A PTX Code Generator for LLVM

Helge Rhodin

Saarland University
Saarbricken, Germany

Bachelor’s Thesis

Universitit des Saarlandes
Naturwissenschaftlich-Technische Fakultit I
Fachrichtung Informatik

Betreuender Hochschullehrer / Supervisor:
Jun.-Prof. Dr. Sebastian Hack, Universitit des Saarlandes,
Saarbriicken, Germany

Gutachter / Reviewers:

Jun.-Prof. Dr. Sebastian Hack, Universitit des Saarlandes,
Saarbriicken, Germany

Prof. Dr.-Ing. Philipp Slusallek, Universitéit des Saarlandes,
Saarbriicken, Germany

Dekan / Dean:
Prof. Dr.-Ing. Holger Hermanns, Universitit des Saarlandes,
Saarbriicken, Germany

Eingereicht am / Thesis submitted:
Okt 29, 2010

Universitit des Saarlandes
Fachrichtung 6.2 - Informatik
Im Stadtwald - Building E 1 1
66123 Saarbriicken

Erklirung / Declaration:

Hiermit erkldre ich, dass ich die vorliegende Arbeit selbststindig verfasst und alle
verwendeten Quellen angegeben habe.

I hereby declare that the work presented in this bachelor’s thesis is entirely my own and
that I did not use any sources or auxiliary means other than those referenced.

Saarbriicken, Oct 29, 2010

Einverstiandniserklirung / Agreement:

Hiermit erklire ich mich damit einverstanden, dass meine Arbeit in den Bestand der
Bibliothek der Fachrichtung Informatik aufgenommen wird.

I hereby agree on including my work into the inventory of the computer science library.

Saarbriicken, Okt 29, 2010

Abstract

Today’s GPGPU architectures and corresponding high level programming lan-
guages like CUDA replace the traditionally restricted GPU pipelines. Proprietary
compilers allow to translate these languages into native GPU assembly. Unfortu-
nately, these compilers are non-customizable and restricted to static compilation.
High performant application currently require particular manual optimizations.

To overcome these cumbersome manual optimizations, this thesis develops
an open source PTX code generator—PTX is assembly code for NVIDIA GPUs.
The code generator is based on the existing open source LLVM compiler. In
conjunction, both systems compose a customizable compiler for current GPU ar-
chitectures.

Detailed resource analyzes and PTX shader run-time measurements demon-
strate the capacity and quality of generated kernels. At this stage the PTX code
generator achieves similar performance to the nvcc compiler.

The developed compiler forms a sound basis for a variety of applications and
further research topics. Additional feature support, novel optimization techniques,
and applications from various fields are conceivable.

v

Contents

1 Introduction

1.1 Motivation e
1.2 Overview e
1.3 Application
2 Field of Application
2.1 RelatedWork
22 LLVMCompiler
23 LLVMBitcode
24 GPUDesign e
2.5 Target Language: PTX
2.6 Alternative Target Languages

3 Code Generator Implementation

3.1 Compilation Pipeline
32 Objective
33 Designo
3.4 LLVM Bitcode and PTX Comparison
3.5 GPU Language Extension Convention
3.6 Pre Code Generation Passes
3.7 Code GenerationPass

4 Evaluation

4.1 TestSuite
42 OGREIntegration
43 CUDA Comparison v v v v v v v i i oo

5 Conclusion and Future Work

6 Code Appendix

6.1 PTXIntrinsicHeader
6.2 C++ Phong Shader Source Code
6.3 TestSuite

21
21
22
23
24
27
28
34

39
39
41
44

49

vi

Chapter 1
Introduction

1.1 Motivation

Multicore and vector programming is one of the fastest growing fields of computer
science. Vector processors and parallel processing systems were already intro-
duced in the field of super computing in the 1970s and 1980s [Wil94] and are rep-
resented in the low priced personal computer (PC) market since the 2000s [Asa06].
Single core architectures evolved to multicore and multicore to many core sys-
tems. The trend towards parallel computing is immense and currently moves to-
wards graphics processing unit (GPU) architectures. GPU designs have always
been parallel, but programmable restricted. Currently, highly restricted fixed pipe-
line GPU architectures are succeeded by GPUs with programmable shading capa-
bilities with increasing parallelism and complexity. It became possible to execute
general-purpose programs on GPUs. This technique is known as general-purpose
computing on graphics processing units (GPGPU) [Owe07].

The current trend is to write GPGPU programs in GPU-specific high-level
programming languages. CUDA and OpenCL are the most popular choices. GPU
vendors provide compilers which compile these high-level programs into GPU
assembly code. Oftentimes, the resulting assembly code is afterwards optimized
manually. The manual optimization is cumbersome, but required for high per-
formance applications. Different GPU applications require distinct optimizations,
but the current available compilers are not able to fulfill all of them. Researchers
complain about limited compiler functionalities and the impractical extensibility
of current closed source compilers [Pop07, FralO].

To overcome these drawbacks, this thesis develops an open source GPU code
generator. It is based on the existing open source low level virtual machine
(LLVM) compiler. In conjunction, both systems compose a customizable com-
piler for current GPU architectures. Parallel thread execution (PTX) [NVI10c]

1

2 CHAPTER 1. INTRODUCTION

code—assembly code for NVIDIA GPUs—turned out to be the best fitting target
language. The code generator of this thesis, hereinafter referred to as the PTX
code generator, offers many interesting new options:

1. The previously described problem of closed source compilers is solved. The
LLVM compiler allows to develop and use custom GPU and application
specific optimization passes. LLVM’s design is modular, the whole compi-
lation pipeline is customizable. Existing passes can be combined arbitrarily
and the implementation of new passes is easy.

2. Programs written in any source language which is supported by LLVM (e.g.
C++, OpenCL) can be compiled to multicore GPU code. Even combina-
tions of different source languages are possible. For example the combi-
nation of target independent high-level code with GPU-specific code (e.g.
RenderMan [PIX98] shading language and OpenCL).

3. The NVIDIA driver API' can load and execute PTX code dynamically.
However, the nvce compiler is restricted to static compilation from CUDA
files to PTX code. The PTX code generator allows to use the LLVM just in
time (JIT) compiler to specialize code during runtime and utilize the driver
API’s JIT capabilities.

The PTX code generator and GPU programs in general have a broad field of
application. The efficiency of GPU programs compared to CPU solutions highly
depends on the problem to solve. Some problems are well suited for parallel exe-
cution; speed-ups of two orders of magnitude are possible, while others can only
be computed sequentially. For example, the performance of a parallel image pro-
cessing system [YanO8] improves by a factor of 200 and a profiled application
suite gains speed-ups from 1.16X to 431X on the GeForce 8800 GTX proces-
sor [Ryo08] in comparison to CPU implementations. Applications from different
fields profit from the (at least part-wise) execution of code on GPUs. Examples
are video decoding, ray tracing, physical and chemical simulations, game physic
engines, data compression, and image processing.

'The NVIDIA driver API is an interface for PTX kernel compilation and execution.

1.2. OVERVIEW 3

1.2 Overview

The thesis consists of two main parts: the code generator and the integration of
PTX shaders into the OGRE [Gre06] renderer. It focuses on the correct develop-
ment of the code generator while the renderer integration is limited to key fea-
tures and mainly serves for evaluation purposes. This thesis covers many different
Computer Science fields. A good understanding of compiler construction, pro-
gramming languages and GPU architectures is necessary in order to understand,
design, and implement the code generator. Computer graphics knowledge is es-
sential for the proper renderer integration.

The remainder of this thesis is organized as follows. Section 1.3 continues
the motivation for the PTX code generator development. Its application in the
AnySL [Kar10] shading system is outlined. The introductory chapter is followed
by Chapter 2 which embraces background knowledge required for understanding
this thesis and covers related work. Section 2.2 gives information on the LLVM
compiler, shows its advantages and its extensibility. An overview of current GPU
designs and main differences to CPU architectures is given in Section 2.4. Sec-
tions 2.5 and 2.6 elaborate the chosen target language PTX and its benefits with
respect to alternative languages. The code generator design, its challenges, fea-
tures, and limitations are explained in Section 3. Chapter 3.5 defines a language
extension for GPU-specific features of LLVM’s intermediate representation. The
evaluation of proper code generation and code quality is accomplished in Chap-
ter 4. This chapter also includes an explanation of the integration into a deferred
shading? OGRE setup (Section 4.2). Finally, Section 5 gives an outlook to ad-
ditional applications and possible improvements of the PTX code generator and
ways to bypass current GPU restrictions. The appendix 6 contains the complete
source code of the shown shaders and test cases.

?Deferred shading is a rasterization renderer setup which delays all shading computations to
the end of the graphics pipeline.

4 CHAPTER 1. INTRODUCTION

1.3 Application

The PTX code generator will be used in the AnySL system [Karl0]. AnySL is
a new shader integration system which combines the advantages of high-level,
target independent shading languages, and the speed of low level, target specific
code. It integrates easily and with high performance into all kinds of renderers.

The present AnySL system implementation uses the LLVM compiler for opti-
mizing high-level RenderMan [PIX98] surface shaders as well as C++ shaders for
x86 hardware with SIMD instructions. It currently supports the CPU ray tracer
renderers RTfact [Geo08], Manta [Big06], and PBRT [Phal0].

The LLVM PTX code generator enables the AnySL system to generate opti-
mized shader code for GPUs. The code generator operates on any LLVM program
represented in the intermediate bitcode representation. It is independent of high-
level source languages which automatically allows the AnySL system to generate
GPU code for all supported source shading languages. Figure 1.1 shows an exem-
plary RenderMan phong surface shader.

surface phong(){
normal Nf = faceforward(N, I);
vector reflView = reflect(I, Nf);
color tmp = color(0.1, 0.06, 0.0);

illuminance(P, Nf, PI/2) {
color ¢ = color (0, 0, 0);
float dotLRefl = L.reflView;
if (dotLRefl > 0.01) c = pow(dotLRefl, 50);
float £ = Nf.L;
tmp += color(l, 0.2, 0) *x C1 * f + c;

}

Ci = tmp;

}

Figure 1.1: Phong surface shader written in the RenderMan shading language.

The AnySL system transforms the RenderMan shader into LLVM bitcode
and combines it with renderer specific glue code which implements shading fea-
tures like the illuminance statement. A simplified version of the resulting bitcode
shader is shown in Section 2.3 (Figure 2.1). Finally, the PTX code generator
transforms the combined bitcode shader into a PTX kernel. GPU ray-tracers (e.g.
Optix [Par10]) as well as rasterizers (e.g. OGRE) are possible targets.

Chapter 2
Field of Application

2.1 Related Work

At the beginning of the PTX code generator development no other open source
PTX backend was announced to the public, neither for LLVM nor for any other
compiler. The closed source CUDA compiler was the only available compiler
which targets PTX code. During a talk about the PLang frontend [Gro09] NVIDIA
mentioned that they are also developing an LLVM PTX backend. But no addi-
tional information is published up to now. Other GPU languages like the compute
abstraction layer (CAL) are the target of closed source compilers only (see Sec-
tion 2.6 for alternative GPU languages).

The closed source CUDA and OpenCL compilers are suitable for performance
comparisons. No information about their design and contained optimization passes
is publicly available. Conceptually, a PTX code generator can only be based on
the currently available non-GPU code generators. Either the target independent
code generator environment or other target specific backends of LLVM can be
used. The target independent code generator provides a framework for backends
targeting arbitrary assembly languages. Amongst others it includes algorithms for
register allocation, scheduling, and stack frame representation. On the contrary, a
custom LLVM backend which does not use the target independent code generator
needs to incorporate all of these algorithms. Section 3.3 provides a comparison of
both concepts. The custom backend approach turned out to be convenient for the
PTX code generator. The concept of the LLVM CBackend is the main basis for
the PTX code generator.

The development of an LLVM PTX backend based on the target independent
code generator of LLVM was recently announced on the LLVM mailing list. The
current preliminary status of the project is not comparable though to the PTX code
generator of this thesis. Once the project reaches a more mature status, pros and

5

6 CHAPTER 2. FIELD OF APPLICATION

cons of both concepts can be analyzed.

The 4-Centauri [Dit09] project pursues a similar target—.NET bytecode is
mapped into PTX code. Potentially, every language with .NET-support can be
mapped to PTX code. Like LLVM’s intermediate code, the .NET bytecode in-
struction set is akin to PTX. But, mapping from the .NET intermediate code to
PTX code requires a different concept. The .NET bytecode is stack-based and
object-oriented which prevents a simple one-to-one mapping. Unfortunately, the
project has not produced any statistics and results by now and development seems
to be stalled.

2.2 LLVM Compiler

LLVM [Lat04] is an open source compiler that is designed modularly. Different
source languages are compiled by appropriate frontends to the intermediate bit-
code representation. Details about the intermediate language are given in the fol-
lowing Section 2.3. Middle-end optimization passes operate on this intermediate
representation. Finally, target specific code generators—also called backends—
transform the intermediate representation to machine code for various architec-
tures. LLVM allows static as well as just in time compilation.

LLVM frontends for C, C++, Objective-C, and Fortran are available. Fron-
tends for other language like Java and Scheme are under development. LLVM
supports many target architectures through different backends, including X86,
PowerPC, ARM, Thumb, SPARC, Alpha, and CellSPU. A C backend also ex-
ists. In this respect and also in terms of compilation time and performance of the
generated code, LLVM is comparable to the gcc compiler [LLV10]. This thesis
extends the list of LLVM’s supported backends by its first GPU backend - the PTX
code generator.

2.3 LLVM Bitcode

The intermediate LLVM representation [Lat10], often called LLVM bitcode, is a
low-level assembly language. LLLVM is supposed to be able to represent all cur-
rently known high-level languages in LLVM bitcode. LLVM bitcode programs are
constructed hierarchically. A program consists of modules which contain function
definitions and global fields. Functions are divided into basic blocks. A block
consists of sequential instructions. Instructions operate on a virtual-memory and
virtual-register model. LLVM bitcode is in static single assignment form (SSA)!.

'In SSA form variables are only assigned once, specific PHI-instructions are required for con-
vergent control flow. Consider the work of R. Cytron et al. [Cyt91] for additional details.

2.3. LLVM BITCODE 7

It provides type safety by a strict type system. New types can be defined by en-
capsulating existing types in C-like structs and arrays. It is also extensible by new
language features (for details see next section). Figure 2.1 shows the hierarchical
LLVM bitcode representation of a RenderMan shader converted to LLVM bitcode
by the AnySL system.

Extensibility

The LLVM compiler design is suitable for multiple frontends which process var-
ious high-level source languages and a variety of backends which generate code
for different architectures. This variety requires the intermediate LLVM bitcode
representation to be general and extensible. The following three characteristics of
LLVM bitcode allow to represent GPU-specific features, which are required by
the PTX code generator:

1. Intrinsic functions. Without specific handling, unknown intrinsics are han-
dled like external function calls during all LLVM passes. Intrinsics are well
suited for target dependent instructions like texture look-ups or mathemati-
cal functions which are implemented in hardware on some targets.

2. Arbitrary meta-data. Meta-data can be attached to every LLVM instruc-
tion. This is a smart way to provide additional information like source-level
debug information to optimization passes and backends.

3. Address spaces. Each global variable and each pointer contains an address
space number attribute. The default address space is 0, memory allocated
by alloca instructions resides automatically in address space 0. There is
no convention for non-zero values thus they can be used for target specific
memory locations.

8 CHAPTER 2. FIELD OF APPLICATION

; ModuleID = ’rsl_phong.bc’

%0 = type{il6, i16, i16, i16}
%1 = type{i8, i8, i8, i8}
#Matrix4f = type{float, float, (...), float}
%Vec3f = type{float, float, float}
%struct.anon = type{%Vec3f, float, %Matrix4f, float, %Vec3f, \\
132, 132, %0%, %0%, %1x, i32}
@data_dev = addrspace(3) global Ystruct.anon zeroinitializer, align 4

...]

define void @inner_shade() noinline {
entry:
%sl = tail call zeroext il6 @_Z16__ptx_sreg_tid_yv()
Y%ul zext i16 %sl1 to i32
%u2 = load i32* getelementptr inbounds \\
(%struct.anon addrspace(3)* @data_dev, 132 0, i32 5)
%u3 = mul i32 %u2, %ul
[...]

%f1 = tail call float @sqrtf(float %x1)

%div.i218 = fdiv float 1.000000e+00, %call2.i.i217
Ymul.i.i219 = fmul float %callb3, %div.i218

[...]

for.cond:
f%numLights = load i32* getelementptr inbounds \\
(%struct.anon addrspace(3)* @data_dev, i32 0, i32 10)
%lightValid = icmp slt 132 YcurrentLight, %numLights
br il %lightValid, label %for.body, label Yshade.exit
shade.exit:

%.16.1.2.1 = phi 132 [1031127695, %entryl, [%x3, %for.cond]
%.16.2.2.1 = phi i32 [0, %entryl, [%x4, %for.cond]

[...]

%u8 = load %1** getelementptr inbounds

(%struct.anon addrspace(3)#* @data_dev, i32 0, i32 9)

%u9 = load i32* getelementptr inbounds
(%struct.anon addrspace(3)* @data_dev, i32 0, i32 5)
%ul0 = mul i32 %u9, %x5
%ull = add i32 %ul0, %x6
%ul2 = getelementptr inbounds %1* %u8, \\
i32 Yull
%ul3 = bitcast %1* %ul2 to 132 addrspace(2)*

store 132 %x7, 132 addrspace(2)* %ul3
ret void

}

Figure 2.1: Extracts from a phong surface shader in bitcode representation. The shader is
generated from the RenderMan shader in Figure 1.1 with the AnySL system.

2.4. GPU DESIGN 9

2.4 GPU Design

Current GPU Architectures are dominated by many-core designs consisting of
many multiprocessors. Each processor contains a number of scalar cores, differ-
ent memory spaces and fast arithmetic logic units (ALU). They are tuned for high
memory bandwidth, heavy computational capacity, and fine-grained parallel ex-
ecution [Khr09]. In comparison to CPUs, which are specialized on data caching
and flow control, modern GPUs try to hide memory access latencies by executing
computations in parallel. Data-level as well as thread-level parallelism is utilized.
Cutting-edge GPUs like the NVIDIA Fermi architecture also provide caching.

The idea is to have thousands of threads which execute in parallel on many
simple but powerful multicore processors. While one thread is issuing a slow
memory access a different thread can take over execution and maintain a high
occupancy of each underlying processor. In contrast, CPUs try to predict execu-
tion paths and cache data and instructions in an intelligent way. This GPU design
needs to allow fast context switching between concurrent threads and requires
dedicated thread scheduling. In order to reduce the complexity, the current GPU
processor designs are kept simple, no branch prediction or speculative execution
is performed. Such details are covered more elaborately for NVIDIA GPUs in the
following section.

Both designs, GPU and CPU, have advantages and disadvantages: They are
well suited for different, mostly orthogonal problems. GPUs are optimal for
compute-intensive problems which can be solved in parallel while the CPU is
well suited for sequential and control-flow-intensive problems. Shifting compute-
intensive program parts to the GPU allows huge performance improvements.

NVIDIA GPUs

The generated PTX code can be executed on any CUDA capable NVIDIA Graph-
ics card. The current NVIDIA product line includes different GPU series, rang-
ing from the GeForce desktop and notebook series for gaming and the powerful
Quadro series to the Tesla high performance GPGPU series. Each series has dif-
ferent performance properties designated for its specific application field. The
number of processors, memory sizes, and throughput, the number of registers,
and clock rates differ. The general design of all current CUDA enabled products
is similar.

The GPU consists of a number of stream-multiprocessors, which itself include
a few scalar processor cores, on-chip shared memory, constant and texture caches,
register banks, and a single instruction unit (see Figure 2.2). Each scalar processor
of one multiprocessor shares these resources. Threads which are executed on
cores of one multiprocessor share the pool of registers. It is strictly partitioned

10 CHAPTER 2. FIELD OF APPLICATION

among the active threads. The shared memory serves as a communication channel
between different cores of a single multiprocessor. Because of its low latency,
shared memory is also often deployed as a custom cache.

Figure 2.2: Abstract representation of NVIDIA GPUs and their resources. The image is
extracted from the NVIDIA CUDA Programming Guide [NVI10a].

During a single clock cycle all scalar processors execute the same instruction
on their own set of registers in parallel. This single instruction multiple data
(SIMD) design is further extended by the so called single instruction multiple

2.4. GPU DESIGN 11

thread (SIMT) design. Each thread maintains its current state in the instruction
sequence. One can think of threads having their own program counter (PC), the
actual implementation involves stacks of masks. Still only a single instruction
can be executed per clock cycle on cores of one multiprocessor. Cores with a
different PC are excluded from execution, similar to predication®. Every distinct
instruction which a PC of the currently executing threads points to are executed
sequentially, sacrificing performance. If the PCs of threads currently executing
on the cores of one multiprocessor point to n distinct instructions, execution time
generally scales by a factor of O(n). The advantage of SIMT is that threads can
branch independently which allows flexible programming. The border between
thread-level parallel and data-parallel execution is blurred. It is possible to write
data-parallel code by eliminating divergent control flow or thread-level-parallel
code by neglecting control flow drawbacks and sacrificing performance.

Each multiprocessor has one SIMT unit. It schedules threads to the scalar
cores of the corresponding multiprocessor. Threads are divided into groups called
warps. The current warp size is 32, different sizes are possible in the future. The
SIMT unit iteratively selects idle warps, issues their next instructions and executes
them. Instructions of divergent threads of one warp are executed in sequence as
described before. Threads of different warps are unrelated concerning divergent
control flow. The SIMT unit is able to hide the latency of slow instructions, for
example loads and stores. While one warp is performing a high latency instruc-
tion, the SIMT unit can pick a different idle warp for execution. Context switching
between different warps causes minimal overhead. Because of the strict register
partition among active threads it only requires to load the PC of the new thread.
This permits fine grained parallelism including thousands of threads.

NVIDIA GPUs have an involved memory model. Beside the on-chip shared
memory, NVIDIA GPUs are equipped with a global memory bank which is ac-
cessed by all multiprocessors concurrently. Parts of this global memory can be
declared as constant- or texture-memory. Such memory regions are cached by the
constant-cache and the texture unit, respectively. They can be accessed by special
cached fetch instructions. The texture unit features interpolation of nearby data
elements as well as caches which are optimized for two and three dimensional
texture access patterns. Memory declared as constant can still be accessed by the
typical load and store instructions. However, every store access potentially results
in unpredictable behavior because consecutive cached reads can either read the
value from the cache or from the newly written global memory.

The latency of load and store instructions depends on the locality of the ad-

2Consider the work of J. Park and M. Schlansker [Par91] for an introduction on predicated
execution and example applications.

12 CHAPTER 2. FIELD OF APPLICATION

Address Address
120 120
Address Address
124 124
Thmdﬂ Address Address
| 0 128 \ 128 w
s Address Address E
| 1 132 132 ﬁ
Address Address
(e \| e M i
|-n1mad jy Address q Aaldruss
3 140 140
Thread Address " Address
| a 144 144
Thread Address N Address
| 5 t 148 148
Threadff| Address aacien
| 6 152 152
Thread Address £ y Address
| 7 4 156 156
Thread ﬂ \ Address || 73 Acidinee
| 8 160 2 160
Address Address =
|Thr;d 164 e]
Thread Address X Address E
| 10 168 168
Thread N Address N Address g
11 172 172)
Address N Address
12 176 176
Thread % Address N Address £
| 13 180 180
Thread|| % Address N Bclriss 3
| 14 y 184 184
Thread |y’ % Address J Bl 3
15 188 188
Address N Address
192 192
Address W Address
196 196
Address
200 mEnm
Address
204
Address Address J
208 252 |
Address Address
212 256 15 188

Figure 2.3: Different memory access patterns, their segment size and the required number
of transaction. Left: 64b segment, one transaction. Center: unaligned, 128 bit segment,
one transaction. Right: two segments, two transactions. The image is extracted from the
NVIDIA CUDA Programming Guide [NVI10a].

2.5. TARGET LANGUAGE: PTX 13

dressed memory region. If all accessed 4-bit or 8-bit words of one half warp? are
located in the same segment of 128 bytes the memory access is coalesced, and
only one memory transaction is issued. Each additional segment results in an ad-
ditional transaction. This results in a latency of O(n) with n being the number of
accessed memory segments per half warp. The same scheme applies for 2-byte
words in 64-bit segments and for 1-byte words in 32-bit segments. The accessed
locations of coalesced loads and stores, which point to a single segment, can be
in any order, they can also point to the same address. Figure 2.3 shows coalesced
access patterns.

The processor occupancy of GPU programs decreases with the number of re-
quired registers per thread because less threads are executed in parallel. A maxi-
mum of R/n threads can be executed in parallel per stream processor, where R is
the number of physical registers and n is the number of registers per thread. Also
the overall amount of shared and local memory cannot exceed the available physi-
cal resources. This can lead to performance loss. The relation between occupancy
and performance is not self-contained. Also the ratio of arithmetic instructions
and memory accesses, and the kernel size is involved.

All details about NVIDIA GPUs are extracted from the official NVIDIA refer-
ence manuals [NVI09, NVI10a]. The knowledge about NVIDIA GPUs is required
for a good understanding of the design and behavior of PTX programs.

2.5 Target Language: PTX

Parallel Thread Execution (PTX) [NVI10c] is a human-readable assembly-like
low-level programming language for NVIDIA GPUs. PTX belongs to the re-
duced instruction set computing (RISC) type languages. But PTX is not machine
code, it is a typed intermediate language which can be compiled to specific ma-
chine code of different multicore architectures. PTX is, to some extend, target
dependent: It contains a lot of GPU-specific instructions as its main purpose is to
represent efficient GPU code. PTX code provides thread synchronization instruc-
tions as well as access to the GPU texture unit, to the different memory spaces,
and to mathematical functions which are implemented in hardware. Figure 2.4
shows a simplified PTX code example which corresponds to the previously shown
RenderMan phong shader.

PTX is similar to the previously described LLVM bitcode except for the SSA
property and the support of GPU-specific features. PTX exposes the fine grained
parallelism of the underlying hardware with an hierarchical paradigm. Threads
are grouped to warps of size 32. Warps are combined to cooperative thread ar-

3 A half warp is the first or second half of threads from a warp.

14 CHAPTER 2. FIELD OF APPLICATION

.const.align 4 .b8 data_dev[120] = {0, 0, (...) , O};

.entry inner_shade
{
.reg .u32 ul;
.reg .ul6 si;
.reg .£32 £f1;
.reg .pred pi;

entry:
mov.ulé si, %tid.y;
cvt.u32.ul6 ul, si;
1d.const.u32 u2, [data_dev + 96];
mul.lo.u32 u3, u2, ul;
[...]

sqrt.approx.£32 f1, xi1;
div.full.f32 £f2, 1.000000, f1;
mul.£32 £3, x2, f2;

[...]

1d.const.u32 numLights, [data_dev + 116];
setp.1lt.s32 lightValid, currentlLight, numLights;
@lightValid mov.u32 u4__PHI_TEMP, x3;
@lightValid mov.u32 ub__PHI_TEMP, x4;
[...]
@lightValid bra for_body;
mov.u32 u6__PHI_TEMP, x3;
mov.u32 u7__PHI_TEMP, x4;
bra shade_exit;
shade_exit:
mov.u32 u6, u6__PHI_TEMP;
mov.u32 u7, u7__PHI_TEMP;
[...]

1ld.const.u32 u8, [data_dev + 112];
1d.const.u32 u9, [data_dev + 96];
mul.lo.u32 ul0, u9, x5;

add.u32 ull, ull0, x6;

shl.b32 ul2, ull, 2;

add.u32 ul3, u8, ul2;
st.global.u32 [ul3], x7;

exit;

}

Figure 2.4: Extracts from a phong surface shader in PTX code. The PTX code is generated
by the PTX code generator from the bitcode shader of Figure 2.1.

2.5. TARGET LANGUAGE: PTX 15

rays (CTAs4), which are parts of grids. CTAs and grids are one-, two-, or three-
dimensional, their size in each dimension must be specified. Picture 2.5 shows
this hierarchical structure.

This hierarchical fragmentation of threads directly maps to the previously de-
scribed GPU hardware. Each CTA is assigned to one multiprocessor. The SIMT
unit of each multiprocessor selects suitable warps out of all CTAs which are as-
signed to this processor. Finally, each thread of the currently executing warp is
executed by one scalar core. This mapping determines the memory access scope
and restricts the communication possibilities between threads. Threads of differ-
ent CTAs can only communicate through the global memory space. PTX pro-
vides atomic operations as well as barrier and memory-barrier synchronization
instructions. Threads of a single CTA additionally have access and can commu-
nicate through the shared memory space of each multiprocessor. Shared memory
provides significantly faster access in comparison to global memory. At the warp
level PTX also provides vote instructions which perform reduction of predicates
across a single warp. For each thread PTX reserves a memory region of the global
memory bank. This local memory region is restricted to access from its corre-
sponding thread. The memory regions are arranged in a struct of arrays type
manner such that loads and stores of a single warp are always coalesced”.General
properties and disparities of PTX and LLVM bitcode are given in Section 3.4.
Specific details can be found in the official PTX documentation [NVI10c].

PTX is specifically designed for NVIDIA GPUs. However, its abstraction of
threads, synchronization mechanics, and virtual registers can easily be mapped to
various multicore architectures. For example the Ocelot system [Ker(09] allows to
execute PTX programs on x86-CPUs.

PTX is used by NVIDIA’s CUDA and OpenCL compilers as an intermediate
representation of GPU-specific code. Direct programming in PTX is not practical
due to the low-level assembly-like construction. Although, critical code parts
can be fine tuned manually. Chart 2.6 visualizes the compilation pipeline. PTX
code is standardized and forward compatible to future targets. PTX is therefore
convenient as a standardized exchange format for parallel computing programs
and because of its simplicity suitable as a target for external compilers. The next
section compares PTX to alternative target languages and reveals its advantages.

4Sometimes also called Blocks.

SInternally a struct which is stored in local memory is split up in its elements. The nth element
of each thread from one warp lie in one segment in sequence. One coalesced memory access is
sufficient for all threads of a single warp to access its nth element.

16 CHAPTER 2. FIELD OF APPLICATION

Figure 2.5: Multidimensional hierarchical structure of PTX threads (Threads C CTAs C
Grids C GPU). The image is extracted from the NVIDIA PTX ISA 1.4 [NVI10b].

2.6. ALTERNATIVE TARGET LANGUAGES 17

2.6 Alternative Target Languages

The aim of this thesis is to extend the LLVM compiler with a GPU code genera-
tor. This section discusses advantages of PTX as the target language compared to
alternative languages. OpenCL [Khr09] and NVIDIA CUDA [NVI10a] are cur-
rently the most popular general-purpose, GPU-specific programming languages
besides PTX. CUDA has the disadvantage of being limited to NVIDIA GPUs and
it lacks JIT support. OpenCL is supported by GPUs of both vendors. The cur-
rent AMD Stream SDK implementation [AMDO09] is based on and incorporates
all advantages and disadvantages of OpenCL. Both languages are high-level lan-
guages based on C and extended with GPU-specific language constructs. The
performance is almost the same [Pet03].

Figure 2.6 depicts the compilation pipeline of all three languages. Each high-
level language requires a dedicated compiler which breaks down high-level lan-
guage constructs to low-level instructions integrating GPU-specific as well as mis-
cellaneous optimizations. In the case of NVIDIA GPU targets, the compilation
process is split into two stages. First, high-level CUDA and OpenCL programs
are compiled into the intermediate PTX code representation. During this step
common optimizations like inlining, global value numbering, constant propaga-
tion, common subexpression elimination and other data-flow optimizations are
performed. The second step transforms PTX code into machine code, register al-
location, instruction scheduling, dead-code elimination, and numerous other late-
optimizations are performed. ATI handles OpenCL code in a similar way. First,
the ATI compiler compiles OpenCL to the CAL and from this intermediate lan-
guage (IL) to ATTI GPU machine code. NVIDIA as well as ATT have not published
any details about the performed optimizations and their properties. The previously
listed optimizations are extracted from the NVIDIA Optix paper [Par10] which
deals with their GPU ray-tracer system.

Out of the high level GPU languages OpenCL is the preferred choice because
of its target independency. The next paragraph therefore focuses on comparing
PTX and OpenCL.

Both languages provide a different trade-off between power and responsibil-
ity of the user and the language compiler. Due to the OpenCL abstraction level
many low-level features are hidden, such that the programming process is simpli-
fied. Code written in OpenCL is optimized for the desired target architecture by
the OpenCL compiler allowing the programmer to write abstract and clear code.
Low-level code optimizations are not necessary and only possible to a certain
extent, because OpenCL’s internal optimizations may revert previously applied
optimizations. The OpenCL compiler may optimize the code of one application
nicely but may fail in a different case. The power and responsibility of choosing
the right optimization is propagated from the user to the compiler.

18 CHAPTER 2. FIELD OF APPLICATION

hand-written
optimizations

Y CUDA
CUDA PTX runtime NVIDIA GPU
source code nvee code machine code

compiler

OpenCL
source cod ATI Op enCLhand-written

compiler optimizations
'~ ATIIL
CAL __compiler _ ATI GPU
i machine code

Figure 2.6: Compilation pipelines of current GPGPU languages for NVIDIA and ATI
GPUs.

The low-level PTX code needs to be optimized beforehand, the NVIDIA PTX
compiler only applies late-optimizations. All other, more sophisticated optimiza-
tions need to be applied manually or by preceding compiler passes. On the one
hand PTX propagates more work to the user, on the other hand this allows for
more flexibility and power. The user has the power and is responsible to choose
and execute the right optimization before running the NVIDIA PTX compiler.

Beside the greater flexibility, PTXs simplicity and similarity to LLVM bitcode
allows an easy and fast code generation. The conversion from LLVM bitcode to
OpenCL code would be more complicated. The previously shown phong shaders
evince the code-complexity of PTX and OpenCL code. The RenderMan source
code is shown in Figure 1.1. Figure 2.7 shows its C++ version. The C++ code
is extended with GPU-specific properties akin to OpenCL. Figure 2.1 shows its
bitcode representation and Figure 2.4 depicts the PTX counterpart. The similarity
of LLVM bitcode and PTX code is noticeable. A transformation from one lan-
guage to the other is straightforward. The bitcode and C++ code representations
differ strongly; no immediate transformation is possible. It is easy to transform
high-level languages into low-level representations. However, the opposite direc-
tion, which would be required for bitcode to OpenCL conversions, is complicated.
OpenCL lacks many low-level constructs of LLVM bitcode like branch, select
and GEP instructions. Information about loops and other high-level control flow
structures are not included in the low-level bitcode representation. Sophisticated
analyzes are necessary to recover the required high-level information. Especially
the conversion into goto-free code is complicated and in the case of irreducible
control flow impossible without code duplications.

Beside the previously analyzed ones other potential target languages are the

2.6. ALTERNATIVE TARGET LANGUAGES 19

#include shader.h

ShadingData CONSTANT data;
PointLight CONSTANT lights[6];

void inner_shade(){
//read from texture
int x = __ptx_ntid_x(*__ptx_ctaid_x () *THREAD_WIDTH_X

+__ptx_tid_x () *THREAD_WIDTH_X;

[...]
COLOR_IN * inter = getPixel(data.texl, x, y, data.w, data.h);
float hitDistance = __half2float(*((short GLOBAL*)&inter->d));
[...]

for(int 1=0; 1l<data.lights_n; 1++){ // illuminance loop
Point P_light = lights[1].position;
Vector L_dir_norm = P_light - P;
[...]

//diffuse component
float cosLight = Dot(L_dir_norm, N);
if (cosLight >= 0.0)

C_diffuse += Cl*cosLight;

Vector h = (IN + L_dir_norm);
Normalize(h);
float dotLightRefl = Dot(N, h);
if (dotLightRefl> 0)
C_specular += pow(dotLightRefl,32);
}

Color result = Ci * (Ka + Kd * C_diffuse + Ks * C_specular);
int rgb = rgbaToInt(result.x,result.y,result.z,1.f);
COLOR_OUT *out = getPixel(data.texOut, x, y, data.w, data.h);
((unsigned int GLOBAL)out) = rgb;

}

Figure 2.7: Extracts from a C++ phong shader, extended with GPU-specific properties.
The semantic is equivalent to the RenderMan shader of Figure 1.1. The complete source
code is shown in Section 6.2.

sparsely used GPU aware languages Brooke and Ct as well as the GPU shad-
ing languages HLSL, GLSL, and Cg. All of them have the same disadvantages
as OpenCL. The complex compilation from high-level representations to GPU as-
sembly code eliminates most of the previously applied optimizations. Meanwhile,
AMD offered the close to the metal (CTM) low-level programming interface for
AMD GPUs. CTM allowed to access the native instructions set of the GPU. But

20 CHAPTER 2. FIELD OF APPLICATION

CTM was short lived and is now deprecated. The CAL IL is now used as the in-
termediate representation. CAL handles control flow with if-then-else construct,
switch expressions, and explicit loops. Therefore, it is as cumbersome to generate
CAL code from LLVM bitcode as to generate OpenCL code.

The idea of this thesis is to develop a code generator for a powerful customiz-
able compiler. Only the low-level design, the degree of architecture independence,
and forward compatibility as well as optimization possibilities of PTX can apply
the compiler’s features to GPUs in a satisfactory way. The target dependency of
PTX to NVIDIA GPUs of course is a huge disadvantage. However, NVIDIA ships
the majority of GPUs on the GPGPU market [Kow08], which reduces the fraction
of PTX incompatible GPUs and improves chances for PTX to become a common
intermediate GPU language and

Chapter 3
Code Generator Implementation

3.1 Compilation Pipeline

Every LLVM frontend can be used to generate LLVM bitcode which is later trans-
formed to PTX code by the PTX code generator. The Clang frontend is the most
advanced frontend. It compiles C-family languages to LLVM bitcode and sup-
ports the three language extensions of Section 2.3. In combination with the LLVM
compiler it enables the following compilation pipeline: GPU-specific C++ code is
compiled to extended LLVM bitcode by Clang. Common LLVM passes as well
as custom GPU-specific passes perform desired optimizations on the intermediate
bitcode representation. Finally, the PTX code generator transforms the optimized
bitcode into PTX GPU code. This pipeline is visualized in Figure 3.1.

optimization

passes
Yy PTX CUDA
extended Clang 11yM codegen. PTX runtime _ NVIDIA GPU
C++ code bitcode code machine code

Figure 3.1: Compilation pipeline of the PTX code generator from high level C++ code to
PTX assembly code

The previously shown phong surface shader exposes this compilation pipe-
line. Figure 2.7 shows C++ source code which is semantically equivalent to the
RenderMan phong shader of picture 1.1. Figure 2.1 shows the intermediate bit-
code representation. The final PTX code is shown in Figure 2.4. Chapter 3.5
provides a language extension which defines a fixed exchange format between all
compilation pipeline components. The language extension convention is obeyed

21

22 CHAPTER 3. CODE GENERATOR IMPLEMENTATION

by the Clang frontend, the optimization passes, and the PTX code generator. All
handwritten shaders and test-functions of this thesis are written in C++ and are
compiled to PTX code by the previously described pipeline.

3.2 Objective

The purpose of the code generator is to transform LLVM bitcode into PTX code.
The code generator should be able to transform arbitrary LLVM bitcode programs
into valid PTX code. This enables the PTX code generator to transform every
program to PTX code that was written in a language for which an LLVM frontend
exists. The semantic of the program must be preserved during code generation.
The machine code of deterministic LLVM bitcode programs must compute ex-
actly the same results on all target platforms. The code generator is required to
convert every LLVM bitcode instruction into appropriate PTX instructions. How-
ever, due to the limited functionality of current GPUs not every LLVM bitcode
program can be mapped directly. Function calls need to be non-recursive and
direct, indirect calls are not supported on current GPUs. For bypassing these re-
striction by continuations see Section 5. The generated code will be verified in
Section 4.1 by comparing the results of test-functions generated by the existing
x86-LLVM backend and the PTX code generator, executing it on the CPU and
GPU, respectively.

It should not only be possible to generate code from general LLVM bitcode
programs, but also to access the whole functionality of GPUs. Every GPU fea-
ture which is supported by PTX should be accessible through LLVM and the PTX
code generator. The source language as well as the intermediate LLVM bitcode
representation must be capable of describing all GPU-specific features. GPUs
provide a lot of special features which are not implemented on traditional CPUs
(Section 2.4). LLVM bitcode is designed to represent programs targeted for CPUs
and akin architectures and therefore lacks representations for GPU-specific fea-
tures. There are possibilities to extend LLVM bitcode by intrinsic functions and
address space annotations (see Section 2.3). Section 3.5 defines a language exten-
sion convention for GPU features. This convention serves as an interface between
frontends, optimization passes and the PTX code generator.

This thesis focuses on the support of commonly used PTX language con-
structs. Instructions that offer additional performance like fused arithmetic op-
erations are a target of future work. Table 3.1, Table 3.3, and Table 3.2 separate
supported and unsupported instructions. The code generator provides a frame-
work which allows to implement unsupported features analogously.

Beside soundness and feature support, code performance is the third objective
of the PTX code generator. Architectures of GPUs and CPUs differ strongly.

3.3. DESIGN 23

Some programs run faster on a CPU and others are more suited for GPUs. Thus,
it only makes sense to compare the performance of the generated code to other
GPU programs, for example CUDA applications. Ideally, the performance of the
generated PTX code is as good as the PTX code generated by the nvcc compiler
from an analogous CUDA program.

As described in Section 2.6 the nvce compiler compiles CUDA programs in a
two step process: from CUDA to PTX and from PTX to GPU assembly code. The
LLVM compiler and the PTX code generator replace the first step which is the
conversion from a high-level language to PTX. Thus, the LLVM compiler needs
to perform all optimizations which are usually performed by the nvcc compiler
in order to be competitive. The nvcc compiler runs common optimizations and
additional GPU-specific optimizations. They utilize the great processing power of
GPUs, the SIMT execution model and the different memory space characteristics.
NVIDIA has not published any details about performed optimizations. However,
the PTX code analysis in Section 4.3 reveals some of them. Such optimizations
are part of the compiler middle-end and they are separated from the code gener-
ator. The implementation of GPU-specific optimization passes and the adaption
of exiting passes is not part of this thesis. But the PTX code generator must al-
low to add such optimizations retrospectively. This is ensured by the exhaustive
language extension convention which covers all PTX features.

The second compilation step—PTX to assembly code—performs late-optimi-
zations like register allocation, dead code elimination, and instruction scheduling
(see Section 2.6). This step is also applied in the PTX code generator pipeline.
The PTX code generator can expect that all of these optimizations run accurately.
It does not need to care about the definition of unneeded registers and instructions.

3.3 Design

There are two ways to implement an LLLVM backend. Either the target indepen-
dent code generator is used or it is implemented as a general LLVM Pass. The
target independent code generator provides code generation utilities and various
late optimizations which can be adapted for the individual target. Amongst others,
register allocation, scheduling and instruction selection are included. It requires
to define abstract target description and instruction description classes. They de-
fine important properties and aspects of the target architecture and its instructions
in a general way. Particular aspects which can not be represented in this general
fashion must be specified by custom passes. The final code emittance depends on
the instruction and assembly printer classes. The TableGen tool can be used to
automate a lot of the instructions description process. However, the programming
effort for the target independent code generator is immense. The existing X86,

24 CHAPTER 3. CODE GENERATOR IMPLEMENTATION

PowerPC, and ARM backends require more than 45,000, 25,000, and 40,000
lines of code, respectively. In comparison the CBackend requires only around
3,500 lines, including some dispensable duplicated code parts.

On the contrary, the custom pass variant requires to implement many features
by hand that are provided by the target independent code generator. However, the
conversion to PTX code is special in this regard. As previously described, the
conversion from LLVM bitcode to PTX code is only a transition from one inter-
mediate representation into another. PTX code is the intermediate representation
of the nvcc compiler. Late optimizations are performed during PTX to GPU as-
sembly code generation. Assuming that these passes are accurate and efficient,
the PTX code generator does not need to perform them beforehand. Thus, most
of the features provided by the target independent code generator are useless. The
few remaining features do not justify the cumbersome specification and adaption
process of the target independent code generator. The implementation of the PTX
code generator as a custom LLVM pass is simpler. Thus, this approach is followed
here.

Generally, LLVM bitcode can be transformed to PTX code instruction-wise.
The PTX code generator can iterate over each LLVM bitcode instruction and
transform it into equivalent PTX instructions. However, disparities between both
languages need a special handling. The following section works out all dispari-
ties. Some of them are handled during code generation, others are eliminated in
pre-code-generation passes. The code generator is implemented as a sequence of
LLVM passes. Each pre-code-generation pass takes LLVM bitcode as input and
transforms it into a more convenient format. Section 3.6 and 3.7 describe these
passes in more detail. Only the last executed pass actually generates code. It iter-
ates over the LLVM bitcode and outputs corresponding PTX code. The final PTX
code is stored in a string stream which can either be written to a file or directly
stored in memory, allowing static as well as just in time compilation.

3.4 LLVM Bitcode and PTX Comparison

The disparities of LLVM and PTX code can be divided into two classes A and
B. Class A consists of disparities which can be handled by pre-code-generation
passes, which transform LLVM bitcode into a more suitable format. For exam-
ple, LLVM Instructions and intrinsics which are not directly supported by PTX
are replaced by simpler supported instructions. Disparities of class B are handled
directly during code generation. Either it is not possible to perform the transfor-
mation on LLVM bitcode because LLVM bitcode is too restrictive. Or it is more
suitable to handle the disparity during code generation. Most of the disparities of
class B also require a bitcode language extension convention (see next section).

3.4. LLVM BITCODE AND PTX COMPARISON 25

Class A disparities

e The address calculation of struct and array elements is handled differently.
LLVM provides get element pointer (GEP) instructions, which expect two
types of arguments. The base address of pointer type and integer element
indices. The underlying address calculation is hidden. In PTX structs and
arrays are not typed; they are defined as arrays of bit types. There is also no
GEP equivalent and no pointer type. Address calculations are hard-coded by
standard integer arithmetic. The original sub-types define sizes and offsets
of the fields.

e The base address of global variables is known at code generation time.
LLVM therefore treats pointers to global variable base addresses as con-
stants. This is not the case in PTX. Global variable addresses need to be
moved to registers first and constant offsets need to be added by normal
integer arithmetic instructions.

e High-level utility functions like exp and pow are represented in LLVM by
intrinsics. PTX and the underlying GPU hardware also provide some math-
ematical utility instructions like ex2 and log2, but others are unsupported.
These unsupported instructions need to be approximated by simpler instruc-
tions. For example the exp instruction is approximated by a multiplication
and an ex2 call.

e Both LLVM and PTX support vector types, however PTX is more restric-
tive. LLVM supports arbitrary vector widths and almost every instruction
can operate on vector operands. In PTX only loads, stores, texture fetches,
and extract element instructions can operate on vectors. Every other instruc-
tion is restricted to scalar values. Also the vector width is restricted to 2 and
4. Vectors with 3 elements can be handled by four element vectors.

e PTX supports conditional execution of instructions. Each instructions can
be marked with a predicate flag. Instructions with a false-predicate are ex-
cluded from execution. LLVM bitcode contains no predicate representation.
Conditional execution must be implemented by conditional branches.

The handling of class A disparities by pre-code-generation passes is captured

in Section 3.6.

Class B disparities

e LILVM bitcode fulfills the SSA property, each variable is only assigned
once. So called PHI-instructions are used to determine the right value at

26

CHAPTER 3. CODE GENERATOR IMPLEMENTATION

convergent control flow nodes. PTX does not restrict the definition of virtual
registers and contains no PHI-instruction equivalent.

PTX distinguishes between signed and unsigned integers, sign dependent
instructions behave differently depending on the argument type. The source
and operand types must be specified explicitly. For example a division of
two signed integers performs a signed division and unsigned arguments in-
dicate an unsigned division.

LLVM does not distinguish between signed and unsigned integer types in
general. Instructions which differ, depending on the signed or unsigned
argument type, are provided in two versions. For example there is a div
instruction for signed division and an udiv instruction for unsigned division.
In both cases the arguments are integers.

LLVM allows to specify primitive types with arbitrary bit sizes. PTX
primitive types are generally restricted to 16, 32 and 64 bit. Load and store
instructions also allow 8 bit types.

PTX provides access to the different memory spaces of NVIDIA GPUs:
global constant, shared, local and texture memory. LLLVM also provides an
address space qualifier for pointers and global fields. But their semantic
is not fixed. Each code generator can handle the address space qualifier
differently. The adherence of the convention of Section 3.5 is necessary for
the PTX code generator.

PTX distinguishes between kernel and device functions. Kernel functions
define entry points. They are invoked by the host system and are restricted
to the void return type. Device functions are not visible to the host system,
they are only accessible from kernel functions and other device functions.
This is a GPU-specific feature and is not supported by LLVM explicitly.
Again a convention must be defined.

GPU-specific instructions which are implemented in hardware are not na-
tively supported by LLVM. Examples are texture look-ups, synchronization
instructions, and fused arithmetic instructions like muladd.

Beside these disparities both languages are similar. In particular the memory

model is the same. Both languages operate on virtual registers. Register alloca-
tion is performed during PTX to GPU assembly compilation and is therefore not
required during PTX code generation. The similarities of both languages allow
an elementary mapping from LLVM bitcode constructs to PTX instructions. Op-
timizations can be performed on the bitcode representation. The mapping does

3.5. GPU LANGUAGE EXTENSION CONVENTION 27

not incorporate complex transformations which potentially eliminate previous op-
timizations.

3.5 GPU Language Extension Convention

The previously listed disparities do not allow to represent the whole functionality
of PTX in LLVM without language extensions. This section defines an exhaus-
tive convention, it includes language extensions for the class B disparities. The
convention only extends the bitcode semantically, no syntactical extension is re-
quired. The convention serves as a fixed interface between frontends which gen-
erate GPU-specific LLVM bitcode, optimization passes, and the PTX code gener-
ator. This convention can also be used by newly developed GPU code generators,
e.g. an OpenCL code generator.

The PTX code generator needs to decide on the function type. It uses the
following mapping from arbitrary LLVM bitcode functions to the PTX-kernel
and PTX-device function type. The mapping is based on the number of calls
and does not require any additional information. Functions defined in a LLVM
module which are called at least once are mapped to device functions, because
PTX does not allow to call kernel functions out of a different function. All other
functions, with no calls, are potential entry points for the host system, they are
mapped to kernel functions. bitcode functions with non-void return type and no
calls can not be called from the host CPU nor from device functions. Thus, they
are never used. They are handled as device functions for the sake of completeness.
It is also possible to ignore them completely during code generation. But it is
sometimes beneficial to allow the inspection of PTX code generated from unused
test functions.

The address space attribute of LLVM bitcode pointer types is used for the
five different memory spaces of PTX. In general memory allocated by alloca
instructions is part of the function stack frame. PTX does not have an explicit
stack. Each thread has a local memory space region. It can be regarded as a
stack of depth 1. A dynamic stack depth is not possible because the local memory
region size must be defined at compilation time. A stack depth of 1 is sufficient
since PTX functions are non-recursive. Memory allocated by alloca instructions
automatically resides in the default address space 0. Thus, memory space 0 is
mapped to local PTX memory. The remaining address spaces can be mapped
arbitrarily. Address space 1 is mapped to shared, address space 2 to global, address
space 3 to constant, and address space 4 to texture memory.

As previously described the type-systems of LLVM bitcode and PTX dif-
fer. But no language extension is required for them. The LLVM integer type
is mapped to the unsigned integer type of PTX. This way every PTX integer in-

28 CHAPTER 3. CODE GENERATOR IMPLEMENTATION

struction operates on unsigned integers. Only the specific LLVM signed instruc-
tions like sdiv are mapped to PTX instructions marked with the signed type of
appropriate size. The non-strict type system of PTX allows such implicit casts.

The PTX code generator promotes unsupported bit-sizes to the smallest sup-
ported bit-size which is greater than the requested bit-size. This increases the com-
putation range and potentially changes the program semantic. Programs which de-
pend on overflows and related side effects must be adapted by hand. Conditional
expressions which simulate overflows can be inserted automatically. However,
such adaptions significantly reduce performance. It is more vulnerable to rewrite
such programs without overflow dependencies.

All other GPU-specific features which are not natively supported by LLVM
like special registers, texture look-ups, and synchronization methods are repre-
sented by intrinsic functions. Basically, the name of intrinsic functions is equiv-
alent to the corresponding PTX instruction name. This direct mapping is not
possible for synchronization instructions, special register accesses, and texture
fetches, which depend on vector types. Tables 3.1, 3.3, and 3.2 define the com-
plete mapping of PTX instructions to intrinsic functions. The mapping includes
every instruction form the PTX ISA 1.4 [NVI10b] which has no counterpart in
LLVM bitcode. Intrinsics which are currently not utilized by the PTX code gen-
erator are shaded in gray.

According to the previously described compilation pipeline (Section 3.1), C++
code can be converted to LLVM bitcode fulfilling the defined conventions with the
LLVM Clang frontend. The address space annotation is set through the C attribute
__address_space({0,1,2,3,4}). All other features are represented by intrinsic
functions which are defined in a header file (see Code Appendix 6.1). This header
file also provides definitions for the local, global, constant, shared, and texture
memory space which resolves the explicit use of the __address_space() annota-
tion. Using this header the source C++ code is syntactically similar to CUDA
code. This similarity eases ports from original CUDA applications to extended
C++ programs.

3.6 Pre Code Generation Passes

The PTX code generator incorporates three custom passes. Problems which arise
from disparity of class A (marked in bold) are solved by them. First, the SetG-
PUAddressSpace pass handles the different available PTX address spaces. The

3.6. PRE CODE GENERATION PASSES 29

PTX Instruction LLVM Intrinsic Semantic

.sreg .u32 %tid.{x,y,z} 116 __ptx_tid_{x,y,z}() thread identifier within a CTA
.sreg .u32 %ntid.{x,y,z} 116 __ptx_ntid_{x,y,z}() number of thread IDs per CTA
.sreg .u32 %laneid 116 __ptx_laneid() lane within a warp

.sreg .u32 %warpid 116 __ptx_warpid() warp within a CTA

.sreg .u32 %nwarpid 116 __ptx_nwarpid() number of warp identifiers

.sreg .u32 %ctaid.{x,y,z} i16 __ptx_ctaid_{x,y,z}() CTA identifier within a grid
.sreg .u32 %nctaid.{x,y,z} | 116 __ptx_nctaid_{x,y,z}() number of CTA ids per grid

.sreg .u32 %smid 116 __ptx_smid() processor identifier

.sreg .u32 %nsmid 116 __ptx_nsmid() number of processor identifiers.
.sreg .u32 %gidid 116 __ptx_gridid() grid identifier

.sreg .u32 %clock 132 _ ptx_clock() 32 bit Cycle counter

.sreg .u32 %pm{0,1,2,3} i16 __ptx_pm_{0,1,2,3}() performance monitoring counters

Table 3.1: Mapping from special PTX registers to LLVM intrinsics.

lowerlInstruction pass simulates LLVM utility functions which are not supported
by PTX, by adequate instructions. It also replaces GEP instructions by arithmetic
instructions. Finally, the PolishBeforeCodegen pass cleans up useless constructs
which were introduced during previously applied passes.

The utilization of predicated PTX instructions requires a pre-code generation-
pass which determines program parts which should be predicated. Conditional
branches to small basic blocks are potential candidates. This pass cannot operate
on the bitcode representation exclusively, because LLLVM bitcode has no repre-
sentation for predicated execution. Instead, an additional data structure, which
contains predication information, must be created and passed to the code gener-
ator. Such a pass is not necessarily required since conditional branches can be
used instead. It is disputable if predication really increases performance since the
execution of conditional branches of threads inside one warp comes close to pred-
icated execution (see Section 2.4). At least the additional branch instruction can
be avoided by predication. The support of predicated execution by the PTX code
generator and an analysis of the performance gain is left for future work.

Vector types are currently not handled specifically. They are supported as far
as PTX supports vector types. It is easy to split up unsupported LLVM vector
operations into a stream of sequential operations of the same type. An LLVM
FunctionPass which is executed before code generation can perform this transfor-
mation.

SetGPUAddressSpace Pass

In theory the LLLVM address space attribute allows for a simple and clean han-
dling of the different PTX address spaces. The compilation pipeline, depicted in
Figure 3.1, uses the Clang LLVM frontend. It is capable of generating arbitrary

30 CHAPTER 3. CODE GENERATOR IMPLEMENTATION

PTX Instruction LLVM Intrinsic Semantic

bar.sync d void __bar(const i32 d) barrier wait at d
membar.{gl, cta} void __membar_{gl, cta}() memory barrier

trap void __trap() perform trap operation
brkpt void __brkpt() suspends execution
pmevent ¢ void __pmevent(i32 c) performance monitor event

(c is a constant index)

op = {and, or, xor, cas, exch, add, inc, dec, min, max}
type = {b32, b64, u32, u64, s32, {32}, typeC = {i32, 164, float}

Table 3.2: Mapping from PTX synchronization and atomic instructions to LLVM intrinsic
functions. Instructions which are currently not implemented are shaded in gray.

PTX Instruction LLVM Intrinsic Semantic
tex.{1d,2d,3d} d, [a, c] <4xfloat> __tex1D(float* a, float cx), | one-, two-, or three-
<4xfloat> __tex2D(float* a, float cx, | dimensional texture
cy), <4xfloat> __tex3D(float* a, float | fetch

CX, ¢y, CZ)
sqrt.{approx.f32,rn.f64} a ftypeC __sqrt(ftypeC a) Va
sin.f32 a float sinf(float a) sin(a), a in radians
cos.f32a float cosf(float a) cos(a)
1g2.f32 a float __1g2(float a) log, (a)
ex2.f32 a float __ex2(float a) exp, (a)

ftype = {{32, f64}, typeC = {float, double}
itype = {ul6, u32, ub4, s16, s32, s64}, itypeC = {il6, 132, 164}
type = itype U ftype, typeC = itypeC U ftypeC

Table 3.3: Mapping of arithmetic PTX instructions for which no LLVM instruction coun-
terpart exists. Instructions which are currently not implemented are shaded in gray.

3.6. PRE CODE GENERATION PASSES 31

address space attributes for pointers and global variables. Every existing LLVM
pass is aware of this distinction. Finally, the code generator can easily gener-
ate memory access instructions with the corresponding address space qualifier.
Currently, in some cases the Clang frontend does not generate correct memory
attributes. In particular, Clang has problems with C++ classes, copy constructors,
and function overloading. It either generates incorrect code or fails completely
during compilation.

The SetGPUAddressSpace pass circumvents this restriction by a naming con-
vention for variables and pointers. If an LLVM variable resides in or a pointer
points to the default memory space zero its name is inspected. Names starting
with the key words __ptx_global, __ptx_local, __ptx_constant, and __ptx_texture
are mapped to the corresponding address space value. This pass changes the ad-
dress space type of such variables, pointers, and all occurring uses to the requested
address space value. The pass is implemented as an LLVM ModulePass.

This naming convention is only a workaround and is not included in the pre-
viously defined language extension convention. Once the Clang frontend handles
address space attributes correctly this pass can be removed.

However, related transformations might still be beneficial. Most of the time
global variables reside in the global memory space. The global address space is
the preferred default in this case. On the contrary memory regions allocated with
alloca instructions most of the time are constrained to access from the allocating
thread. The local or shared memory space is the most convenient choice in this
situation. Currently, the default memory space 0 is mapped to the local PTX
memory space. Clearly, the programing effort is reduced by a pass which moves
global variables with unspecified address space attributes to the global address
space. Ideally, the compiler should make the decisions on the address space. The
development of such optimization passes is a research topic on its own.

InsertSpeciallnstruction Pass

The InsertSpeciallnstruction pass replaces LLVM features, which are not sup-
ported by PTX, with simple adequate instructions. Mathematical functions like
exp, log, and tan as well as GEP instructions are handled. The transformation is
performed on LLVM bitcode as an LLVM BasicBlock pass. PTX assembly inser-
tions are not necessary. The mathematical functions are simplified according to
the equations seen in Figure 3.2. The basic trigonometric functions sin, cos, log,,
and exp, are supported by PTX.

Each LLVM GEP instruction is simplified iteratively on its nested structs and
arrays. The iterative algorithm starts at the up-most nesting level and descends
one level per iteration. The iteration is completed as soon as a primitive type is
reached. At each level, the algorithm calculates the offset between the accessed

32 CHAPTER 3. CODE GENERATOR IMPLEMENTATION

pow(a,x) = = (2l082(@))x — plogy (@) exp, (log, (a) * x)
exp,(x) = e = (2°0())" =20 = exp,(log, (¢) *x)
ox) - izzzéifi

oty - 2
oy - 220

(3.1)

Figure 3.2: Computation of trigonometric functions by instructions which are imple-
mented in hardware on current GPUs.

element and the parent structure based on the structure layout and the element in-
dices. The GEP instruction provides an element index for every nesting level. This
index can be constant or dynamic. Computations which involve dynamic indices
must be evaluated at runtime, constant indices are addressed during compilation
time.

At the beginning, this pass inserts a pointer to integer conversion instruction,
which converts the base address of the accessed structure. A pointer offset_dyn
to the last dynamic computation is maintained during each iteration step. It is
initialized with the inserted pointer to integer instruction. An offset variable (off-
set_const) is also defined and initialized to zero. This variable records the constant
offset to the base address of the GEP instruction.

During each iteration step the minor offset between the accessed element and
the first element of that level is calculated. The minor offset depends on the ele-
ment size, a potential padding and the index of the accessed element according to
the equation seen in Algorithm 1. Constant element indices and the resulting mi-
nor offsets are known at compilation time. In this case the minor offset is simply
added to the offset_const variable. Minor offsets of variable indices must be deter-
mined at runtime. Arithmetic instructions are inserted according to Algorithm 2.
The final result is added to the last dynamic calculation, it is referenced by off-
set_dyn. Afterwards the reference is set to the newly inserted add instruction.

Finally, the value of offset_const is added to offset_dyn by an add instruction.
The final result is converted back to pointer type. The inserted conversion instruc-
tions will be mapped to no-operation (NOP) instructions during code generation.
However, they cannot be omitted because LLVM bitcode is type safe and requires
such explicit type conversions.

3.6. PRE CODE GENERATION PASSES 33

Algorithm 1 Offset calculation for structures
for i =1 to elemIndex — 1 do
padding = (align — (elemSize(i) mod align)) mod align
offset += elemSize(i) + padding
end for

Algorithm 2 Offset calculation for arrays

padding = (align — (elemSize(0) mod align)) mod align
offset = (elemSize(0) + padding) * elemIndex

The handling of GEP instructions before code generation allows to run general
as well as custom optimization passes afterwards on the offset calculation. For
example consecutive mul and add instructions can be combined to fused muladd
instructions. Currently, only the available commutative simplification, constant
propagation, and dead code elimination passes are executed.

The constant propagation pass reveals the problem of global variable base
addresses—which are constant in LLVM—as described in Section 3.4. The con-
stant propagation pass combines the constant arithmetic operations with the global
base address into constant expressions which must be evaluated at compilation
time. This is not possible during PTX code generation, because the explicit base
address is not known. Also it is not possible to express the constant expression in
PTX because global base addresses are not considered as constants by PTX.

To avoid this problem the InsertSpeciallnstruction pass inserts wrapper func-
tion calls around each global base address occurrence. The wrapper function is
defined as external; it takes one argument of pointer type and also has pointer
return type. Each global variable access is encapsulated by a call to the wrapper
function with that global variable as an argument. The LLVM compiler has no in-
formation about the wrapper function, arbitrary computations could be performed
inside this function. Thus, the compiler cannot treat the result of the wrapper
function call as constant anymore. Hence, the encapsulated base address cannot
be included in constant expressions. After the execution of arbitrary optimization
passes the wrapper function will be replaced by the previously encapsulated global
base address. The PolishBeforeCodegen pass performs this simple transformation.

It is also possible to handle GEP instructions during code generation. This
however would forbid to run LLVM optimization passes on the generated cal-
culations. The GEP code generation method would need to perform impractical
individual optimizations in order to emit performant code.

34 CHAPTER 3. CODE GENERATOR IMPLEMENTATION

PolishBeforeCodegen Pass

This LLVM ModulePass removes the previously inserted wrapper functions. Mas-
king is no longer required during code generation. No additional optimization
passes are executed in between this pass and the code generation pass. Thus, the
base address handling of global variables cannot be affected anymore.

3.7 Code Generation Pass

This pass performs the actual conversion from LLVM bitcode to PTX code. It
is implemented as a standard LLVM ModulePass, however it does not alter the
bitcode representation but transforms it into corresponding PTX code. The PTX
code is emitted as a string stream, which allows static as well as just in time
compilation.

LLVM bitcode is represented in a hierarchical manner. The top level element
is the so called module, which consists of global variables and function defini-
tions. Functions are defined by their signature and body. The body is separated
in sequential segments called blocks. Blocks finally contain a sequence of in-
structions, they start with a number of PHI-instructions and end with terminator
instructions.

The final code generation pass processes each of these hierarchical elements
by corresponding handlers. The visitor pattern! is used to handle the instruction
level, its nodes form the leaves of this hierarchical representation.

First, the module handler dolnitialization() is called for every module. It prints
out global variables and function declarations. Afterwards the handler runOn-
Function() is called for every defined function of that module. The function han-
dler prints the function signature and the first part of the function body, consisting
of the declaration of required registers. Thereafter the block handler printBa-
sicBlock() s called for every block. The block handler starts by printing the name
of the currently processed block as a branch mark for jump instructions. After-
wards the visitor method is called sequentially for every visitor method that is
included in the current block.

This design induces a high-level of abstraction. Every hierarchical element
just needs to handle its own local properties and additional tasks are propagated to
the children. Most of the code generation is done on the instruction level. How-
ever, the visitor pattern distributes tasks to the visitor methods of each instruction
type. Each visitor method only needs to care about local, instruction specific

IThe visitor pattern is an object oriented design pattern which assigns algorithms to al-
ready existing objects. Consider Design Patterns: Elements of Reusable Object-Oriented Soft-
ware [Gam94] for a detailed description.

3.7. CODE GENERATION PASS 35

properties which simplifies the code generation complexity.

The following passage describes all handlers and visitor methods in more de-
tail. All problems arising from disparities of class B (Section 3.4) are solved. Each
disparity type occurrence is typed bold during the following passage to provide a
better overview.

dolnitialization()

Global variable declarations are generally located at the beginning of PTX files,
before function definitions. Thus, the dolnitialisation method, which is called be-
fore every other method of that pass, is ideal for global variable declarations. This
method iterates over each global variable of that bitcode module, determines the
PTX address space by the mapping described in Section 3.5 and prints initializers
wherever required.

Structs are not supported by PTX and need a special handling. The smallest
primitive type is 8 bit wide and the bit-size of every other primitive is a multiple
of 8 bit. Thus, the size of an arbitrary struct is divisible by 8. This observation
allows to allocate the right memory amount for each struct by defining an array
of 8 bit primitives with the appropriate size. Also the initialization of such structs
must be done by an array of 8 bit values. Bit representations of primitives with a
bit-size larger than 8 bit are split up in 8 bit chunks. Each chunk is passed to the
initialization array as a single value. Nested structs and arrays are handled in the
same way.

runOnFunction()

The runOnFunction() method is called for every function defined in the bitcode
module. It starts by printing the function signature which includes the function
type qualifier. The function type, either kernel or entry function, is determined
by the convention described in Section 3.5. The body of each function starts
with register definitions. The runOnFunction() method simply iterates over ev-
ery instruction of the current function and prints sufficient registers. LLVM bit-
code is in SSA form, each instruction requires one destination register. The PTX
backend handles SSA-related PHI-instructions according to the naive method de-
scribed in [Sre99]. The described mapping from SSA to assembly code requires
an additional virtual register for every primitive PHI-instruction. For every PHI-
instruction, a copy instruction is inserted before the corresponding branch instruc-
tion in the antecedent basic blocks. The PTX backend proceeds on the assumption
that late optimizations, which optimize the register pressure, are performed by the
NVIDIA driver. Thus, no sophisticated transformation out of SSA form like the
advanced method from [Sre99] is required.

36 CHAPTER 3. CODE GENERATOR IMPLEMENTATION

Arguments of entry functions reside in the shared memory space. Load in-
structions are inserted for them after the register definitions. Finally, the printBa-
sicBlock handler is invoked for every basic block of the processed function.

printBasicBlock()

The printBasicBlock() method handles one basic block at a time. First, a branch
mark is printed which can be targeted by branch instructions. Afterwards the ap-
propriate visitor method is called sequentially for every instruction that is included
in the current block.

Generally, visitor methods take an instance of the corresponding LLVM bit-
code instruction as input and transform it into valid PTX instructions. The gen-
erated PTX instructions are appended to the output string stream. Due to the
previously listed disparities some instructions require a non-trivial handling. The
following section provides details about visitor methods which perform such non-
trivial transformations.

visitBinaryOperator()

The visitBinaryOperator() handles various binary operations of integer, floating
point, and binary type. The following operations are supported: add, sub, mul,
div, and, or, xor, shift, and rem. The standard math operations operate on float,
unsigned-, and signed-integer values. The logical operations operate on binary
representations.

Some special cases must be handled. Mul operation require a specific round-
ing mode. Floating point divisions must be marked with the .full or .approx qual-
ifier. Unsupported bit-sizes are promoted to larger, supported bit sizes. If no such
type exists an assertion is thrown. Every visitor method performs bit-size promo-
tion, even though it is not explicitly mentioned in the following documentation.

visitPHINode()

The handling of PHI-instructions is performed by the visitBranchInst() method to
simplify matters.

visitBranchlnst()

The visitBranchinst() method inserts move instructions for each PHI instruction
in the target basic block. The move instructions copy relevant values to the tem-
porary registers previously generated for each PHI instruction. Finally, the PTX
branch instruction to the target basic block is printed.

3.7. CODE GENERATION PASS 37

Conditional expressions are handled by predicates. The previously described
branch instructions are printed twice; First, predicated with the branch condition
for the consequence. Second, predicated with the negated branch condition for
the alternative. Predication is natively supported by PTX.

visitCmplnst()

The visitCmplnst method handles ordered and unordered signed integers, un-
signed integers, and floating point comparisons.

visitCastinst()

The visitCastInst method handles four different cases. Bit-casts are implemented
by move instructions. An unequal-to-zero setp expression is used to cast instruc-
tions with predicate destination operands. The selp instruction handles predicate
source operands. Dependent on the source predicate, zero or one is selected. All
other casts are handled by native PTX cv? instruction.

visitSelectinst()

The visitSelectInst handling depends on the operand type. Predicate operands are
implemented by predicated move instructions. For every other type selp instruc-
tions are used.

visitCalllnst()

The generation of call instructions is trivial. Only intrinsic functions, which rep-
resent GPU-specific features, need a special handling. The PTX code genera-
tor supports a lot of intrinsic functions, see Table 3.1, Table 3.3, and Table 3.2
for a complete listing. The visitCalllnst() method contains hard-coded imple-
mentations for every supported intrinsic. Some of them consist of a single line,
others define temporary registers and contain multiple instructions. For example
the __syncthreads() intrinsic is simply mapped to the PTX code line bar.sync O.
Texture fetches belong to the class of more sophisticated intrinsics, up to four
temporary register definitions are required.

visitAllocalnst()

The visitAllocalnst() method handles the allocation of arbitrary structs and arrays
in the same way as global structs are represented. Structs are replaced by appro-
priately sized arrays with 8 bit elements. According to the language extension

38 CHAPTER 3. CODE GENERATOR IMPLEMENTATION

convention (Section 3.5) the alloca instruction reserves memory in the local ad-
dress space.

visitLoadlInst() and visitStorelnst()

Load and store instructions are the only PTX instructions which operate on 8
bit values. The load instruction loads values which are stored in 8 bit cells into
promoted 16 bit registers such that subsequent instructions can operate on them.
Analogously, values which are smaller or equal than 8 bit reside in promoted 16
bit registers. The store instruction stores the content of such registers into 8 bit
memory cells.

The choice of the PTX address space is based on the address space attribute
of the source and destination pointer of the load and store bitcode instruction.
The address space value is mapped to the PTX address space according to the
convention in Chapter 3.5. Loads and stores of vector types are marked with the
appropriate vector key-word .v2 and .v4 (width two and four, respectively).

Chapter 4
Evaluation

The evaluation of the LLVM PTX code generator is done in three steps:

1. The basic functionality of the code generator is checked by a set of test
functions. Each function is compiled to PTX GPU code and x86 CPU code
for reference. The test functions are executed for various parameters and
their results on both systems are compared.

2. The code generation of complex programs and its execution performance
is verified with a PTX shader integration into a deferred shading setup of
the OGRE renderer. OGRE is an open source rasterizer which is based
on Direct3D and OpenGL. The generated code is compared to both native
Cg shaders and handwritten CUDA shaders. The accuracy is analyzed by
comparing the resulting images on a pixel per pixel basis.

3. For some selected shaders and test functions the performance of the gener-
ated code is compared to analogous, handwritten CUDA programs in more
detail. Various kernel parameters like used registers, memory access effi-
ciency and kernel execution runtime are profiled with the CUDA profiler.

All test functions and test shaders are written in C++. The LLVM Clang fron-
tend is used to converted them to LLVM bitcode. Intrinsics are defined as external
functions in a separate header which is inlined by all test programs. The whole
functionality of PTX can be described in C++ code, mapped to LLVM bitcode
using the language extensions of Section 3.5 and tested by extensive test cases.

4.1 Test Suite

The test suite is an automatic tester. It contains many separate test functions cov-
ering the majority of LLVM bitcode constructs and PTX-specific extensions with

39

40 CHAPTER 4. EVALUATION

a variety of input parameters. The test functions are divided into 4 categories,
each of them covers a different field of instructions:

1. Basic Instructions: The first category of test-functions tests arithmetic,
binary, and trigonometric instructions for floating point and integer values
of different bit size. Special cases verify the correct handling of signed,
unsigned, and constant operands. Also binary conversion as well as cast
instructions between all different types are covered. Function calls with
different arguments and return values as well as struct returns are issued.

2. Control Flow: Nested loops containing breaks and returns are checked in
this category. The correct conversion of LLVM PHI-instructions between
basic blocks is included.

3. Memory Access: Loads and stores from and to local, global, shared, and
constant memory are covered in this category. Test cases for alloca instruc-
tions are included. The correct access of nested structs, arrays, and vectors,
including alignment and padding calculations is checked. Texture access is
tested for one, two, and three dimensional textures.

4. PTX-specific extensions: This category covers PTX-specific special regis-
ters, synchronization instructions, and atomic operations. Also kernel calls
issued from the CPU with different number of arguments and argument
types including pointer types are covered.

The execution of the test functions on the GPU and CPU validates the gen-
erated code. The results of both instances are identical in the range specified by
the IEEE standard for floating-point arithmetic [IEE08]. The test suite and the
test functions are implemented in C++, Figure 4.1 shows two of them. Function
test_math() covers mathematical instructions and gets executed with input values
d.f =3.2 and d.i = 3. The ftest_cflow() function tests control flow, input values
are d.i = 3 and d.i = 10. Additional test cases and the data structure layouts are
listed in Section 6.3, the whole test-suite covers 40 different cases.

The C++ test-functions are known to the test suite at compilation time. They
are statically compiled to x86-code by the g++ compiler and to PTX code by the
LLVM compiler, its C++ Clang frontend, and the equipped PTX code generator.
The NVIDIA driver API is used to load, compile and execute the PTX code dy-
namically. The parameters and results are also copied to and from the GPU by the
diver APIL.

The CPU has not the whole functionality of the GPU. It is not possible to
execute every PTX feature on the CPU without additional effort. Different address
spaces and intrinsic functions must be emulated by the CPU reference functions.

4.2. OGRE INTEGRATION 41

test_math(GLOBAL Datax* d) test_cflow(GLOBAL Datax* d)
{ {

float £ = d->f; int tmp = O;

float fi = d->i; int is = d->i;

d->fal0] = expf(f);

d->fal1] = logf(f); for(int i=0; i<is; i++)

d->fal2] = exp2f(f); {

d->fa[3] = log2f(f); tmp += 1;

d->fa[4] = sinf(f); if (i>10)

d->fa[5] = cosf(f); break;

d->fal6] = sqrtf(f);

d->fa[7] = tanf(f); tmp += i;

d->fa[8] = floorf(f); }

d->fal[9] = atanf(f);

d->fa[10] = powf (f,fi); d->f = tmp;
} }

(a) MathTest (b) ControlFlowTest

Figure 4.1: Two examples from the PTX test suite. (a) inspects math functionality and (b)
test control flow constructs.

The test suite supplies specific intrinsic function definitions for the included test
cases. For a general emulation of PTX code on the CPU consider the Ocelot
project [Ker(09].

The test suite was a helpful tool during the implementation of new language
features and ensured the correctness of existent functionality. These code exam-
ples show the whole functionality of the PTX backend and provide a good starting
point for its users.

4.2 OGRE Integration

The deferred shading demo [Gat09] of OGRE’s sample pack is a deferred shading
rasterizer using the rendering pipeline of OGRE for the pre-shading part. Dur-
ing this step, shading input parameters are determined per pixel and stored in the
so called GBuffer!. The deferred shading demo stores the GBuffer in two 64 bit
textures. The first texture contains the rgb pixel color and the specular coeffi-
cients, the second texture contains the normal and depth information. All values
are stored as 16 bit floats. Additional global parameters like camera and light po-
sitions are directly passed to the shader as parameters. The shading language Cg

' A GBuffer is a two dimensional data-structure. Its size is equal to the output-image size. Each
element contains shading information for its corresponding pixel.

42 CHAPTER 4. EVALUATION

is used for the deferred shading.

The PTX version replaces the deferred shading part by a PTX kernel call
which performs the shading computations. The shader parameters are stored in
constant memory. The kernel call and memory transactions are issued through
the NVIDIA driver API. PTX shaders are loaded from text files, which are gener-
ated beforehand by the AnySL system [Kar10]. The generation of AnySL bitcode
shaders is not part of this thesis but it is straightforward: Merely the definition of
a short glue code file is necessary.

Additionally, a different GBuffer layout for AnySL shader is introduced, the
three color components are replaced by uv-texture coordinates and a material id.
OpenGL textures are not directly accessible by PTX kernels. For this additional
memory copies from frame buffers objects (FBO) to pixel buffers object (PBO)
are necessary. The mapping is performed via a render buffer objects (RBO) which
ensures maximum memory throughput.

The performance of the generated code is evaluated by comparing the runtime
of the original Cg shader with an equivalent handwritten C++ shader compiled to
PTX by the PTX code generator. As a direct comparison some selected shaders
are compared to handwritten CUDA equivalents.

Table 4.1 shows the comparison of selected shaders in frames per second. The
additional overhead caused by memory copies between OpenGL and PTX-kernels
is excluded in all columns marked with a star (*) for a better comparison. The light
shader is a phong shader which supports a dynamic number of light sources and
shadow calculation based on shadow textures. It is tested in a scene with 6 point
light sources (see Picture 4.2b). All other shaders are tested in a simpler scene
with a single point light (see pictures 4.2a). The shaders exclusively operate
on the GBuffer and on global constants. The number of triangles is irrelevant
since it does not influence the execution time. The wood and granite shaders are
procedural shaders based on perlin noise [Per02]. Random numbers are stored in
an array in constant memory space. The multi shader combines multiple shaders
in a switch statement. The correct shader type is selected for each pixel, based
on its material id. The multi shader incorporates different phong shaders, the
procedural brick, granite, and wood shaders, a normal shader and a checker shader
based on uv-coordinates.

The Cg shader outperforms the PTX shaders by a huge margin. It is executed
in-pipeline like the preceding GBuffer generation process. PTX kernels and in-
pipeline operations require a different GPU configuration. Context switches are
required in between each invocation. In this case context switches are required
before and after each PTX shader invocation. Each context switch causes addi-
tional overhead. Also the actual invocation of every thread consumes time. These
two drawbacks are the main reason for the huge performance difference of Cg
and PTX shaders. Already a blank shader which consists of an empty kernel has a

4.2. OGRE INTEGRATION 43

Shader | Resolution | NVCC | NVCC* | PTX | PTX* | Cg
light 800x600 70.6 146.3 76.5 | 175.5 | 260
1024x768 | 63.3 124.0 71.5 | 156.9 | 260

1600x1024 | 49.6 83.3 60.1 | 116.9 | 244
blank | 32x32 - - 85.8 | 1994 | 260
800x600 - - 82.8 | 1954 | 260
1024x768 | - - 79.9 | 182.3 | 260
1600x1024 | - - 74.2 | 1554 | 260
wood | 800x600 195 256 191 | 255 -
1024x768 180 216 162 | 195 -
1600x1024 | 126 148 115 | 135 -

granite | 800x600 59.0 63.2 59.0 | 63.2 -
1024x768 | 40.1 414 40.0 | 413 -
1600x1024 | 21.5 22.1 21.5 | 22.1 -
multi 800x600 97.6 110.1 97.7 | 1103 | -
1024x768 | 73.5 78.2 73.7 | 784 -
1600x1024 | 44.7 47.0 447 | 47.2 -

Table 4.1: Runtime comparison of cg and PTX shaders. The PTX shaders are tested in
two versions, compiled with the nvce compiler and with the PTX code generator. All mea-
surements are in frames per second. Only the light and blank shaders are implemented in
cg. The memory copy overhead which is required for PTX and OpenGL-texture interop-
erability are excluded in columns which are marked with a (*)

limited frame-rate which is lower than the Cg light shader. The comparison to the
nvcc compiler is more meaningful. Generally, the performance of PTX shaders
generated by the PTX code generator is close to code generated by the nvcec com-
piler. Both versions scale well with the image resolution. For the phong shader the
PTX code generator generates better code than the nvcc compiler. In every other
case, both compilers are equally performant. Specific analyses of these runtime
differences by the CUDA profiler are presented in Section 4.3.

The semantic of the generated code is verified by comparing the output im-
age of an AnySL shader with a hand coded CUDA equivalent and the original Cg
shader on a per pixel basis. Images of the compared test scenes are pictured in Fig-
ure 4.2. The resulting images look the same, but a pixel level comparison reveals
minimal differences. The mean error between pixels of the AnySL-PTX shader
and the Cg shader is 0.002 in the cathedral scene. The root mean square (RMS)?
is 0.0036 and the maximum error is 0.306. Similar results are obtained in the
museum scene. The most crucial differences originate from pixel artifacts in the
Cg shader. The minimal differences probably originate from different rounding
modes, precision bounds, instruction selections, and exponentiation implementa-

>The RMS is a measure of the magnitude of a varying quantity. It is defined as err,,; =

XT3+ A2
Vo

44 CHAPTER 4. EVALUATION

(a) Museum (b) Cathedral

Figure 4.2: Pictures of the employed test scenes. The museum scene is illuminated by a
single point light and is shaded with the multi shader. The cathedral scene is lit by 6 light
source. Shadows are disabled in both cases.

tions. The AnySL and the nvcc result images perfectly match in both scenes. The
generated code of both systems is semantically identical.

The AnySL-PTX output images can also be compared to pictures generated by
other AnySL capable renderers. Figure 4.3 shows a comparison to the RTfact ray-
tracer. The resulting images visually look the same. However, due to the different
rendering models—ray tracing and rasterization, arising precision disparities of
both hardware systems, and non-uniform scene input formats, the images do not
match on the pixel level.

4.3 CUDA Comparison

The correct code generation is the main aim of this thesis; no emphasis is put
on the performance of the generated code. Nevertheless, a comparison of the
performance of PTX kernels generated by the official nvcc compiler and kernels
generated by the PTX code generator is of interest. The analysis shows the code
performance, reveals drawbacks, and points out future improvements and research
topics. It also delivers hints for optimizations applied by the nvcc compiler.
Table 4.2 and 4.3 show various kernel properties derived with the NVIDIA
CUDA profiler. Two of the previously shown shaders, two samples from the
CUDA SDK, and selected functions of the test suite are profiled. Each test is

4.3. CUDA COMPARISON 45

(a) OGRE (b) RTfact

Figure 4.3: Comparison of the deferred shading OGRE integration to the RTfact ray-
tracer. Shadow calculations are enabled.

implemented in CUDA and in extended C++, the semantic of both versions is
the same. The CUDA implementation is compiled by the official nvcc compiler
(version 2.3), the C++ code by LLVM and the PTX code generator. The CUDA
profiler collects data about execution times, required shared memory, used regis-
ters, the number of executed instructions, number of divergent and non-divergent
branches, coalesced loads and stores, and cache hits and misses. The generated
statistic is an approximation of the overall resource consumption. Only a fraction
of the executed threads is inspected. The measured values may vary depending
on the thread scheduling, different control flows, and cache occupations. Every
kernel is executed 10 times in a row. To prevent cold starts the first measurement
is excluded. The shown tables contain the mean values of the remaining measure-
ments.

As expected, the optimization passes of the nvcc compiler are more sophis-
ticated and tuned for GPU architectures. The nvcc outperforms the PTX code
generator in many cases. The following analysis and comparison of PTX kernels
of both compilers reveals reasons for the disparity. The source code of the ana-
lyzed kernels is shown in Chapter 6.3. The CUDA SDK samples can not be shown
due to license issues.

In the phi test, the PTX code generator implements the if-then-else construct
with branch instructions. The kernel only requires 3 registers per thread. The nvce
compiler transforms the conditional statement into a select instruction. Both, the

46 CHAPTER 4. EVALUATION

Kernel Runtime | Occu- | Reg. Branch | Div. Instr. Cache | Cache
in ms pancy | Count Branch | Count | Hit Miss
nvcc_wood | 242.14 0.5 25 4778 700 38717 | 7 8
gen_wood 239.26 0.5 22 4928 1044 43422 | 6 9
nvec_light 74.21 0.375 | 38 2047 69 19114 | 3 6
gen_light 53.6 0.375 | 36 1399 69 16269 | 3 6
nvce_granite | 2064.5 0.375 | 36 17054 | 3010 114516 | 2 7
gen_granite | 2055.7 0.5 27 20373 | 5629 132380 | O 9
nvce_multi 1285.7 0312 | 41 17959 | 2863 123123 | 14 7
gen_multi 1287.7 0.375 | 35 19600 | 4784 133159 | 13 8

Table 4.2: Kernel profile of the examined shaders. Shaders which are compiled with the
nvce compiler have the prefix nvec, PTX code generator shaders are prefixed with gen.
Occupancy is the ratio of the number of active warps per multiprocessor to the maximum
number of active warps. Required registers are per thread.

consequence and the alternative basic blocks are executed independently from
the conditional. Finally, the correct value is selected based on the if condition.
This transformation is commonly known as if-conversion [All83]. In this case the
optimization does not pay off. The register pressure is increased and execution
time is not enhanced.

The simple_phi kernel shows that the instruction selection of the nvcc compiler
is superior. It selects the negation instruction instead of a subtraction from zero
operation and replaces floating point multiplications of factor two with an add
instruction. The execution time is slightly increased. Also, the phi9 kernel is
optimized by a combined muladd instruction.

The nvce compiler recalculates floating point operations in favor of free reg-
ister slots in the phi2 test case. The execution speed is almost unaffected. The
LLVM compiler positions the evaluation of if conditions of inner loops, which
are constant regarding the outer loop, before the outer loop. The number of live
registers inside of both loops is increased but it avoids the recalculation of the
conditional expression per iteration. In kernel loop23 the recalculation pays off.
The nvce compiler outperforms the PTX code generator.

The special register test incorporates calculations with 16 bit values. The
PTX code generator converts the extracted values to 32 bit types and after that
performs arithmetic operations. The nvcc compiler computes in 16 bit registers.
The number of occupied 32 bit registers is decreased. Two 16 bit registers fit into
one 32 bit register.

In the calculate, math, alloca, and signed operand test kernels the nvcc com-
piler frequently reloads values from the global memory space. The register pres-
sure is slightly reduced. However, the huge memory transaction overhead signif-

4.3. CUDA COMPARISON 47

Kernel Runtime | Reg. Branch | Div. Instr. Cache | Cache
in ms Count Branch | Count Hit Miss
nvce_matrixMul 17.024 14 274 2 3402 1 2
gen_matrixMul 43.264 14 1858 2 14164 1 2
nvce_simpleTexture 34.496 9 1233 137 11253 0 3
gen_simpleTexture 35.584 10 1233 137 11804 | O 3
nvcc_test_phi 16.35 4 0 0 448 0 0
gen_test_phi 16.256 3 130 2 646 0 0
nvece_test_phi2 16.54 4 0 0 544 0 0
gen_test_phi2 16.448 5 130 2 749 0 0
nvee_test_phi9 16.45 5 32 0 512 0 0
gen_test_phi9 16.384 4 226 2 745 0 0
nvce_test_loop23 16.58 7 128 0 802 0 0
gen_test_loop23 17.888 8 322 2 1172 1 2
nvce_test_loop13 968.26 8 99200 | O 343008 | 2 1
gen_test_loop13 109491 | 8 147522 | 2 401156 | 2 1
nvce_test_calculate 864 9 96 0 5922 0 0
gen_test_calculate 232.864 | 11 226 2 4505 0 0
nvce_test_simple_phi | 12.48 2 0 0 288 0 0
gen_test_simple_phi 12.608 2 130 2 473 1 2
nvce_test_math 73.56 8 130 2 1615 0 0
gen_test_math 79.872 8 130 2 1746 0 0
nvee_test_signedOp 148.96 10 160 0 3272 0 0
gen_test_signedOp 101.408 | 10 290 2 3490 0 0
nvce_test_alloca 39.26 4 0 0 640 0 0
gen_test_alloca 38.464 4 130 2 806 0 0
nvce_test_specialReg | 4.48 3 1 0 17 0 0
gen_test_specialReg | 4.576 4 0 0 0 0 0

Table 4.3: Selected test suite kernels from the test suite. Compiled with the nvcc compiler
and the PTX code generator. The notation of Table 4.2 is applied.

icantly degrades the execution speed. In the case of shared memory, reloading
values is more rewarding.

The nvce kernel of the matrixMul CUDA-SDK-sample is extremely perfor-
mant. It utilizes mul24 and mad instructions which are currently not supported by
the PTX code generator. Additionally loop unwinding transformations reduce the
number of branch instructions immensely. The loop unrolling LLVM pass is re-
stricted to loop bodies without function calls. Modifications which allow to unroll
loops including synchronization intrinsics are required in this example.

Table 4.2 includes an occupancy column. The occupancy of the nvce kernels is
low because of the higher register pressure. Although the code generator produces
more cache hits divergent branches and instructions the multi and granite shaders
are equally performant. The shader PTX kernels are too complicated for a manual

48 CHAPTER 4. EVALUATION

analysis. The performance difference probably originates from the previously
analyzed issues.

The influence of the .approx qualifier for floating point operations is obfus-
cated. In the loop23 test case the use of approximated operation decreases the
register pressure by one. In the math kernel the insertion of the approx qualifier
increases the register pressure. The nvcc compiler uses approximated operations
in both cases.

Chapter 5
Conclusion and Future Work

This thesis presented the design and implementation of the PTX code generator.
Design decisions and implementation details are based on consolidated knowl-
edge of the underlying hard- and soft-ware. The PTX code generator is not lim-
ited to graphics calculation but was developed with general purpose applications
in mind.

We evaluated the performance and complexity of the PTX code generator in
comparison to related work by specific test cases, the OGRE integration, and ex-
amples from the CUDA SDK. It generates correct code for a large range of LLVM
programs. Only sparsely used bitcode constructs are unsupported. Also all rel-
evant PTX instructions are utilized. The remaining unimplemented features can
easily be integrated into the current code structure. Although no emphasis was
put into code optimization it turned out that the generated code quality is similar
to code compiled by the nvce compiler. Some test cases revealed suboptimal code
generation. The PTX code generator does not use combined instructions, gener-
ates inefficient basic block orders and occupies superfluous registers. However,
it also outperforms the nvcc compiler in many test cases. The assumption that
late-optimizations are applied during PTX to assembly compilation holds. The
insertion of additional move instructions and the naive SSA deconstruction does
not affect the performance. The custom backend approach is justified.

The unstable performance results of the nvcc compiler show the difficulty of
automatically choosing the right optimization. Optimizations like if-conversion,
value reloading, and the use of approximated floating point operations is only ben-
eficial in particular situations. This emphasizes the demand for the customizable
open source PTX code generator.

The following list of extensions has the potential to improve the PTX code
generator regarding speed, code quality, and feature support. A pre-code-gene-
ration pass which splits up unsupported vector operands enables the PTX code

49

50 CHAPTER 5. CONCLUSION AND FUTURE WORK

generator to compile arbitrarily vectorized programs. Novel optimization passes
can increase code quality in particular cases. A PTX frontend permits the opti-
mization of arbitrary PTX programs. It would be possible to optimize PTX code
generated with the available nvce or OpenCL compilers by the LLVM compiler.
An LLVM OpenCL frontend allows to replace the extended C++ code by a well
specified language. A PTX frontend [Ker09] and OpenCL frontends [AMDO09]
already exists. It remains to connect them to the current compilation pipeline.
A constraint tester which inspects the intermediate bitcode for illegal code con-
structs like recursion would ease debugging. Currently, every pipeline component
relies on the adherence of the defined language extension convention by all pre-
decessors. The restriction to non-recursive function calls is currently the biggest
restriction of the PTX code generator, and also of other available GPU code gener-
ators. Recursive function calls are not supported by the currently available GPUs.
However, it is possible to bypass this restriction with a software stack. The Optix
ray-tracer implements such a stack by continuations [Par10]. An analogue imple-
mentation would allow the LLVM compiler to compile almost arbitrary programs
to PTX GPU code.

6.1

#ifndef
#define

#define
#define
#define
#define
#define

extern
extern
extern
extern
extern
extern

extern
extern
extern
extern
extern
extern

extern
extern

extern
extern
extern
extern

Chapter 6
Code Appendix

PTX Intrinsic Header

_PTX_INTRINSICS_H
_PTX_INTRINSICS_H

LOCAL
SHARED
GLOBAL
CONSTANT
TEXTURE

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned

unsigned
unsigned
unsigned
unsigned

__attribute__((address_space(0)))
__attribute__((address_space(1)))
__attribute__((address_space(2)))
__attribute__((address_space(3)))
__attribute__((address_space(4)))
short __ptx_sreg_tid_x();

short __ptx_sreg_tid_y(Q;

short __ptx_sreg_tid_z();

short __ptx_sreg ntid_x();

short __ptx_sreg_ntid_y(;

short __ptx_sreg_ntid_z();

short __ptx_sreg_ctaid_x();

short __ptx_sreg_ctaid_y(Q;

short __ptx_sreg_ctaid_z();

short __ptx_sreg_nctaid_x();

short __ptx_sreg_nctaid_y();

short __ptx_sreg_nctaid_z();

short __ptx_sreg_gridid();

short __ptx_sreg_clock();

short __ptx_laneid();

short __ptx_warpid();

short __ptx_nwarpid();

short __ptx_smid();

51

52 CHAPTER 6. CODE APPENDIX

extern unsigned short __ptx_nsmid();
extern unsigned short __ptx_pm_0Q);
extern unsigned short __ptx_pm_1Q);
extern unsigned short __ptx_pm_2Q);
extern unsigned short __ptx_pm_3();

void __bar(const i32 d4);
void __membar_gl();

void __membar_cta();
void __trap(Q);

void __brkpt();

void __pmevent(i32 c);

extern float __half2float(short f);
extern void __syncthreads();

extern __ml128 __ptx_tex1D(float* ptr, float coordinate);
extern __ml128 __ptx_tex2D(float* ptr, float coordinateO,

float coordinatel);
extern __ml128 __ptx_tex3D(float* ptr, float coordinateO,

float coordinatel, float coordinate3);

#endif

6.2 C++ Phong Shader Source Code

#include "shader.h"

ShadingData CONSTANT data;
PointLight CONSTANT lights[7];

extern "C" void inner_shade()

{

//read from texture

int x = __ptx_ntid_x()*__ptx_ctaid_x()*THREAD_WIDTH_X
+__ptx_tid_x () *THREAD_WIDTH_X;

int y = __ptx_ntid_y(O*__ptx_ctaid_y()*THREAD_WIDTH_Y
+__ptx_tid_y () *THREAD_WIDTH_Y;

int x_max = __ptx_ntid_x()*__ptx_nctaid_xQ);

int y_max = __ptx_ntid_y()*__ptx_nctaid_y(Q);

COLOR_IN * rgba = getPixel(data.tex0, x, y, data.w, data.h);
COLOR_IN #* inter = getPixel(data.texl, x, y, data.w, data.h);

float hitDistance = __half2float (*((unsigned short GLOBAL*)&inter->d))
* data.farClipDistance;
Normal N(__half2float (*((unsigned short GLOBAL*)&inter->a)),

6.2. C++ PHONG SHADER SOURCE CODE

53

__half2float (x((unsigned short GLOBAL*)&inter->b)),
__half2float (*((unsigned short GLOBAL*)&inter->c)));

float x_relative = (float)x/(float)data.w;
(float)y/(float)data.h;

float y_relative

//wiev coordinates
Vector IN = Vector((x_relative-0.5f)*2.f, (y_relative-0.5f)*-2.f, 1)
* data.farCorner;

//normalise dir
Normalize (IN);

Point P = hitDistance * IN;// +data.origin //world view
Normalize(N) ;
Normal Nf = FaceForward(N, IN);

const float Kd = 0.6f;
const float Ka = 0.2f;
float Ks = 0.2f;

Color C_diffuse(0.0f, 0.0f, 0.0f);
Color C_specular(0.0f, 0.0f, 0.0f);

// BEGIN_ILLUMINANCE_LOOP

int n = data.lights_n;

for(int 1=0; 1<n; 1++)

{
void * P_light_ptr = &lights[1].position;
Point P_light;
P_light.x = (*(Point CONSTANT *)P_light_ptr) .x;
P_light.y = (x(Point CONSTANT *)P_light_ptr).y;
P_light.z = (*(Point CONSTANT *)P_light_ptr).z;
Vector L_dir_norm = P_light - P;
float len_sq = Dot (L_dir_norm,L_dir_norm);
float len = sqrtf(len_sq);
L_dir_norm *= (1./len);

Color Cl = Color(1,1,1);

void * lightFalloff_ptr = &lights[1l].attenuation;

Vector lightFalloff;

lightFalloff.x = (*(Vector CONSTANT #*)lightFalloff_ptr).x;
lightFalloff.y = (*(Vector CONSTANT *)lightFalloff_ptr).y;
lightFalloff.z = (*(Vector CONSTANT #*)lightFalloff_ptr).z;

//spotlight falloff and attenuation
void * dir_ptr = &lights[1l].direction;
Vector dir;

dir.x = (*(Vector CONSTANT *)dir_ptr).x;

54 CHAPTER 6. CODE APPENDIX

dir.y = (*(Vector CONSTANT *)dir_ptr).y;
dir.z = (*(Vector CONSTANT *)dir_ptr).z;
float spotlightAngle = clamp20ne(Dot(dir, -L_dir_norm));

void * outer_ptr = (void *)&lights[1].spotlight_outerAngle;
float outer = *(float CONSTANT *)outer_ptr;
void * inner_ptr = (void *)&lights[1].spotlight_innerAngle;
float inner = *(float CONSTANT *)inner_ptr;

float spotFalloff = clamp20ne((+spotlightAngle - inner)
/ (outer - inmer));

1.£/(1.f-spotFalloff);

float attenuation

//diffuse component
float cosLight = Dot(L_dir_norm, N); //NF
if (cosLight >= 0.0)

C_diffuse += Cl*cosLight/attenuation;

Vector h = (IN + L_dir_norm);
Normalize(h) ;
float dotLightRefl = Dot (N, h);
if (dotLightRefl> 0)
C_specular += pow(dotLightRefl,32)/attenuation;

}

Color Ci(__half2float(*((unsigned short GLOBAL*)&rgba->a)),
__half2float (*((unsigned short GLOBAL*)&rgba->b)),
__half2float (*((unsigned short GLOBALx)&rgba->c)));

Color result = Ci * (Ka + Kd * C_diffuse + Ks * C_specular);

clamp20ne(result.x) ;

clamp20ne(result.y) ;

clamp20ne (result.z);

int out = rgbaToInt(result.x,result.y,result.z,255.f);
COLOR_OUT *rgba_out = getPixel(data.texOut, x, y, data.w, data.h);

((unsigned int GLOBAL)rgba_out) = out;

6.3 Test Suite

#include "PTXIntrinsics.h"

6.3. TEST SUITE

#define ARRAY_N 64

typedef struct
{
float f;
char c;
int i;
char cc;
} DataStructInternall;

typedef struct

{
float f;
DataStructInternall s;
DataStructInternall sal[3];
int 1i;

} DataStructInternalO;

typedef struct

{
float fa[ARRAY_N];
float f;
int i;
unsigned int u;
char c;
char cal19];
int ia[ARRAY_N];
DataStructInternall s;
double d;
short half;

} DataStruct;

extern "C" void test_phi(GLOBAL DataStruct* data)
float a = data->fal[0];
float b = data->fa[1];
float x = a + b;
float y = x * x - b;

float z;
if (x<y) {
z = a+x;
} else {
Z = axa;
}
zZ = z+x;

56 CHAPTER 6. CODE APPENDIX

data->f = z;

extern "C" void test_phi2(GLOBAL DataStruct* data) {
float x = data->fa[0] + data->fa[1];
float y = x * x - data->fa[1l];
float z;
float r;

if (x<y) {
z = data->fal[0]+x;
T = X*X;
} else {
z = data->fa[0]*data->fa[0];
r = x-data->fal[0];

z = z+X;
z = y-z;

data->f = z * r;

}

extern "C" void test_phi9(GLOBAL DataStruct* data) {
float x = data->fal[0] + data->fal1l];
float y = x * x - data->fa[1];
float z v;

if (data->fa[0] < data->fa[1]) {
z += data->fal[0];

} else if (data->fa[1] < data->fa[0]) {
z += data->fa[0]*data->fa[0];

z = z+X;
z = y-z;

data->f = z;

}

extern "C" void test_loop23(GLOBAL DataStruct* data) {
float a = data->fal[0];
float b = data->fa[l];
float x = a + b;
float y = x * x - b;
float z = y;
for (int i=0; i<1000; ++i) {
z += a;

6.3. TEST SUITE

if (z / a < x) break;
else {
z —= b;
if (a > b) {
for (int j=3; j<4500; ++j) {
if (i == j) z /= -0.12f;
if (z < -100.f) break;
if (z < 0.f) {data—>f = z; return;}
}
continue;
}
else {
zZ *= z-y;
if (b == a) {
{data->f = z; return;}
} else {
++z;
break;
}
}
}
}
z = z-Y;
data->f = z;

3

extern "C" void test_specialReg(GLOBAL DataStruct* data)
{
int i = __ptx_sreg_tid_x()
+ (__ptx_sreg_tid_y(O*__ptx_sreg_ntid_x())
+ (__ptx_sreg_tid_z()*__ptx_sreg_ntid_x()*__ptx_sreg_ntid_y());
if (__ptx_sreg_ctaid_x()>0)
data->fal[i] = 0;
else
data->ial[i] = 1;

extern "C" void test_math(GLOBAL DataStruct* data)

{
float f = data—>f;
float fi = data->i;
data->fal[0] = expf(f);
data->fal[1] = logf(f);
data->fal[2] = exp2f(f);
data->fa[3] = log2f(f);
data->fa[4] = sinf(f);
data->fa[5] = cosf(f);
data->fa[6] = sqrtf(f);

58 CHAPTER 6. CODE APPENDIX

data->fal[7] = tanf(f);
data->fa[10] floorf (£f);
data->fa[12] powf (f,fi);

}

extern "C" void test_loopl3(GLOBAL DataStruct* data)
{
float
float

data->fa[0];
data->fal1];
float = a + b;
float X * X - b;
float z = y;
for (int i=0; i<1000; ++i) {
z += a;
if (z / a < x) z += a;
else {
z -= b;
if (a > b) z -= b;
else {
zZ *= z-y;
if (b == a) {
for (int j=0; j<200; ++j) {
if (1 == j) z *= z;
z += 13.2f;
}
z = a+3;
} else
++z;

< X o p
[l

}
for (int j=0; j<100; ++j) {
if (1 < j) z += a;
else z -= 13.2f;
}
}
}
zZ = z-Y;
data->f = z;

}

extern "C" void test_calculate(GLOBAL DataStruct* data)
{

data->ia[0] = data->i + data->i;

data->ia[1] = data->i - data->i;

data->ia[2] = data->i * data->i;

data->ia[3] = data->i / data->i;

data->ia[4] = (unsigned)data->i << data->i;

data->ia[5] = (unsigned)data->i >> data->i;

unsigned int tmpi = data->i;

6.3. TEST SUITE

59

}

data->ial[7] = tmpi >> tmpi;

data->ia[8] = data->i % data->i;
data->ia[9] = data->i & data—>i;
data->ia[10] data->i | data—>i;
data->ia[11] data->i ~ data->i;

data->ia[20] = data->f + data->i;
data->ia[21] data->f - data->i;
data->ia[22] data->f * data—>i;
data—->ia[23] data->f / data->i;
data->ia[24] = (unsigned)data->f << data->i;
data->ia[25] (unsigned)data->f >> data->i;

data->fa[0]
data->fal[1]
data->fa[2]
data->fal[3]

data->f + data->f;
data->f data->f;
data->f * data—->f;
data->f / data->f;

data->fa[20] data->f + data—>i;
data->fa[21] data->f - data->i;
data->fa[22] = data->f * data->i;
data->fa[23] data->f / data->i;
data->fa[24] = (unsigned)data->f << data->i;
data->fa[25] = (unsigned)data->f >> data->i;

data->fa[26] = __half2float(data->half);

extern "C" void test_branch_simplePHI(GLOBAL DataStruct* data)

{

float tmp;
if (data->£<0)

tmp = -data->fx*2;
else

tmp = data->f*2;
data->fa[0] = tmp;

extern "C" void test_alloca(GLOBAL DataStruct* data)

{

DataStruct data_local;

int i = data->i;

data_local.s.s.f = data—->f;

data_local.s.sa[2] .f = data->f*2;
].f data->f*3;

data_local.s.sali

data->fa[0] = data_local.s.s.f;

60

}

data->fal[1]
data->fa[2]

data_local.s.sa[2].f;
data_local.s.sali] .f;

extern "C" void test_signedOp(GLOBAL DataStruct* data)

{

int i = data->i;

int j = ix*2;

data->ial0] = j % i;

data->ial1] = j >> i;
data->ia[2] = -7 / i;
data->ia[3] = i - 5;

data->ia[4] = data—>f;
data->ia[5] = (char)data->ial[3];
data->fa[0] = data—>ial1];

CHAPTER 6. CODE APPENDIX

Bibliography

[All83]

[AMDO9]

[Asa06]

[Big06]

[Cyt91]

[Dit09]

[FralO]

[Gam94]

[Gat09]

Allen J.R. and Kennedy K. and Portfield C. and Warren J. Conversion
of control dependence to data dependence. 1983.

AMD Staff. OpenCL and the ATI Stream SDK v2.0. 2009.

http://developer.amd.com/documentation/articles/pages/
OpenCL-and-the-ATI-Stream-v2.0-Beta.aspx.

Asanovic K. and Bodik R. and Catanzaro B. and Gebis J. Husbands
P. and Keutzer K. and Patterson D. and Plishker w. and Shalf J. and
Williams S. and Yelick K. The Landscape of Parallel Computing Re-
search: A View from Berkeley. 2006.

Bigler J. and Stephens A. and Parker S. G. Design for Parallel In-
teractive Ray Tracing Systems. IEEE Symposium on Interactive Ray
Tracing, 2006.

Cytron R. and Ferrante J. and Rosen B. K. and Wegman M. N. and
Zadek F. K. Efficiently Computing Static Single Assignment Form and
the Control Dependence Graph. ACM Transactions on Programming
Languages and Systems, 1991.

Dittamo C. and Cisternino A. Filling the gap between GPGPUs and
Virtual Machine Computational Models. 2009. http://4centauri.
codeplex.com/.

Franke B. Analyzing CUDA’s Compiler through the Visualization of
Decoded GPU Binaries. International Symposium on Code Generation
and Optimization (CGO), 2010.

Gamma E. and Helm R. and Johnson R. and Vlissides J. Design Pat-
terns: Elements of Reusable Object-Oriented Software. 1994.

Gat N. and Raman A. Ogre SDK Deferred Shading Demo. 2009.
http://www.ogre3d.org/tikiwiki/Deferred+Shading.

61

62

BIBLIOGRAPHY

[Geo08]

[Gre06]
[Gro09]

[TEE08]

[Kar10]

[Ker(09]

[Khr09]

[KowO08]

[Lat04]

[Lat10]

[LLV10]

[NVIO9]

[NVI10a]

Georgiev I. and Slusallek P. RTfact: Generic Concepts for Flexible and
High Performance Ray Tracing. In IEEE/Eurographics Symposium on
Interactive Ray Tracing 2008, 2008.

Gregory J. Pro OGRE 3D Programming. 2006.

Grover V. and Kerr A. and Lee S. PLANG: PTX Frontend for LLVM.
LLVM Developers’ Meeting, 2009.

IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE
754). 2008. http://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=4610935.

Karrenberg R. and Rubinstein D. and Slusallek P. and Hack S. Anysl:
Efficient and portable shading for ray tracing. High Performance
Graphics, 2010.

Kerr A. and Diamos G. and Yalamanchili S. A Binary Transla-
tor Frame-work for PTX. 2009. http://code.google.com/p/
gpuocelot.

Khronos OpenCL Working Group. The OpenCL Specification
1.0. 2009. http://www.khronos.org/news/press/releases/
the_khronos_group_releases_opencl_1.0_specification/.

Kowaliski C. GPU sales strong as AMD gains market share. 2008.
http://techreport.com/discussions.x/15778.

Lattner C. and Adve V. LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation. [International Symposium
on Code Generation and Optimization (CGO), 2004.

Lattner C. and Haberman J. and Housel P. S. LLVM Language Refer-
ence Manual. 2010. http://11vm.org/docs/LangRef .html.

LLVM Developers. Clang vs Other Open Source Compilers. 2010.
http://clang.llvm.org/comparison.html.

NVIDIA. Cuda Reference Manual version 2.3. 2009. http://www.
nvidia.com.

NVIDIA. CudaProgramming Guide. 2010. http://www.nvidia.
com.

[NVI10b] NVIDIA. Parallel Thread Execution, ISA Version 1.4. 2010.

BIBLIOGRAPHY 63

[NVI10c] NVIDIA. Parallel Thread Execution, ISA Version 2.1. 2010. http:

[Owe07]

[Par91]
[Par10]

[Per02]
[Pet03]

[PhalO]

[PIX98]
[Pop07]

[Ryo08]

[Sre99]

[Wil94]

[YanO8]

//developer.nvidia.com/object/cuda_3_1_downloads.html.

Owens J. D. and Luebke D. and Govindaraju N. and Harris M. and
KrAijger J. and Lefohn A. E. and Purcell T. J. . A Survey of General-

Purpose Computation on Graphics Hardware. Computer Graphics Fo-
rum, 2007.

Park J. and Schlansker M. On Predicated Execution. 1991.

Parker S. and Bigler J. and Dietrich A. and Friedrich H. and Hoberock
J. and Luebke D. and McAllister D. and McGuire M. and Morley K.
and Robison A. and Stich M. Optix: A general purpose ray tracing
engine. ACM Transactions on Graphics, August 2010.

Perlin K. Improving Noise. Computer Graphics Forum, 2002.

Pettersson J. and Wainwright I. Radar Signal Processing with Graphics
Processors (GPUs) . Master Thesis, Page 102, 2003.

Pharr M. and Humphreys G. Physically Based Rendering: From The-
ory To Implementation, 2nd Edition. Morgan Kaufmann, 2010.

PIXAR. The RenderMan Interface. 1998.

Popov S. and Giinther J. and Seidel H. and Slusallek P. Stackless KD-
Tree Traversal for High Performance GPU Ray Tracing. Computer
Graphics Forum, 2007.

Ryoo S. and Rodrigues C. and Baghsorkhi I. and Stone S. Optimiza-
tion Principles and Application Performance Evaluation of a Multi-
threaded GPU Using CUDA. Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ACM
Press, page 733AS82, 2008.

Sreedhar V. C. and Ju R. D. and Gillies D. M. and Santhanam V. Trans-
lating Out of Static Single Assignment Form. In Static Analysis Sym-
posium, Italy, pages 194-210, 1999.

Wilson G. V. The History of the Development of Paralle]l Computing.
1994. http://ei.cs.vt.edu/"history/Parallel.html.

Yang Z. and Zhu Y. and Pu Y. Parallel image processing based on
cuda. CSSE, pages 198-201, 2008.

