilization of the CPUs’ resources.
In hipSYCL on CPU the sub-groups are traditionally limited to contain a single

work-item, as there is no immediate equivalent to GPU warps. According to a
discussion on the specification’s requirements for sub-groups,3 they are intentionally
vaguely specified to allow implementations to pursue different ways to optimize the
sub-group level.
Therefore, to give this level in the hierarchy a more useful meaning, it could be

used for tiling memory accesses, possibly leading to better cache usage or, when
employing a whole function vectorization approach, using the vector width as sub-
group size. In the tiling case, sub-group barriers would have to be implemented
the same way as work-group barriers are, by performing deep loop fission using one
of the approaches from chapter 3. In the latter case, similar semantics would be
available on the CPU as are on the GPU with the warps running in lockstep. Group
functions like broadcast or reduction could possibly be implemented using vector
intrinsics; sub-group barriers would be no-ops.
To achieve the latter a fixed sub-group size for a kernel could be selected, very

similar to how warps on Nvidia GPUs work. The inactive elements are masked
if the work-group item count is not a multiple of the sub-group size. Note that
masking is not supported by all CPU vector instruction sets and proper support for
vector predication in LLVM, as required by e.g. ARM’s SVE extensions, is still in
progress.4

Another option is to use multi-versioning of the kernel. For this, a kernel is
compiled for multiple sub-group sizes and the size to use for all sub-groups is selected
at run-time. The selection uses the size that is the largest divisor of the work-group
item count, thus eliminating the need for masking, but possibly resulting in smaller
than necessary sub-group sizes, most likely 1 for odd work-group sizes.
According to the specification, an implementation has to guarantee only that

the sub-group has to consist of the same work-items throughout the execution of a
kernel, but does not require all sub-groups in a kernel execution to have the same
size. This allows using the common pattern with auto-vectorization: execute all
work-items 0, .., N −N%sgSize− 1 grouped into sub-groups of size sgSize and the
remaining ones with a sub-group size of 1, also called epilogue. This approach will
be explored in section 4.2.3 in conjunction with the Region Vectorizer.

4.2.2 LLVM-Autovectorizer

The LLVM project already contains multiple auto-vectorizers that are fit for different
code patterns. The two main vectorizers are the loop and the super-word-level-
parallelism (SLP) vectorizers.
The loop vectorizer searches for loops where the iterations either do not depend

3https://github.com/KhronosGroup/SYCL-Docs/issues/193#issuecomment-943588298
4https://reviews.llvm.org/D57504
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on each other or only in a detectable reduction pattern, like sum, max, min, etc. If
such a loop is found, in the ideal case the instructions inside the loop body are just
widened by the vectorization factor (VF ) and the iteration increment is multiplied
by VF. Therefore, after loop vectorization, multiple iterations are executed at once
using vector instructions, leading to increased efficiency due to the parallel nature
of vector instructions and coming with additional benefits like less CPU front-end
congestion, as fewer instructions have to be decoded, fewer branches are taken and
so on.
The SLP vectorizer, on the other hand, is not limited to working on loops, but

instead looks for any parallelism in memory accesses and arithmetic operations,
combining these to vector instructions if possible. Partially unrolled loops, "struc-
ture accesses, such as RGBA in image processing [..], non-SIMD kind of parallelism,
like subadd pattern, which is popular in complex computations [..], and numerical
computations, like FFT, that require data reorganization" are common cases where
the SLP vectorizer has optimization potential, according to [Rosen et al., 2007, p.
131].
Both vectorizers are part of the main optimization pipeline, almost at the end

of the target-independent optimizations. Even though they are not part of back-
ends, i.e. target-specific code generation, they account for information about the
target. The available vector register widths and cost model, which is used to decide
if vectorization and which vector width is profitable, are highly target-specific, for
example.
SYCL nd-range kernels are inherently parallel and the work-items of those are

executed using wi-loops, as of the implementation in this thesis. Thus, the loop
vectorizer, exploiting the parallelism of loop iterations, is in theory the ideal vector-
ization strategy.
The first step in identifying a vectorizable loop is the legality analysis. Prominent

parts of which are the uniformity and loop dependence analysis. The latter is to
identify if one iteration writes to a memory location and the next iteration reads
from the very same location. In this case, the vectorizer is likely not able to optimize
the loop. Such accesses in wi-loops would only occur, if the kernel function reads
and writes to the same location with the same index for multiple work-items, hence
without using barriers, the result is undefined per the specification.
Therefore, to help the loop vectorizer understand that there are no legal in-wi-loop

dependencies between work-items, the llvm.access.group metadata is added to all
memory accesses inside the wi-loop. This access group metadata is then referenced
by a llvm.loop.parallel_accesses metadata that is part of the wi-loop’s loop id.
This indicates to the vectorizer that all memory accesses part of the access group,
are independent with regards to the wi-loop, and may be executed in parallel, i.e.
being potentially vectorized.
After the vectorizer ensured it is legal to vectorize the loop, it tries to find an

optimal strategy to do so. For this, it employs the inner-loop vectorizer stage to
widen or replicate the instructions of the loop body or replace loop-carried depen-
dencies with reduction patterns. This is done for all supported vector widths and
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also some partial unrolling factors are explored. For each of these combinations, the
cost model, which employs target-specific heuristics to estimate the cost of using the
instructions, is calculated. The most promising variant is then selected and emitted.
While the vectorizer generally considers all loops, llvm.loop.vectorize.enable

can be added to force vectorization, even though the vectorizer’s cost model came
to the conclusion that vectorization of a loop is not profitable.
Common issues with the LLVM loop vectorizer are instructions that it cannot

vectorize, especially calls, but also complex control flow. Examples of problematic
control flow are loops with multiple exits and nested loops. The nested loop issue
is relatively likely to come up with SYCL kernels, while the wi-loops never have
multiple exits. As described in 3.2.2, a major issue with vectorization was the
presence of calls to the llvm.memcpy intrinsic.
While the control flow issues are slowly being solved, e.g. some multi-exit scenarios

are supported from LLVM 13 on5, the general vectorization infrastructure of LLVM
is also revamped. Intel proposed introducing VPlan. The proposal targets to provide
the means to cheaply attempt multiple optimization and vectorization strategies and
select the most appropriate one. While introducing the new infrastructure, the loop
vectorizer is also targeted to be extended to support outer-loop vectorization.
Only with the last change in place, LLVM’s loop vectorizer is expected to be able

to fully support the wi-loop vectorization. Enabling VPlan + outer-loop vectorizer
with the -mllvm -enable-vplan-native-path option, led to clang crashing in the
vectorizer for the tested trunk version (5352ea4a721e). The Region Vectorizer is
considered as a drop-in alternative until the new outer-loop vectorizer is ready.

4.2.3 Region Vectorizer

As the LLVM loop vectorizer still has a number of constraints regarding supported
control flow and the new VPlan infrastructure and outer-loop vectorizer are still
highly experimental, the Region Vectorizer (RV) is used, to check whether forced
wi-loop vectorization benefits the performance.
RV builds on top of Whole Function Vectorization [Karrenberg and Hack, 2011].

There SPMD kernels are implemented using the presented continuation-based syn-
chronization, but the loop body is contained in its own function, which then is fully
vectorized with a fixed vector width. This is equivalent to vectorizing the innermost
wi-loop. Moll and Hack [2018] generalizes the function vectorization capability to
vectorize regions, where a region is either a loop or a function. For loops, this ex-
plicitly includes outer-loops, which exactly fits the use-case for both, the POCL and
CBS pipelines in hipSYCL. The original version of RV only supported the outermost
loops of a function, which was adapted for this thesis.
RV can be built as an LLVM plugin that can be used along with the hipSYCL

plugin, thus allowing to en- or disable the transformations at will. While recent

5A status report regarding the multi-exit cases can be found at https://github.com/preames/
public-notes/blob/master/multiple-exit-vectorization.rst#open-topics.
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development mostly happened on a fork targeting the NEC Aurora Vector Engine, it
requires not yet upstreamed changes to LLVM. Henceforth the LLVM 12 compatible
version from the Compiler Design Lab Saarland was used as the base. Some changes
from the NEC fork were pulled in, as well as some necessary fixes were added. The
used version can be found in the author’s fork.6

Outer-loop vectorization

The basic outline of how the Region Vectorizer works for outer-loop vectorization is
as follows: it starts with detecting the outermost loops that are marked with both
llvm.loop.vectorize.enable and llvm.loop.parallel_accesses with appro-
priate groups, as done by the hipSYCL loop fission pipelines. These two annotations
can also be added from C++ code by using #pragma omp simd and allow neglecting
most legality checks. The used version also checks for hipSYCL.loop.workitem to
only add the additional compile-time overhead for the nd-range kernels.
With the to be vectorized loop selected, RV checks whether a forced vector width

is set, either by the environment variable RV_FORCE_WIDTH or the loop id metadata
llvm.loop.vectorize.width. If so, this width is used for vectorization, otherwise,
the default width for the selected target is used as maximum and all instructions in
the region are checked for their maximum supported vector width to refine it. This
may be due to using larger bit sizes or calls that cannot be vectorized.
All calls are run through multiple resolvers, trying to find a way to vectorize it

for a certain width, starting from the current maximum, decreasing by a factor of
2 until 1 is reached: either the llvm::TargetLibraryInfo might know a vector-
ized equivalent of that function, there’s a SLEEF [Shibata and Petrogalli, 2020]
implementation, the function has already been fully vectorized or it is possible to
recursively vectorize all functions from that call.
If a call is not vectorizable at all, the vector width is set to 1 and vectorization is

aborted. This is e.g. the case for LLVM intrinsics without vectorized equivalents,
like the llvm.memcpy intrinsic, but also for arithmetic intrinsics like llvm.uadd.sat,
if the CPU does not natively support the required data type. Note, that this is not
the case if a forced width is selected. In that case, the unvectorizable calls are
replicated VF times, which the LLVM vectorizer calls scalarization.
After the vectorization factor is selected, a custom reduction analysis tries to

identify the reduction patterns for each PHI node of the loop header. Supported
reductions are addition, multiplication, logical and/or, min and max.
Following is the creation of the remainder loop control flow. This is relatively

similar, to what the LLVM vectorizer does. Starting with adding a conditional
branch, that depends on whether the iteration count is at least equal to the vector
width, and selects either the newly cloned vector loop or the original scalar loop. At
the exit of the vector loop, another check is added whether the iteration count was
divisible by VF. If iterations are left, the scalar loop is executed as the epilogue.

6CDL: https://github.com/cdl-saarland/rv/tree/release/12.x, NEC: https://github.com/sx-
aurora-dev/rv, author’s used version: https://github.com/fodinabor/rv/tree/release/12.x.
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Afterwards, the uniformity analysis from Rosemann et al. [2021] is run on the
loop to mark values as uniform, strided or varying. The procedure of the analysis
is already described in 3.2.4. However, the seeding is slightly different, as only the
single parallel marked loop is considered and additional information as in the wi-loop
case is missing, are all values outside this loop considered uniform. Only allocas
may be changed on write. The seeding for values inside the loop is only added to
the PHI nodes of the loop header. The pinned shapes for those nodes are informed
by the results of the reduction analysis.
With the knowledge about which values are uniform, the control flow is partially

linearized according to the algorithm in Moll and Hack [2018]. After some small-
scale optimizations to replace llvm.memcpy calls by vector loads and stores, as well
as optimization of struct allocas, the main vectorization step happens. For this,
all basic blocks are traversed in order of the dominator tree. For every instruction
inside the BB, depending on its kind, a new equivalent one, with widened operands
and result type, is inserted into new BBs. Instructions that cannot be vectorized are
replicated. PHI nodes, for example, are handled specially as they allow loop carried
dependencies and thus have to be reduced.
Using a during the vectorization filled scalar to vector map, the branches are up-

dated to connect the new vector BBs up. Finally, the old region is made unreachable
and all instructions are erased. If the value of a scalar instruction is used outside
of the loop, it originally was just replaced by an undef value and erased, under the
assumption that outside uses of values should be fixed by the reduction handling
already.
This is not the case, though. For example, the LastBarrierId alloca used by

the CBS pipeline is promoted to SSA values, leading to a PHI node inside the loop
latch only and not the header. This PHI node then is used in CBS’s while loop’s
latch. Therefore, it is not a reduction and must be handled differently. To keep the
original semantics that the value which is stored by the last iteration to the alloca
is the value used outside the loop, a fix-up step was added to enable using RV with
hipSYCL. If a use outside the region is detected while deletion of the scalar loop, it
is replaced by either the still scalar value inside the vector loop if it was uniform or
the last element of the corresponding vector value.

Intrinsics

RV implements a number of special intrinsics. This includes boolean reductions like
rv_any, rv_all, the broadcast rv_extract as well as providing information about
the SIMD width and lane, i.e. rv_num_lanes and rv_lane_id respectively.
RV implements these intrinsics for the vectorized loop by replacing them directly

with the corresponding values. For example rv_num_lanes can be replaced by a
constant integer value set to VF ; rv_extract is directly mapped to the LLVM
extract instruction. If no vectorization happens due to either failing legality or cost
model checks, RV lowers the intrinsics to the corresponding scalar value nonetheless.
The rv_num_lanes intrinsic would be replaced by the constant integer value 1,
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rv_extract by the scalar value of the single active lane.
The rv_extract, rv_insert and rv_shuffle intrinsics default to using single

precision floating point values. This could be extended by adding explicitly typed
functions, as done with LLVM intrinsics that contain a type suffix, as in the 32bit
integer variant of the saturated add llvm.uadd.sat.i32.
These intrinsics can be used as building blocks for introducing a SYCL sub-group

hierarchical level on the vector level. The following will present the attempts made
at introducing an RV-based sub-group and corresponding algorithms.
The first thing to note is that to achieve any kind of reliable programmability and

to actually implement the standard, a vectorization width has to be enforced for RV,
either for each kernel or the whole program. Otherwise, RV might decide to vectorize
the wi-loops inside a kernel with differing vector widths, which directly correspond to
the sub-group widths. This would imply that the sub-group size could change before
and after a barrier and thus also which work-items cooperate in a sub-group. The
standard calls for a sub-group to be of the same size throughout the whole kernel.
Not providing this guarantee makes it near impossible to develop algorithms using
the sub-group level. The width can be fixed by either using the RV_FORCE_WIDTH
environment variable or by adding the llvm.loop.vectorize.width metadata to
the wi-loops’ loop id.

Sub-group implementation using RV intrinsics

The first step to adopting RV’s vectorization as sub-group level is to implement
the sub_group API with RV intrinsics, which is straightforward. Whenever the
sub-group id is required, rv_lane_id() is used and the range is implemented by
querying rv_num_lanes().
This is followed by the implementation of the sub-group algorithms, starting with

the simple ones like group_any_of(sub_group, bool pred) which checks if the
predicate argument is true for any work-item of the sub-group. This algorithm
can be implemented in terms of rv_any(pred). group_all_of is implementable
with rv_all(pred), as is group_none_of by negating the input. The sub-group
group_barrier is currently a no-op, although according to the specification, it
should invoke at least a release and acquire memory fence for the work-items in the
sub-group.
For the implementation of group_broadcast, where actual values and not only

booleans are used, more work is required. As mentioned, rv_extract has the seman-
tics of a lane broadcast but only supports single-precision floats as values. Therefore,
to implement a broadcast using the RV intrinsics, for, for example, a 64bit integer
or even sycl::vec types as allowed by the templated nature of the SYCL function,
the value to broadcast is divided into multiple parts on a byte level. The 32bit
parts are reinterpreted to single-precision floats, which then are broadcasted using
the rv_extract intrinsic.
It should be noted that this is likely less efficient on the CPU for non-32bit-sized

values than just writing the value to either a well-known shared location or ex-
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changing stack pointers using a specialized function for that case. Nonetheless this
approach has been chosen, as these intrinsics mimic quite well what GPU program-
ming models like CUDA and HIP offer, where this word-level splitting for broadcasts
and shuffles has to be done as well. Therefore the similarity in the implementation
could be beneficial for maintenance.
The core approach of shuffling only single precision floats around is also used to

implement the shift_group_left, shift_group_right, permute_group_by_xor
and select_from_group functions. The main difference between them is the index-
ing. While the broadcast only required extracting from a uniform lane of a vector
value, the shift and permute functions have to move all values. To achieve this one
rv_extract is used for each lane to request the value from the offset lane in the
input vector value. This is followed by one rv_insert to move the value to the
target lane inside a new vector value.
As the VF is not constexpr known, this has to be done inside a loop, which

according to manual IR inspection is commonly optimized out by fully unrolling the
loop. Note, that while both rv_extract and rv_insert require the lane index only
to be a uniform value, the rv_extract should do the non-constant indexing and
rv_insert constant indexing for better code generation.
Another special case exists for select_from_group, where all lanes can request

the value from a random non-uniformly indexed lane. This does not work by just
using an rv_extract, as it requires a uniform lane index and returns only a scalar
value. Thus, to support this shuffling, the requested index is initially extracted
from an index vector and then is used in an extraction from the value vector. The
extracted value is inserted into the result vector, one lane at a time.

Sub-group reduction with RV intrinsics

On both a work- and sub-group level, SYCL standardized group reduction as well as
inclusive and exclusive scans. Of these, only the reduction was adapted. Originally,
as sub-groups in hipSYCL on CPU are just a single element wide, the one input
value is returned for the sub-group case. For the RV variant with bigger sub-groups,
the CUDA warp reduction was used as a base, as the warp intrinsics map well to
the RV intrinsics.
Both versions first identify the active lanes in an integer bitmask. CUDA’s

__activemask() is replicated by rv_ballot(rv_mask()). Apart from that, the
implementation is very similar: it consists of a for loop over i = V F/2 to inclu-
sively 1, each step halving i, where the current local value is shuffled down by i. If
laneId+ i is an active lane, the local value is combined using the binary operation
with the value from laneId + i. After the loop, the result is broadcast using the
typed wrapper around rv_extract.
In theory, this could be optimized by using vector reduction intrinsics directly.

LLVM 14 will add min, max, add, and, or and xor builtins. To use these directly
from C++, the vector type language extension mentioned in section 4.1 would have
to be used. Therefore a dispatch based on the VF has to be added. The listing
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4.1 shows an example implementation of how this could work. Note that the single-
precision float is used here, as the rv_extract intrinsic currently only supports that
type. This could be extended by adding more typed versions of the intrinsic. As
mentioned in section 4.1 as well, the version of RV currently used is not compatible
with input IR which contains vector instructions already. This would have to be
fixed as well.

float group_reduce4(sub_group g, float x, sycl::plus<float> binary_op) {
// create vector type of right size, so that the builtin can be mapped correctly
float4 vec{rv_extract(x, 0), rv_extract(x, 1), rv_extract(x, 2), rv_extract(x, 3)};
return __builtin_reduce_add(vec);

}
float group_reduce(sub_group g, float x, sycl::plus<float> binary_op) {

switch(rv_num_lanes()) { // select implementation based on vector width
case 1: return x;
case 2: return group_reduce2(g, x, binary_op);
case 4: return group_reduce4(g, x, binary_op);
case 8: return group_reduce8(g, x, binary_op);
default: return group_reduce(g, x, binary_op); // generic non-intrinsic version

}
}

Listing 4.1: Example implementation of group_reduce using RV and Clang vector
intrinsics for a VF of 4.

Alternatively, additional reduction intrinsics could be added to RV, which take a
scalar input and are mapped to correspondingly widened LLVM reduction intrinsics
during vectorization.

Work-group reduction using sub-group optimization

The sub-group reduction is then plugged into the work-group reduction. As pre-
sented in Wünsche [2021], the current work-group reduction has all work-items write
their value to a common scratch memory and then uses only the very first work-
item of the group to iterate over all those values and accumulate them. The result
is then broadcast to all work-items. This is much more cache efficient than using a
work-item cooperative approach, especially as both the fibers and the loop fission
approaches do not have multiple threads working independently in a work-group.
To improve this using the sub-group reduction two main ideas were considered.

The first idea was to again adapt the GPU variant of the work-group reduction. This
turned out to be infeasible, as this implementation is based on the knowledge that
the warp size (i.e. sub-group size) on supported CUDA and HIP GPUs is either 32
or 64, and the block size (i.e. work-group size) is at a maximum 1024. This means,
there have to be at most two sub-group reductions, per sub-group. The first one
reduces the sub-group’s value, leading to a maximum of 16 or 32 values left for the
work-group. On CUDA, if the work-group size was 1024, the remaining 32 values

53



are again reduced by a sub-group reduction. If the work-group size was different, or
an AMD GPU is used, a cooperative group reduction with group barriers follows.
As the sub-group size on CPUs is much lower, the first case with just two sub-group
reductions is far less likely to occur. Therefore the other case has to be the optimized
case.
It was then decided to implement a version that works with both forced and

variable vectorization widths. This means that no assumptions regarding the sub-
group size may be made across work-group barrier borders. Hence the current
implementation stores all values to scratch memory, after which a work-group barrier
is inserted. Thereafter, the first sub-group iterates over the scratch memory with a
stride of VF and each work-item is offset from the index by the lane id. Every lane
fills its own accumulator. This should lead to vectorized memory accesses and if the
binary operation is trivial, also to vectorized arithmetic. As soon as the remaining
items are less than VF, the sub-group reduction is executed on the VF accumulators
once. The very first work-item then adds the remaining values and stores the final
value back to scratch memory, where it is read from again by all work-items after
another work-group barrier.

4.2.4 Comparison

LLVM’s vectorizers are much more stable than RV. Using RV to compile the SYCL-
Bench N-Body example [Lal et al., 2020], which uses sycl::vec which is partially
mapped to vector values by the front-end, leads to a segmentation fault. In other
sample applications, e.g. the k-nearest-neighbours from HeCBench [Jin, 2021], the
use of the tested version of RV to vectorize the kernels, led to incorrect results.
For the default implementation of the group algorithms, such as group reduce,

it was found that using a single work-item to perform the reduction was the most
efficient approach. For RV this is a sub-optimal kernel design, as the hot loop is an
inner-loop that does not benefit from RV’s outer-loop vectorization, as only one lane
ever enters the inner-loop. Combining RV and the LLVM inner-loop vectorizer leads
to this case being vectorized very well: the general kernel is outer-loop vectorized
by RV, whereas the inner accumulation loop is afterwards vectorized by LLVM’s
inner-loop vectorizer, making up for the shortcomings of this kernel design.
In general, when forcing a vectorization width, RV is able to vectorize all kernels

that do not already contain vectorized instructions. However, this might lead to
multiple scalarized instructions, potentially followed by pessimized performance. If
RV deems vectorization of a marked loop possible, it performs the vectorization
and does not check a cost model to verify whether vectorization is beneficial. In
contrast, the LLVM loop vectorizer only transforms the kernels if the control flow
is comparatively simple and bails without options to scalarize if e.g. a call to the
llvm.memcpy intrinsic is encountered. Without the explicit forcing of vectorization
using metadata, LLVM would check whether vectorization is actually beneficial,
which for simplistic wi-loops or conditional memory accesses might not be the case.
A stable version of RV, i.e. an outer-loop vectorizer handling very diverse control
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flows, integrated into LLVM would be worthwhile, especially in combination with
VPlan, where the heuristically determined optimal vectorization strategy for each
wi-loop will be selected.
The intrinsics provided by RV seem to be a good fit for the sub-group hierarchy

level, as they offer low-level optimization opportunities with SPMD-like semantics.
Although some extensions for better code generation might be necessary. By provid-
ing wrappers for reduction intrinsics or by offering a straightforward way to interact
with the vector types and their newly exposed reduction intrinsics in Clang, sub-
group algorithms could be highly optimized.
LLVM does not provide a way to force outer-loop vectorization nor related lane

id queries, thus making a similar sub-group to vectorization mapping unfeasible. A
flaw with the current RV intrinsics’ implementation is that LLVM is not able to
fully optimize code that is dependent on the intrinsics, as these are replaced only at
vectorization time when most optimization passes have already run.
For the rather simplistic group_reduce example, the LLVM inner-loop vectorizer

is most likely the better fit than using RV with intrinsics. The reduction loop that
is executed by a single work-item is vectorized with an optimal vector width and
is followed by the fitting add reduction intrinsics. Where the RV implementation
had to manually take care of vector width vs work-group size checking, the LLVM
vectorizer inserts these checks itself. RV interprets the check as a diverging branch,
which is correct with regards to the wi-loop, but imprecise with regards to the
actual vector width. Therefore, RV has to generate masked loads, which are much
less efficient than contiguous loads.
The goal with using RV and its intrinsics is to allow manually writing of highly

optimized kernels. In the case of the reduction, this would imply it should be possible
to generate code equivalent to the work-group reduction vectorized by the LLVM
loop vectorizer. As this is currently not possible, the RV intrinsics approach will
require further optimization work.
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5 Exploiting the single source nature of
SYCL

SYCL is a single-source programming model. That is, the host application code
and the kernel code, which is to be executed on the device, are in combined com-
pilation units and can be built using a combined compilation driver. A specialized
compiler might therefore optimize the kernels based on the surrounding host code,
the invocation order and so on. Possible optimizations are propagation of constants,
e.g. for the iteration space and thus potentially enabling full unrolling or removal of
unnecessary bounds checks for loop rotation and vectorization. This optimization
would analyze the construction of the nd-range specifying the iteration space for the
kernel. If e.g. the work-group size is set to a constant value, this constant can be
reused as a bound in the wi-loop and also to replace the query of the work-group
size inside the user kernel, which should improve the quality of the generated code
even further.
A major issue to take into account is that kernels are function objects that are

instantiated at some point in the program and then usually stored in the runtime to
be executed asynchronously from another thread. Therefore the compiler will have
to match the kernel functor’s point of submission, which there might be multiple of.
For constant propagation, therefore either kernel versioning, i.e. effectively creating
a kernel for each call site or parameter set, has to be used or optimizations to the
kernel function are only done in case there is only one call site or parameter set.
As part of this thesis, only preliminary tests were conducted to evaluate the

possible effect of constant iteration space propagation. In this case, the compiler
did not have to identify the call sites and constants used there. Instead the proposed
static kernel properties implementation by Aksel Alpay1 was merged. The change
allows wrapping a kernel functor kernel at submission site inside e.g.
sycl::attribute<sycl::reqd_work_group_size<16,16>>(kernel).
The type system of C++ then propagates the compile-time attribute, conveying

the information that the kernel requires a work-group size of 16,16. Propagating this
template argument to the kernel launcher function also effectively multi-versions the
kernel function, which is inlined inside the kernel launcher function.
The compile-time information can be extracted at a C++ source level using tem-

plate meta programming, to e.g. insert a check, that if the attribute is set, the
run-time work-group size actually must equal the compile-time required size, other-
wise the kernel is not executed and an error is emitted.
As the template arguments to the kernel launcher function are also retained in

1https://github.com/illuhad/hipSYCL/pull/543
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its mangled name, the hipSYCL LLVM IR passes are able to extract the required
work-group size for a kernel. This way, the effects of knowing the constant iteration
space can be evaluated without actually conducting the much higher effort inter-
procedural constant propagation.
For the hipSYCL nd-range kernels, there are three points of interest with a

compile-time known work-group size. For the POCL and basic CBS pipelines, where
a wi-loop is present and its structure is cloned, two of these optimizations can already
be implemented effectively in the C++ kernel launcher function. These changes
therefore are also applicable to the hierarchical and scoped parallelism execution
models. If the work-group size is known at compile-time, the constexpr values are
extracted and directly used as the bounds for the wi-loop, instead of the run-time
work-group size parameter. This benefits the loop optimizations without further
ado. The second point where this value is used, instead of the run-time parameter,
is the construction of the local range, that is handed to the nd_item. After inlin-
ing all functions in the kernel and possibly running the SROA pass, the constant
work-group size is directly used, wherever the local range is used in the user kernel,
instead of loading a value from the nd_item.
The third point of optimization is specific to the loop fission approaches. Both

POCL and CBS pipelines use stack arrays to store work-item private values over
a barrier boundary. These stack arrays generally are comparatively large, 1024
elements, to allow execution of work-groups with that number of work-items. This
might pessimize the caching of the stack, as the stack is rather large. To reduce this
penalty for kernels, that are never executed with this large of a work-group size,
the reqd_work_group_size attribute can be used. For this, the kernel function’s
mangled name is parsed to identify the constant values. The values for the multiple
dimensions are multiplied, resulting in the total number of work-items and thus the
required size of the stack arrays. This is then used whenever a new stack array is
created in LLVM IR. The fallback still is 1024, if the attribute is not present.
In case the CBS pipeline is used in the mode that wi-loop has to be created, the

constant values parsed from the kernel name, are also used as the wi-loop bounds.
For this, it is first checked, whether the annotation can be found in the kernel name
and if that is the case, three constant IR values are created and used from thereon.
The identification of the local range function arguments is skipped in that case.
Using the attribute with work-group sizes that are a power of two, indeed elim-

inates the epilogue for all vectorized wi-loops. The performance impact of this is
evaluated in chapter 6. Only with the performance impact evaluated, an informed
decision about whether or not the effort for non-attribute based constant propaga-
tion would be justified.
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6 Evaluation

The following pages present the experimental performance evaluation of the earlier
outlined optimizations and variations. All benchmarks have been performed on
systems provided by GW4 Isambard. The used systems are:

AMD Epyc 7442 "rome" 2x 2.25GHz 64-core, 128-threads Rome CPU, AVX2,
256GB DDR4-3200Mhz

Intel Xeon Gold 6338 "ilake" 2x 2.00GHz 32-core, 64-threads Icelake CPU, AVX512,
256GB

Marvell ThunderX2 "xci" ARM v8.1, 2x 2.1GHz 32-core, 128-threads CPU, NEON,
256GB DDR4-2666MHz

Fujitsu A64FX "a64fx" ARMv8.2, 1x 1.8GHz 48-core CPU, 512bit SVE, 32GB
HBM2

For stable results, the physical core count is used as thread count OMP_NUM_THREADS
and OMP_PROC_BIND=true is set. The only exception is Marvell ThunderX2, where
using an SMT factor of 2, i.e. using 128 threads in total resulted in generally
higher throughput. All benchmarks are repeated at least 10 times and the graphs
show the maximum throughput achieved by any of those runs, if not otherwise
noted. On the x86 systems, -O3 -march=native was used as default flags for
Clang, whereas the AArch64 systems used -O3 -mcpu=native. On A64FX, ad-
ditionally auto-vectorization using the scalable vector extension SVE is enabled by
adding -mllvm -scalable-vectorization=on. Also, unless otherwise noted, a de-
velopment version of LLVM 141 was used to take advantage of the SVE support,
which still is in active development. Boost version 1.77 is used for the fiber support.
Although benchmark suites were used, like SYCL-Bench Lal et al. [2020] and

HeCBench Jin [2021], only a small subset of both is relevant. Only those using nd-
range parallel-for as execution paradigm have been considered, as this at the only
paradigm, that changes have been made for. Even further reducing the number of
benchmarks of interest, is the added requirement of using at least a single barrier in
the kernels. The reason for this, can be seen in figure 6.1, which shows the results
of a modified Copy kernel initially from BabelStream by Deakin et al. [2016]. The
figure clearly shows that the performance of the fiber implementation is acceptable,
as long as no barrier is present in the kernel. This is due to the at the beginning
mentioned performance optimization in the fiber implementation, which loops over
the work-items in a single thread until a barrier is encountered for the first time,

1https://github.com/llvm/llvm-project/commit/5352ea4a721ef252129994111b83dc350ecc71da
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Figure 6.1: The Copy benchmark from BabelStream modified to use a nd-range
kernel with a work-group size of 4. On the left, respectively, the plain
copy kernel, on the right, with an added barrier after the actual copy.

then the additional fibers have to be spawned and synchronized at the barriers,
which results in the initially mentioned performance issue.

6.1 Pipelines

First of all, the performance of the currently used fiber implementation and the
two loop fission pipelines, POCL and CBS, is evaluated using a number of existing
benchmarks. Additionally, the CBS pipeline is evaluated once with already present
wi-loop (cbs) and once with in the compiler created wi-loops (cbs_man). If an
alternative implementation using SYCL’s hierarchical parallelism exists, it is shown
as a high-performance reference.

6.1.1 SYCL-Bench

The results of SYCL-Bench’s reduction, scalar product, and N-Body benchmarks are
presented in figure 6.2. For the reduction, all systems, data types, and implemented
loop fission pipelines expose solid speedups of around 60-600x, i.e. at least one order
of magnitude. On the A64FX platform, the throughput using fibers was notably at
least an order of magnitude lower than on the other platforms. With this low base
and the hierarchical reference implementation reaching similar throughput as the
other platforms, a rather large speedup of up to 3000x is reached.
The order of magnitude gap between the loop fission approaches vs. hierarchical

implementation on that platform can be explained by looking at the generated LLVM
IR. The hierarchical version on the one hand has two large BBs that represent a
vectorized wi-loop each and has an additional epilogue for work-group sizes that are

59



a6
4f

x,
 fp

32

a6
4f

x,
 fp

64

a6
4f

x,
 in

t3
2

a6
4f

x,
 in

t6
4

ila
ke

, f
p3

2

ila
ke

, f
p6

4

ila
ke

, i
nt

32

ila
ke

, i
nt

64

ro
m

e,
 fp

32

ro
m

e,
 fp

64

ro
m

e,
 in

t3
2

ro
m

e,
 in

t6
4

xc
i, 

fp
32

xc
i, 

fp
64

xc
i, 

in
t3

2

xc
i, 

in
t6

4

system, dtype

0

500

1000

1500

2000

2500

3000
sp

ee
du

p/
fib

er
s

16
4

16
1

18
2

16
2

13
0

13
2

15
2

13
2

66
.6

58
.5

92
.4

59
.5

99 79
.5

33
7

90
.8

11
1

47
.5

94
8

12
4

47
6

32
6 54

8

32
8

72
.6

60
.9

90
.9

60
.1

80
.9

64
.3

48
3

74
.423

0

22
2

1.
61

e+
03

22
9

50
7

32
2 47

9

32
8

93
.8

60
.5

86
.4

61
.2

78
.3

73
.6

47
0

73
.3

2.
81

e+
03

1.
92

e+
03

2.
95

e+
03

1.
92

e+
03

53
4

34
0 56

8

34
1

84
.5

60
.2 11
0

60
.4 11
9

99
.6

53
4

10
1

pocl cbs cbs_man hierarchical

(a) Reduction kernel. 3072000 elements, work-group size 256.
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(b) Scalar product kernel. 3072000 elements, work-group size 256.
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(c) N-Body kernel. 30720 bodies, work-group
size 256.

Figure 6.2: SYCL-Bench performance results. All graphs show the speedup of max
throughput out of ten runs over the respective base fiber implementation.
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not a multiple of the VF. On the other hand, the nd-range versions, except int32,
do not use any vector instructions despite the presence of vector.body BBs and all
loads and stores being in predicated BBs. The int32 version is partially vectorized,
just exposing some more predication than the hierarchical version, which can also
be seen from the speedup only being 2x lower for cbs_man than for hierarchical.
Note that the lack of any vectorization for this kernel can only be observed on the
A64FX platform. The LLVM vectorizer also emits vector instructions for the other
AArch64 platform XCI. Therefore, it is likely that the immaturity of the scalable
vectorization support in LLVM is the main reason for this.
The difference between the loop-fission pipelines is comparatively small, for most

systems and combinations. Only the POCL pipeline falls short on the Icelake server
system significantly, by at most a factor of 4x.
For the scalar product benchmark, the speedup is generally lower. The minimum

is 7.5x and the maximum 425x. Similarly again, the A64FX fibers throughput is
around one magnitude lower than the other systems’, thus leading to more significant
speedups. Note that the high speedup for int32 on XCI also is mainly caused by
the fibers being an order of magnitude slower than for the other data types on
that system. The hierarchical implementation again is either the fastest or close
to the fastest variant, while the lack of performance with the POCL pipeline gains
significance. For this benchmark, using the CBS variant with manually created loops
seems beneficial, but not significantly so.
A different situation is found for the N-body simulation benchmark. Here the cbs

and cbs_man variants constantly show the highest speedup, with the hierarchical
implementation close by. This is only in the range of 1.3x to 2.75x faster than the
fibers version. The POCL pipeline even falls short of the fibers implementation on
both A64FX and Icelake but shows good performance on the ThunderX2.
The lower speedups are likely explainable by the use of sycl::vec, which, as

discussed in section 4.1, already introduces some vectorized operations like load and
store. This also applies to the fibers implementation, thus leading to vectorized
code in the fibers version. The lack of which is part of the reasons for the usually
bad fibers’ performance. Another difference to the reduction and scalar product
kernels from above is the position of the barriers. While the barrier in those other
kernels is in the hot reduction loop, the N-body kernel has the barriers outside the
innermost, compute-heavy loop. The possible partial vectorization of the innermost
loop and due to the sycl::vec type as well as the comparatively fewer context
switches in the kernel, therefore allow the fiber implementation to exhibit relatively
good performance. As mentioned earlier, the performance of this could potentially
be improved further for all variants by annotating the sycl::vec type with vector
type hints.
It is notable that this is the only benchmark, where the hierarchical variant is

consistently slower than the CBS variants. This is also the only benchmark using
sycl::private_memory, which basically provides the equivalent to stack arrays that
are required to keep work-item private state across wi-loops with the loop fission
approaches. The hierarchical version allocates that memory un-aligned on the heap
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Figure 6.3: Blocked DGEMM implementation. Speedup of max throughput out of
ten runs over base fiber version. cl_* is an equivalent OpenCL version
of the benchmark using POCL as driver.

instead of on the stack though, possibly pessimizing performance.

6.1.2 DGEMM

Another rather typical kernel in scientific computing using accelerators is DGEMM.
In this case, the blocked SYCL DGEMM implementation from Deakin et al. [2021]
is used as it also provides a hierarchical parallelism variant that is used as reference.
Additionally, the SYCL code was ported directly to OpenCL. The cl_* variants in
figure 6.3 show the execution of that version using POCL. The latter part of the
variants’ name is the value of the POCL_WORK_GROUP_METHOD environment variable
during execution. This variable directs POCL which wi-loop optimization mode to
use. The effects of the values can be looked up in the documentation.2 Addition-
ally POCL_MAX_PTHREAD_COUNT is set to match the OMP_NUM_THREADS environment
variable.
For this benchmark, it is rather notable that the hierarchical parallelism imple-

mentation performs significantly better than all other variants. This means the
nd-range variants, as well as POCL, all leave some additional performance to be
gained. While the general speedup factor for the nd-range variants is between al-
most 8x to 65x, the hierarchical version achieves up to 193x. Two major differences
in the generated code can explain that performance gap. The first difference is that
the initial load from global to scratch memory is converted to line-wise llvm.memcpy
intrinsics, effectively eliminating the innermost work-item loop. Additionally, the
innermost loop, calculating the actual multiplication, is vectorized with the hierar-
chical variant, while with cbs_man, the loop is fully unrolled.
Of the OpenCL implementation, the replication variant is consistently the fastest

one, which stands for fully unrolling the wi-loops. This enables other optimization
schemes, like the SLP-vectorizer. All hipSYCL pipelines fall short of the OpenCL

2http://portablecl.org/docs/html/env_variables.html
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Figure 6.4: Wallace random number generator implementation. Generation of
33554432 random numbers. Speedup of max throughput out of 100 runs
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versions on the Arm CPUs. On the x86 platforms, only the repl variant is faster
than the hipSYCL implementations, once. In addition to differences in the generated
code, it is likely that the use of the more advanced OpenMP schedulers in comparison
to manual usage of pthreads in POCL supports the performance uplift of SYCL over
the POCL implementation on x86 systems. This is backed by Baumann et al. [2021],
where it has been shown, that POCL’s performance can be improved by using Intel’s
Threading Building Blocks (TBB) for scheduling.
Of the hipSYCL variants, the cbs_man is consistently the fastest, indicating that

the initially scalar kernel function and requesting vectorization of the inner-loop
only, improve the generated code.

6.1.3 Wallace’s random number generator

The last benchmark is the implementation of Wallace’s random number generator
in HeCBench. The speedup over fibers ranges from 34x to 183x. The Arm platforms
again have a relatively low baseline, thus exhibit higher speedups for all pipelines.
The POCL pipeline is only able to match the CBS variants on AMD, but lacks some
performance otherwise. Generally, the benchmark shows similar tendencies as the
scalar product and reduction ones, thus confirming the general trend.

6.1.4 Summary

With these benchmarks, the trend is clear that the loop fission approaches are indeed
effective at greatly increasing the performance of the nd-range parallel-for paradigm
over the current fiber version. On the Arm systems, the fiber implementation gener-
ally performed even worse than on x86, allowing higher speedups using the compiler
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extension. While the nd-range variants are not yet able to match the hierarchi-
cal implementation in most cases, they are in the same order of magnitude. The
differences between the pipelines are expected, due to differences in applied opti-
mizations. Part of the poor performance of the POCL pipeline most likely stems
from not invoking SROA before the CFG transformation as discussed in 3.2.2 for
the CBS pipeline.
The cbs and cbs_man variants in most cases have comparatively similar per-

formance characteristics. As by earlier experimentation for Deakin et al. [2021]
expected, the 2D DGEMM kernel performs consistently better with the cbs_man
pipeline, which only forces vectorization of the innermost wi-loop, instead of col-
lapsing the wi-loops. For the one-dimensional kernels, cbs_man also matched or
outperformed the OpenMP SIMD loop version, thus making cbs_man the generally
recommended configuration.

6.2 Vectorizer choice

As discussed in 4, multiple vectorization options were considered. The main question
is, whether using a specialized vectorizer like the Region Vectorizer instead of the
default LLVM vectorizers is necessary to achieve good performance.
The following evaluation relies on LLVM 12.0.1 with an additional bugfix cherry-

picked3 to enable using RV4 as a second LLVM plugin in conjunction with hipSYCL.
The CBS pipeline with manually created loops is used for all tests in this section.
Despite not being the default pass manager in LLVM 12, the new pass manager is
used for all benchmarks, as the CBS pipeline performs notably better in that case.
This is due to the changes from section 3.2.2 only applying to the new pass manager.
A64FX is not included here, as its main vector units are SVE units, which is not

supported by the used RV version. The NEC fork specific to the SX-Aurora Vector
Engine contains scalable vectorization support but relies on not yet upstreamed
LLVM patches.
Whenever available, a hierarchical variant of the benchmark that is also compiled

using LLVM 12 is added to the results. For benchmarks that were already presented
in section 6.1, the cbs_man results are shown as cbs_man_14 for comparison pur-
poses.
The variants using RV are named rv, if the vectorization factor is dynamically

selected. Otherwise, the VF is appended to the name. To expose the individual
contribution of the vectorizers, the benchmarks were run with both, LLVM’s vec-
torizer enabled and disabled. The latter case is marked by appending -novec. The
command-line options used to do so, are -fno-slp-vectorize -fno-vectorize
-mllvm -force-vector-width=1. Note, these flags do not affect the behavior of
RV.

3https://reviews.llvm.org/D104916
4https://github.com/fodinabor/rv/releases/tag/ma-thesis
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(c) Group reduce benchmark developed for Wünsche [2021]. 307200 elements, work-group
size 256, 512 repetitions in the kernel. The rvintrin* variants use the group_reduce
implementation with RV intrinsics detailed in section 4.2.3.

Figure 6.5: SYCL-Bench performance results using LLVM 12 + RV. All graphs show
the speedup of max throughput out of ten runs over the respective base
LLVM 12 -O3 CBS implementation with manually created loops.
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6.2.1 SYCL-Bench

The SYCL-Bench results in figure 6.5 almost immediately make clear that just
dropping in RV is not going to boost the performance by much, if at all.
The reduction results show that using RV alone, i.e. with the LLVM vectorizers

disabled, leads to pessimized performance. Using RV in conjunction with the LLVM
vectorizer, the performance stayed mostly within 10% of the LLVM 12 cbs_man
reference. The notable exception is the ThunderX2 with a forced VF of 8. This is
likely due to sub-optimal code generation as the ThunderX2 only supports vector
widths up to 128bits.
Also interesting to note on the XCI platform is that the non-vectorized LLVM

12 CBS version is 8-13% faster than the vectorized version. Similar speedups are
observable for the non-vectorized version of the hierarchical variant. This indicates
that vectorization is not beneficial for this implementation of the pattern.
With the scalar product benchmark, the general trend is similar, that RV alone

is not capable of matching LLVM’s vectorizer performance. On the contrary, on the
XCI system, it even pessimizes performance up to 60% without LLVM’s vectorizer,
and with both activated, the performance drops by a minimum of 26%. While
disabling the LLVM vectorizer does not impact performance for the standard case
at all, letting RV detect the VF on its own and leaving the LLVM vectorizer enabled
improves the performance for the double-precision case on both AMD and Intel
systems by 12-25%. Also notable is that the LLVM 14 version of the double-precision
scalar product on AMD outperforms RV, with a 20% speedup over the LLVM 12
reference.

Group reduction

As detailed earlier, RV provides intrinsics which were used to construct a warp-
reduce like group reduction. The results of which are shown in figure 6.5c as rv-
intrin*. It is immediately visible that the RV intrinsics version is not at all able
to compete with the already implemented group_reduce. In 4.2 it has already
been discussed that the combination of RV’s intrinsics would require more work to
possibly provide viable optimization opportunities.
While there are multiple issues, e.g. the lane shuffle implementation having to

rely on 32bit values instead of using possibly present 64bit instructions, the most
pressing one for the intrinsics based group reduction is likely the misclassification of
branches, that solely rely on the wi-loop induction variable and the rv_lane_id and
rv_num_lanes intrinsics, as diverging branches. Even though the performance is on
a low level for the intrinsics variants, they nicely show that the LLVM vectorizer
does not interfere there at all and the effect of the forced VF is also well visible on
Icelake and Rome.
Apart from the intrinsics version being performance-wise sub-optimal, the group

reduction benchmark also shows how on Intel the floating-point case is not vectorized
at all, as there the non-vectorized match the vectorized variants. For Intel and AMD
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Figure 6.6: DGEMM and RNG Wallace performance results using LLVM 12 + RV.

otherwise, it’s well visible that as predicted, the LLVM vectorizer performs the
vectorization of the most important part of the group reduction: the accumulation
loop, which is only reached by a single work-item. Using RV in conjunction with the
LLVM vectorizer does not benefit performance, although the combination usually is
able to match just using the LLVM vectorizer.
On the ThunderX2, RV does far more harm than help, leading to a performance

regression of around 20-100x. In Moll and Hack [2018] a mobile Arm processor
was used for evaluation. Plain RV did pessimize the performance there as well,
therefore so-called BOSCC gadgets were used for runtime uniformity checks of con-
ditions, which greatly helped the presented benchmark on that CPU. Using BOSCC
with this benchmark did not impact performance at all. Given that it only checks
whether branches are runtime uniform and thus can be skipped by all lanes and
this benchmark not exposing control flow where this would be beneficial, this is
expected.

6.2.2 DGEMM

DGEMM shows again that using LLVM 12 vs. LLVM 14 has far more impact than
using RV with LLVM 12 or not. Despite this notable difference, RV also is able to
consistently outperform the LLVM 12 vectorizer by a few percent on Icelake and XCI,
while matching it on Rome. However, the not only vectorizer-related optimizations
observed earlier that are done for hierarchical parallelism, seem to be much more
effective at optimizing this pattern than a different vectorization strategy.
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6.2.3 Wallace’s random number generator

The HeCBench Wallace’s random number generator results in figure 6.6b expose a
diverse picture. On Icelake the LLVM 12 vectorization strategy is the best option,
even the LLVM 14 version only achieves 57% of its performance. On the other
extreme, is Rome, where the not LLVM-vectorized versions perform up to 2.23x
better than with LLVM’s vectorizer. Seemingly after LLVM 12 a performance issue
with the vectorizer was fixed, as LLVM 14 performs 3.33x better than the LLVM
12 version. The XCI results for this are relatively favorable, as RV+LLVM achieved
up to 5% better performance and only up to 7% performance drops for other VF s.
With VF of 4 and 8, RV is able to match or even slightly outperform LLVM with
its vectorizer disabled.

6.2.4 Summary

Despite the rather good match of RV for the SYCL kernel model, the experimental
evaluation does not show stable enough performance benefits to generally enable it,
at the moment. As a potential performance optimization left to the user, it might
be mentionable. While the RV intrinsics resemble the CUDA warp intrinsics, the
use of them currently does not benefit the tested reduction pattern due to missing
optimizations in the analysis and intrinsic overload availability.
With the measured LLVM generational improvements, it is going to be interesting

to see how the upcoming outer-loop vectorizer and the new VPlan infrastructure
impact the kernels’ performance. Given that for a number of kernels, the forced
vectorization actually pessimized the performance, it should be considered to not
add the llvm.loop.vectorize.enable metadata to all wi-loops. This allows the
vectorizer to only vectorize the wi-loops if deemed beneficial. A static property
could be added to allow adding this by the hipSYCL user.

6.3 Compile-time work-group size

The last point of evaluation is regarding whether propagating compile-time known
work-group sizes is worth the effort. For this the benchmarks from 6.1 were re-run
with the sycl::reqd_work_group_size attribute added to the kernel submission.

6.3.1 SYCL-Bench

In figure 6.7 the results are presented for the three standard SYCL-Bench bench-
marks. Notably, A64FX is the only platform showing significant performance im-
provements for the reduction if the work-group size is compile-time known. For the
N-Body simulation, the POCL pipeline on Icelake is the only variant that took ad-
vantage of knowing the wi-loop bounds at compile-time. The constant work-group
size even deteriorates the performance or at least not change it significantly for the
better, otherwise.
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6.3.2 DGEMM

Figure 6.8 depicts the DGEMM results. In that plot, a similar situation as with
the SYCL-Bench results is shown. While cbs with the annotation did not build
successfully on A64FX, due to using the unstable PHI retaining variant, on the Arm
systems, the cbs_man variant profits slightly from the known bound, but otherwise
the performance is either not improved or even pessimized.
In addition to the base loop fission approaches missing several optimizations that

are done for the hierarchical case on x86 as discussed above, using the constant
iteration count makes the LLVM optimizer stop vectorizing the third wi-loop, which
contains the backedge of the outer kernel loop and loads new values from global to
scratch memory. On the other hand, a possible optimization can be observed there
as well. The first wi-loop is fully unrolled and vectorized, but as it’s executed only
once, at the entry, it is not that performance-critical.

6.3.3 Wallace’s random number generator

The random number generator results shown in figure 6.9 are even less conclusive.
While the trend is that knowing the iteration count worsens the performance, the
x86 platforms do not agree on that at all. The AMD results show that a constant
work-group size might lead to a performance drop of up to 70%. On the other hand
does the Intel system benefit from the constant bounds with all pipelines.

6.3.4 Summary

As the results differ greatly from great benefits to massive performance losses, with
the same kernel performing unpredictably different across various targets, it seems
safer to only expose the option to use compile-time known bounds. This is contrary
to the initial guess that it would generally benefit performance to propagate constant
work-group sizes. The effort required to implement an automated compiler-based
version thus is currently not at all justifiable.
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Figure 6.7: SYCL-Bench performance comparison between run-time vs compile-time
known work-group size. All graphs show the ratio of max throughput
out of ten runs scaled with respect to the maximum of that system and
datatype combination.
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Figure 6.8: Blocked DGEMM performance comparison between run-time vs compile-
time known work-group size. The graph shows the ratio of max through-
put out of ten runs scaled with respect to the maximum of that system
and order combination.
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7 Conclusion

This thesis aimed to improve the performance portability of the parallel SYCL
execution models that were designed with GPUs in mind. To achieve this, two
loop fission approaches were evaluated by implementing them in hipSYCL. The
approaches were first presented in Jäskeläinen et al. [2010] and Karrenberg and Hack
[2012]. The implementation details were presented and necessary optimizations were
detailed. It was discussed that the approach POCL has chosen, allows for more hand-
crafted compiler-based optimizations, whereas CBS is more general. One benefit of
CBS is, it only requires that if a barrier is reached by any work-item, all work-items
must reach it. This is how the barrier semantics are defined by the SYCL and newer
OpenCL C standards. POCL additionally assumes that if a barrier is nested inside
a loop, the loop has to be executed the exact same amount of iterations for all
work-items, even if the barrier would not be reached. This can have a functional
correctness impact.
Both approaches outperform hipSYCL’s current fiber implementation in most

cases by one or two orders of magnitude. While the CBS pipeline currently results
in faster kernels in most cases, the POCL pipeline could close the gap by porting
improvements made to the other one. By example of the DGEMM kernel, it was
shown, that on the tested x86 systems, the SYCL implementation is able to out-
perform the POCL OpenCL implementation. This makes hipSYCL the first SYCL
implementation that does not rely on an OpenCL runtime to achieve reasonable
performance for the nd-range parallel-for paradigm on CPUs.
Two vectorization strategies were discussed. The first one relies on developers of

data-parallel kernels to perform manual optimizations by using the sycl::vec class.
The excessive use of this can even speed up the typically slow fiber implementation.
Apart from that, the SYCL parallel-for paradigm additionally exposes SPMD par-

allelism. Auto-vectorization of the work-item loops, which execute barrier-free sec-
tions of the kernel for each work-item, can thus be used to map the data-parallelism
to the SIMD units of modern processors. Two auto-vectorizers were evaluated for
this purpose: the standard LLVM loop vectorizer as well as the Region Vectorizer
from Moll and Hack [2018]. Although RV is able to vectorize wi-loops with complex
control flow, the performance with the current version may be heavily degraded or
is only slightly better compared to LLVM’s inner-loop vectorizer.
RV also supports intrinsics that can be used to map the SYCL sub-group hierar-

chical level to the SIMD units. This could enable writing manually optimized SIMD
kernels written in a SPMD paradigm. While an exemplary working prototype im-
plementation of the work-group group_reduce function was based on the intrinsics,
it was not yet possible to achieve performance benefits over the regular variant.
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Further extending the set of available intrinsics and integrating them deeper into
the uniformity analysis might enable performance benefits in the long run.
Lastly, the impact of having a compile-time known work-group size was evalu-

ated. It is used to override the size of the loop-state stack arrays required by the
loop fission, compacting the stack size for potentially better caching effects. It also
enables using constant loop bounds. Experimental evaluation shows that despite
differing expectations, the performance was more often negatively impacted than
positively. Therefore it can be considered a useful user-directed choice whether or
not the work-group size should be compile-time known, as the user is able to mea-
sure the impact on their specific workload. For the cases with a negative impact, a
deeper analysis of the applied optimizations could benefit the wider user base of the
LLVM infrastructure.
For further improvements, the phase ordering problem should be considered. It

might benefit the performance if the loop fission was executed later in the optimiza-
tion pipeline so that the kernel is already further simplified before the inter wi-loop
dependence analysis is performed. Additionally, the uniformity information that is
used for deciding whether a value has to be stored in a stack array or whether a
single value is enough, could be used for even more cases. Currently for example,
recurring PHI nodes are not supported for the contiguous value restoration, for ex-
ample. Manual optimization like full or partial unrolling of the wi-loop, as done in
POCL, could be explored.
On the topic of vectorizers, the new VPlan infrastructure with its outer-loop

vectorizer is worth evaluating, once the current compatibility issues are sorted out.
Extending the Region Vectorizer with additional intrinsics and their integration into
the uniformity analysis could improve its performance and open up opportunities
for further experimentation with the sub-group to SIMD mapping.
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A Reproducibility

All development work done for this thesis is open-source. To improve reproducibility,
the following describes the necessary steps to run the benchmarks.
First, a recent enough LLVM version is required. LLVM 12+ is encouraged.

If LLVM 12 is chosen and RV shall be tested in conjunction with hipSYCL, the
patch from https://reviews.llvm.org/D104916 has to be applied and LLVM built
manually. When testing RV, clone https://github.com/fodinabor/rv/releases/tag/
ma-thesis into the llvm-project folder and configure LLVM with RV as an external
project.
The evaluated version of hipSYCL is https://github.com/fodinabor/hipSYCL/

releases/tag/ma-thesis. Install it following the hipSYCL installation instructions.
Note, the Clang plugin has to be built. Add -DBUILD_CLANG_PLUGIN=ON to the
CMake configuration.
The benchmarks were run on the Isambard clusters. With all dependencies

satisfied, the run.sh script from https://gitlab.com/fodinabor/ma-hipsycl-bench/-
/tags/ma-thesis was used to run them. It also shows all flags used for the individual
benchmarks. The repository additionally includes the raw results.
The versions of the used benchmarks are found at:

• SYCL-Bench https://github.com/fodinabor/sycl-bench/releases/tag/ma-thesis

• SYCL-Bench for RV https://github.com/fodinabor/sycl-bench/releases/tag/
ma-thesis-rv

• SYCL DGEMM https://github.com/fodinabor/sycl_dgemm/releases/tag/ma-
thesis

• HeCBench https://github.com/fodinabor/HeCBench/releases/tag/ma-thesis

• BabelStream https://github.com/fodinabor/BabelStream/releases/tag/ma-thesis
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