
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Bachelor’s Thesis

Compiler Optimizations
using

Symbolic Abstraction

by

Fabian Ritter

submitted

November 30, 2015

Reviewers:

1. Prof. Dr. Sebastian Hack

2. Prof. Dr. Jan Reineke

Advisor:

Tomasz Dudziak M.Sc.

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

Abstract

With increasing program complexity, a vital requirement for compilers is to produce
efficient code with as few instructions as possible. This requires program analyses
that are expressive enough to prove relevant program properties, but still effectively
computable.

In the last decades, a large variety of such program analyses has been developed. The
better availability of computational power tempts analysis designers to create more
expensive and powerful analyses, often combined from several simpler ones. For most
such combinations, it is possible to construct examples where they outperform any
sequential execution of the contributing analyses.

However, it has not yet been investigated whether these examples are plausible cases
that are relevant in practice or just artificial constructs that do not appear in production
code and therefore whether combining the analyses is profitable in general.

In this thesis, Sprattus, a framework for program analysis using symbolic abstraction,
is used and extended to implement several program analyses for compiler optimization.
It reduces program analysis to the Satisfiability Modulo Theories problem and utilizes
a state-of-the-art theorem prover to derive non-trivial program properties. Sprattus
provides the necessary tools for easily creating analyses of arbitrary complexity and
expressiveness. The efficiency of combinations of the developed analyses is evaluated
on a set of relevant benchmarks.

v

Acknowledgments

To begin with, I want to thank Professor Sebastian Hack for supervising this thesis and
Professor Jan Reineke for reviewing it.

Furthermore, I am very grateful to my advisor Tomasz Dudziak. I want to thank him
for all the time that he spent answering my questions, for reading and criticizing my
thesis and for all the insightful discussions.

I also want to express my gratitude to the members and the current students of the
Compiler Design Lab for their helpful suggestions during my work on this thesis and
for providing me a pleasant and productive working environment.

Moreover, I thank my proofreaders Immanuel Haffner, Sebastian Hahn, Franziska Müller
and Matthias Ritter for their useful feedback.

Finally, I want to thank everyone else who supported me in my work on this project.

vii

Contents

List of Figures xi

1 Introduction 1

2 Theoretical Background 3
2.1 Abstract Interpretation . 3
2.2 Satisfiability Modulo Theories . 8
2.3 Symbolic Abstract Interpretation . 9

3 Used Frameworks 19
3.1 LLVM . 19
3.2 Z3 . 20

4 Sprattus 23
4.1 Program Representation . 24
4.2 Formula Construction . 25
4.3 Analyzer . 32
4.4 Abstract Domains . 34
4.5 Application in Compiler Optimizations 44

5 Evaluation 51
5.1 Analyzer Implementations . 52
5.2 Fragment Decompositions . 55
5.3 Abstract Domains . 57
5.4 Combining Compiler Optimizations . 59

6 Related Work 61
6.1 Satisfiability in Program Analysis . 61
6.2 Analysis Cooperation . 62

7 Conclusion 65

Bibliography 67

ix

List of Figures

1.1 Example program . 1

2.1 Generic lattice constructions . 4
2.2 Domains in Abstract Interpretation . 5
2.3 Definition: Galois connection . 6
2.4 Definition of the best abstract transformer 8
2.5 Domains in Symbolic Abstract Interpretation 10
2.6 Best abstract transformer in Symbolic Abstract Interpretation 11
2.7 Example run of the unilateral pαÒincpϕq algorithm 14
2.8 Example run of the bilateral pαÙpϕq algorithm 16

4.1 Representations of an example program 24
4.2 Example CFG for improved precision with larger fragments 25
4.3 Single edge subgraph . 26
4.4 Example CFG for control flow encoding 30
4.5 Example fragment decompositions . 33
4.6 Constant Propagation lattice . 35
4.7 Scalar Relations lattice . 37
4.8 Predicates lattice . 38
4.9 Intervals lattice . 41
4.10 Abstract consequence operation for Intervals 42
4.11 Example CFG fragment . 46
4.12 Example program . 46
4.13 Example CFG with an infeasible path 49

5.1 Normalized runtimes of the bilateral algorithm 53
5.2 Normalized runtimes of the symbolic abstraction algorithms 54
5.3 Normalized runtimes for fragment decompositions 56
5.4 Normalized runtimes for different abstract domains 58

xi

1 Introduction

With increasing program complexity, it becomes more and more vital for compilers to
produce efficient code. Unnecessarily executed instructions are an obvious source for
performance loss and should thus be avoided.
Unfortunately, determining for an instruction whether it is unnecessary is in general

undecidable. Hence, a significant part of designing compiler optimizations is creating
program analyses with an acceptable compromise between expressiveness and feasibility.
As the hardware evolves, more and more computational power becomes available.

Therefore, more complex program analyses have been developed over time, permit-
ting powerful program transformations. It is tempting to construct such analyses by
combining simpler analyses. For most such combinations, it is possible to find artifi-
cial examples where they are able to produce more precise results than the sequential
execution of the contributing analyses.

For such an example, consider the program from [Click and Cooper, 1995] that is
depicted in Figure 1.1. It works on three variables x, y and z in a loop with a statically
unknown condition with no side effects.

1 int f oo (int z)
2 {
3 int x = 1 ;
4 int y = z ;
5 while (dontknow ())
6 {
7 i f (y != z)
8 x = 2;
9 x = 2 ´ x ;

10 i f (x != 1)
11 y = 2;
12 }
13 return x ;
14 }

Figure 1.1: Example program,
from [Click and Cooper, 1995].

At the beginning, x is initialized to 1 whereas
y and z have the same, at compile time unknown
value. By studying the conditional statements in
the loop, one can observe that the value of x is
modified if the value of y or z has been modified
before. Conversely, the value of y is left unchanged
unless x is modified before.
As the statement in line 9 does not modify the

value of x if it is 1 before, the code inside the loop
does not modify the variables at all and could thus
be removed by an optimizing compiler.
However, automatically discovering this fact is

a non-trivial task: typically, common compiler op-
timizations are able to determine variables with
statically constant values on the one hand or in-
variant relations between variables on the other hand. For this example, neither of
these abilities alone is sufficient to permit removing the loop. Whereas the former of
the mentioned program analyses is unable to prove the statement in line 8 unreach-
able, the latter fails to mark the statement in line 11 as unreachable, both ultimately
providing no additional information.

1

1 Introduction

The approach described in [Click and Cooper, 1995] introduces a new program trans-
formation that combines both aforementioned optimizations and is able to prove x
constant and the loop to be dead in this example.
However, it has not yet been investigated whether these examples are plausible cases

that are relevant in practice or just artificial constructs that do not appear in production
code.

This thesis uses and extends Sprattus, a program analysis framework based on con-
cepts from abstract interpretation [Cousot and Cousot, 1977] and symbolic abstract in-
terpretation [Thakur, 2014] to implement expressive analyses for aggressive code trans-
formations.
The modular construction of Sprattus provides a powerful interface for the design

of complex, combined analyses. This permits the rapid prototyping of analyses and
compiler optimizations as it is described for several examples in this thesis.
The performance of the so constructed code transformations will answer questions

about the efficiency of the Sprattus framework and the underlying algorithms as well
as about the use of complex, combined analyses in optimizing compilers.

The overall structure of this thesis can be summarized as follows: Chapter 2 gives an
overview of the relevant theoretical concepts such as (symbolic) abstract interpretation
and satisfiability modulo theories. In chapter 3, the external frameworks that found
applications in the thesis are presented.
The main contributions of this thesis are described alongside the general Sprattus

framework in which they are integrated in chapter 4. An evaluation of the approach
as described in the preceding chapters is performed in chapter 5 on a set of relevant
benchmarks.
Chapter 6 sets the work that is presented in this thesis into context with previous

work on related topics. Finally, chapter 7 draws conclusions from the contributions of
the thesis.

2

2 Theoretical Background

This thesis uses and evaluates concepts from Abstract Interpretation, Satisfiability Mod-
ulo Theories and Symbolic Abstract Interpretation that are described in this chapter.

2.1 Abstract Interpretation
Abstract Interpretation is a formal framework for program analysis introduced in [Cousot
and Cousot, 1977]. It formalizes the idea of systematically discarding information about
a subset of the observable program properties in favor of non-trivial analysis results de-
spite the general undecidability of program analysis.
This section includes several basic definitions and results for Abstract Interpretation.

For more detailed background information and proofs consider [Nielson et al., 1999,
Chapter 4].

2.1.1 Preliminaries

The necessary abstraction of the program semantics is formalized with two opposing
domains: on one hand the concrete domain that closely models the information of
concrete program runs or program states. On the other hand, there is the abstract
domain, specifically tailored to capture the information from the concrete domain that
is relevant for the desired analysis.
The concrete and abstract domains are required to have certain algebraic structures

specified in the following definitions.

Definition 2.1. A partially ordered set pL,Ďq is said to be a complete lattice if every
subset P of L has a unique greatest lower bound (or meet)

Ű

P and a unique least upper
bound (or join)

Ů

P in L.
Thus, a complete lattice contains two (not necessarily distinct) elements

Ű

L “
Ů

H “ K and
Ű

H “
Ů

L “ J.

For arguing about termination and runtime of many algorithms operating on complete
lattices, a measure for the complexity of the lattice is necessary:

Definition 2.2. A subset Y Ď L of a complete lattice pL,Ďq is said to be a chain
of pL,Ďq if

@l1, l2 P Y. pl1 Ď l2q _ pl2 Ď l1q.

An ascending chain of a complete lattice pL,Ďq is a sequence paiqiPN of elements of L
such that @i P N. ai Ď ai`1 holds.

3

2 Theoretical Background

The height of a complete lattice pL,Ďq is the maximal number of distinct elements
in any chain of pL,Ďq if there is no infinite chain in pL,Ďq, and 8 otherwise.
pL,Ďq is said to satisfy the ascending chain condition if there exists no infinite as-

cending chain of L.

For applications in program analysis, it is convenient to generically construct com-
plete lattices from arbitrary sets. In this thesis, the following two lattice constructions
will be of particular relevance:

• The power-set lattice pPpSq,Ďq of the set S is the set PpSq of all subsets of S
ordered by set inclusion Ď. Meet and join coincide with set intersection X and
set union Y, respectively. Hence, the set S itself is the J element of the lattice
and the empty set H is the K element (cf. Figure 2.1a). Its height is |S| ` 1 if the
cardinality |S| of the set S is finite and 8 otherwise.

• To obtain the flat lattice pSYtJ,Ku,Ďflq of the set S, the set is extended with two
explicit J and K elements. The resulting set is partially ordered by the relation
Ďfl such that

@s P S. K Ďfl s Ďfl J

holds whereas the elements of S are not comparable according to Ďfl (cf. Fig-
ure 2.1b). A flat lattice always has height 3.

ta, b, cu

ta, bu ta, cu tb, cu

tau tbu tcu

H

(a) Power-set lattice

J

a b c

K

(b) Flat lattice

Figure 2.1: Hasse diagrams of generic lattice constructions for the set S “ ta, b, cu. The
respective ordering relation is depicted by edges in the diagrams. It is the reflexive
transitive closure of the edge relation, which is implicitly directed from higher to
lower nodes.

For the set Ξ of possible concrete states of execution, the concrete domain C is defined
as the power-set lattice pPpΞq,Ďq of Ξ. The abstract domain A can be any complete
lattice that can express the desired program properties. The ordering relations of the
considered lattices are interpreted as an ordering in terms of the quality of information
that is represented by the compared elements. J describes the absence of any restricting

4

2.1 Abstract Interpretation

information about the program, i.e. the set of all program states. In contrast to that,
K describes no program state at all. In an analysis that assigns lattice elements to
program locations, a location that is mapped to K exhibits no program behavior in any
execution, i.e. it is unreachable.
The interpretation of A in terms of C is established by relating the domains with

two functions as shown in Figure 2.2: An abstraction function α : C Ñ A and a
concretization function γ : AÑ C. The abstraction function assigns to each element c P
C the most precise element αpcq in A that represents c. Conversely, the concretization
function assigns the element γpaq of C that contains exactly all concrete states that are
represented by a to each abstract state a P A.

Concrete
Domain

Abstract
Domain

α

γ

Figure 2.2: Domains in Abstract Interpretation.

The requirements of precision and over-approximation on α and γ have only been
informally specified so far. They are enforced by demanding the functions to satisfy
certain conditions described in the following definition.

Definition 2.3. Let pL,Ďq and pP,ďq be complete lattices. Two monotone functions
α : L Ñ P and γ : P Ñ L are said to form a Galois connection, written L ´́ Ñ́Ð́´́α

γ
P , if

the following two conditions hold:

αpγppqq ď p

l Ď γpαplqq

for all p P P and l P L.

The definition is visualized in Figure 2.3. If α : LÑ P and γ : P Ñ L form a Galois
connection, the former condition guarantees that α assigns the most precise possible
element of P (depicted in the upper part of Figure 2.3) whereas the latter prohibits any
unsound under-approximation (shown in the lower part of Figure 2.3).

Definition 2.4. A representation function β : Ξ Ñ A assigns to a single concrete
state σ the least abstract state in A that over-approximates it.
Thus, its behavior can be described with the abstraction function α:

βpσq “ αptσuq

5

2 Theoretical Background

L P

p

l

γ

α

(1)ď

α

γ

(2) Ď

Figure 2.3: Visualization of the defining constraints of a Galois connection. The order-
ing at (1) guarantees precision, (2) provides soundness.

2.1.2 Reduced Products

Although the definition of the Galois connection introduces several restrictions to the
abstraction and concretization functions to enforce soundness and precision, it is not
guaranteed that the abstract domain does not contain redundant elements that are
irrelevant for the approximation. There might exist two different abstract states repre-
senting the same set of concrete states. This is particularly of interest when combining
abstract domains for more expressive analysis results. If the domains capture non-
disjoint program properties, the cartesian product of them will contain such redundant
states.
For example, if an interval analysis discovers that a program variable is bounded by

r´3, 7s, and a parity analysis finds that the same variable has an even value in every
execution, the combined state of both analyses describes the same set of concrete states
as the state pr´2, 6s, evenq.
For a program analysis, it would be desirable to obtain the abstract state in the

combined domain with the most precise component values that describes the set of
program states that is represented by the analysis result. To formalize this requirement,
the notion of semantic reductions is introduced in [Cousot and Cousot, 1979]:

Definition 2.5. Let pL,Ďq ´́ Ñ́Ð́´́α
γ

pP,ďq be a Galois connection. With the reduction
operator ς : P Ñ P defined by

ςppq “
ę

tp1 | γppq “ γpp1qu

one obtains the semantic reduction ςrpP,ďqs of pP,ďq as

ςrpP,ďqs “ ptςppq | p P P u,ďq

In the notation of the previous definition, ςrpP,ďqs is a complete lattice and with
γ restricted to the domain ςrpP,ďqs, pL,Ďq ´́ Ñ́Ð́´́α

γ
ςrpP,ďqs form a Galois connection.

ςrpP,ďqs contains exactly one representative of each set of mutually redundant abstract
states in pP,ďq.

6

2.1 Abstract Interpretation

Definition 2.6. Let A1 “ pA1,Ď1q, A2 “ pA2,Ď2q be abstract domains with functions
α1, γ1 and α2, γ2 such that C ´́ Ñ́Ð́ ´́

α1

γ1 A1 and C ´́ Ñ́Ð́ ´́
α2

γ2 A2 form a Galois connection each.
The complete lattice

A1 ˆA2 “ pA1 ˆ A2,Ďq

with
pa1, a2q Ď pa3, a4q ô a1 Ď1 a3 ^ a2 Ď2 a4

is called the direct product of A1 and A2.

In the same notation, with

γppa1, a2qq “ γ1pa1q [γ2pa2q

αpcq “ pα1pcq, α2pcqq

C ´́ Ñ́Ð́´́α
γ

pA1 ˆA2q forms a Galois connection.

The previous definitions allow us to define a semantic combination operation for two
complete lattices:

Definition 2.7. The complete lattice

A1 ˚A2 “ ςrA1 ˆA2s

is said to be the reduced product of A1 and A2.

The reduced product of two abstract domains combines the information from the do-
mains and avoids the imprecision introduced by redundant abstract states. The results
of an analysis that uses the reduced product of two domains are often more precise than
the results that can be achieved by iteratively analyzing with the component domains
separately in any order.
Combining two existing analyses in a reduced product is a highly non-trivial task

that typically is only possible by creating a new combined abstract domain entirely
from scratch as pointed out in [Cousot and Cousot, 1979].

2.1.3 Transformer Functions

The execution of program statements τ modifies the state of the system. This is modeled
in the concrete domain with concrete transformers postrτ s : Ξ Ñ Ξ for every possible
program statement. Concrete transformers for single concrete states can be raised to
the concrete domain by element-wise application:

postrτ s : C Ñ C, c ÞÑ tpostrτ spσq | σ P cu

For an effective abstract-interpretation-based program analysis, a corresponding ab-
stract transformer Ąpostrτ s : A Ñ A that over-approximates the semantics of τ in the
abstract domain is necessary.

7

2 Theoretical Background

Definition 2.8. The best abstract transformer ypostrτ s : AÑ A maps an abstract value
a P A to the least abstract value ypostrτ spaq that over-approximates any concrete state
that is reachable by executing the statement τ at a concrete state that is represented
by a (visualized in Figure 2.4):

ypostrτ s “ α ˝ postrτ s ˝ γ

concrete abstract

ypostrτ s

γ

postrτ s

α

Figure 2.4: Definition of the best abstract transformer ypostrτ s.

However, this definition of the best abstract transformer cannot be used as an algo-
rithm for its systematic computation as the concretization function can easily generate
infinite or infeasibly large sets of concrete states for which the element-wise concrete
transformer is not computable.
Manually implementing best abstract transformers is a tedious and error-prone task

which has to be repeated for every possible program statement when implementing
a new abstract domain. An obvious measure for reducing the necessary effort is to
implement only simplified over-approximations of the best abstract transformer at the
cost of a potential loss of precision.

With a formalization of the abstract domain and the abstract transformers for all
program statements, the abstract semantics of a program can be defined as a solution
of an equation of the form

X “ F pXq

where X P Ak contains an abstract value for each abstraction point of the program and
F : Ak Ñ Ak consists of applications of abstract transformers (cf. [Cousot and Cousot,
1977]). Such solutions can be computed by finding a fixed point of F .

2.2 Satisfiability Modulo Theories

Investigating the satisfiability of logical formulas is an important field of research in
computer science. It plays a substantial role in computability and complexity theory,
and many other disciplines of computer science heavily depend on the existence of

8

2.3 Symbolic Abstract Interpretation

efficient algorithms for checking satisfiability (like e.g. artificial intelligence, computer
assisted proof generation and program verification).
Typical examples for logical systems that are subject to satisfiability checking are

propositional logic and the more expressive first-order logic. Although useful for some
applications, those logics have a significant disadvantage for many potential uses: they
do not provide predicates with a fixed semantics. Consider the following first-order
formula as an example:

x ă y ^ x “ y ` 1

Simple first-order satisfiability checkers would just see r¨s ă r¨s and r¨s “ r¨s ` 1 as
predicates over variables and would try to come up with an interpretation for these
predicates such that the formula is true. This is not a desirable behavior if one wants
to check whether there is a mapping of x and y to integers such that they fulfill both
parts of the formula with the typical meaning of integer comparison, addition and
equality.
This consideration leads to the notion of Satisfiability Modulo Theories (SMT) [Bar-

rett et al., 2009]: Certain predicates in the formula are no longer uninterpreted but
evaluated in a way that is specified by the chosen theory. This allows for example to
check satisfiability of formulas with respect to integer arithmetics, array operations or
fixed-width bit vector arithmetics.
For this thesis, a subclass of the last mentioned example, namely quantifier-free bit

vector arithmetics (QFBV) is the most frequently used theory. As the thesis only
utilizes SMT for checking the satisfiability of certain formulas, a solver is used as a
black box for model generation. The decision procedure for this instantiation of SMT
has been proven to be NEXPTIME-complete [Kovásznai et al., 2012].

2.3 Symbolic Abstract Interpretation
The concept of Symbolic Abstract Interpretation was first introduced in [Reps et al.,
2004] and further developed and summarized in [Thakur, 2014] as an extension to the
Abstract Interpretation framework (section 2.1). It adds an additional symbolic layer
between concrete and abstract domains: In this symbolic domain S, sets of concrete
program states are represented by formulas of some given logic L, e.g. an instance of
SMT. If L is expressive enough, the concrete transformer functions postrτ s can be
represented by formulas ϕτ capturing their respective behavior independently of the
abstract domain.
For the following definitions, it is convenient to assume the existence of a function

J¨K : S Ñ C that maps a formula to the set of concrete states that it represents.
Corresponding to the abstraction and concretization functions α and γ, one can

define a symbolic abstraction function pα : S Ñ A and a symbolic concretization func-
tion pγ : A Ñ S. pα maps formulas ψ P S to the least abstract value pαpψq that
over-approximates the set of concrete values that ψ represents and pγ maps abstract
values a to a formula pγpaq in S that represents the same set of concrete states as a
(cf. Figure 2.5).

9

2 Theoretical Background

Concrete
Domain

Symbolic
Domain

Abstract
Domain

J¨K
pα

pγ

Figure 2.5: Domains in Symbolic Abstract Interpretation.

The symbolic abstraction and concretization functions can therefore be defined in
terms of their non-symbolic counterparts as follows:

pαpψq “ αpJψKq
γpaq “ JpγpaqK

The effect of a program statement τ can be specified as the program state after
the execution of τ in terms of the program state before. To specify such a relation
in SMT formulas, two disjoint sets Σpre and Σpost of SMT variables are necessary,
one representing the state before the execution of the statement and one for the state
afterwards. In the following, for a program variable x, the corresponding variable in
Σpost that represents its state after the execution is denoted by a primed variable x1 with
the same name whereas the state before execution of the statement is represented by
the unprimed version x of the variable in Σpre. It is convenient for the formalization to
parameterize the transformer formulas ϕΣpre,Σpost

τ by the sets Σpre and Σpost and similarly
the elements ψΣ of the symbolic domain by the set Σ of SMT variables that are used
to represent the state of program variables. In this notation, superscripts of pα and pγ
describe the set of SMT variables on which the corresponding function operates on.
For example, the semantics of the assignment

x “ y` z;

could be captured with the formula

px1 “ y ` zq ^ py1 “ yq ^ pz1 “ zq.

A symbolic transformer formula ϕΣ1,Σ2
τ can be applied to an element ψΣ of the sym-

bolic domain by forming the conjunction ϕ
Σpre,Σpost
τ ^ ψΣpre of the two formulas and

interpreting the variables from Σpost as the significant variables constraining the rep-
resented concrete states. Hence, two symbolic transformers ϕΣ1,Σ2

τ1
and ϕΣ3,Σ4

τ2
can be

concatenated by forming the conjunction of the two formulas ϕΣpre,Σint
τ1 and ϕΣint,Σpost

τ2

that share a set Σint of intermediate variables for the state after the first statement and
before the second statement:

10

2.3 Symbolic Abstract Interpretation

ψΣpre ^ ϕΣpre,Σpost
τ1,2

” ψΣpre ^ pϕΣpre,Σint
τ1

^ ϕΣint,Σpost
τ2

q

” pψΣpre ^ ϕΣpre,Σint
τ1

q ^ ϕΣint,Σpost
τ2

With this technique, arbitrary loop free program fragments can be represented by a
single transformer formula that avoids unnecessary loss of precision induced by conver-
sions to the abstract domain in between.
These definitions allow a characterization of the best abstract transformer ypostrτ s

similar to Definition 2.8 (cf. Figure 2.6): The best abstract transformer function for an
arbitrary transformer in an arbitrary abstract domain can be computed by applying
the symbolic abstraction function to the conjunction of the formula representing the
transformer and the symbolic concretization of the input abstract value:

ypostrτ spaq “ pαΣpostpϕΣpre,Σpost
τ ^ pγΣprepaqq

Note that the above characterization does not require the abstract domains of the value
before and after the transition to be identical. By using the symbolic concretization
function of the input abstract domain and the symbolic abstraction function of the
output domain, this construction can be used to convert information between abstract
domains. Thus, a static analyzer can choose different abstract domains for different
program points, possibly guided by human input.

concrete symbolic abstract

ypostrτ s

pγ

ϕτ

pα

Figure 2.6: Best abstract transformer in Symbolic Abstract Interpretation.

2.3.1 Computing pα

A major advantage of Symbolic Abstraction is that, in contrast to standard Abstract
Interpretation, the described definition of the best abstract transformer is effectively
computable. Designing the formulas ϕτ for the transformers and the symbolic con-
cretization function pγ are straightforward tasks if the desired semantics of the analyzed
language and the abstract domain are known (examples for such transformer formulas
and symbolic concretization functions can be found in section 4.2 and section 4.4). The

11

2 Theoretical Background

only remaining challenge for precise abstract transformers is a general implementation
of the symbolic abstraction function pα.
In the following, two algorithms for computing pα independently of the abstract do-

main are described: a unilateral approach that approximates the final result from below
until a sound result is reached and a bilateral approach that tracks lower and upper
bounds of the best possible result and refines them until they are equal. The algorithms
rely on an appropriate logics solver that is able to generate models (i.e. satisfying vari-
able assignments) for satisfiable formulas.
For abstract domains with finite height, both algorithms are guaranteed to terminate

with the most precise result that is possible. In the case of domains with infinite height,
none of the algorithms is guaranteed to terminate. However, the latter of the presented
algorithms can still give non-trivial and sound over-approximations of the correct result
if it is stopped at any point in time.

Unilateral Algorithm

The first approach for a general computation of pα is the unilateral algorithm as presented
in [Reps et al., 2004]. The algorithm denoted here as pαÒpϕq (Algorithm 2.1) is the
version described in [Thakur, 2014] that follows the same concept. It requires the
abstract domain to provide

• a lattice join \ : AˆAÑ A,

• a symbolic concretization function pγ : AÑ S and

• a representation function β : Ξ Ñ A.

For finding the most precise representation of a formula ϕ in the abstract domain,
the algorithm keeps a lower bound lower of the correct result and refines it until it is no
longer an under-approximation of the result. Starting with the K value of the abstract
domain, the first step is to ask the solver for a model for the conjunction of ϕ with the
negation pγplowerq of the symbolic concretization of the current lower bound. That is
a model of a concrete state that is represented by the input formula ϕ but not by the
current lower bound. If no such model exists, i.e. the conjunction is unsatisfiable, every
concrete state that is represented by ϕ is also captured by lower and therefore lower
soundly abstracts the values represented by ϕ.
If a model S is found, it corresponds to a concrete state σ that is not represented

by lower but that should be captured by pαpϕq. It is beneficial to identify the model S
with the concrete state σ that it represents. Thus, one can get a new lower bound
that represents everything captured by lower and by S by taking the join of lower and
the representative βpSq of S in the abstract domain. With this new lower bound, the
algorithm repeats the performed steps until no model for a concrete state from JϕK,
that is not represented by the lower bound, can be found anymore.

12

2.3 Symbolic Abstract Interpretation

Algorithm 2.1: pαÒpϕq
1 lower Ð K

2 while t rue do
3 S Ð FindModel (ϕ^ pγplowerq)
4 if S is None then
5 break
6 else
7 lower Ð lower \ βpSq
8 done
9 ans Ð lower

10 return ans

Algorithm 2.2: pαÒincpϕq

1 lower Ð K

2 ψ Ð ϕ
3 while t rue do
4 ψ Ð ψ ^ pγplowerq
5 S Ð FindModel (ψ)
6 if S is None then
7 break
8 else
9 lower Ð lower \ βpSq

10 done
11 ans Ð lower
12 return ans

The pαÒpϕq algorithm from [Thakur, 2014] differs slightly from the version from [Reps
et al., 2004]. Reps et al. update the input formula in every loop iteration to be the
conjunction of the previous formula with the negated symbolic concretization of the
current lower bound. In consequence, the calls to the solver for this version contain
not only subexpressions for the current lower bound but also for every lower bound
that has been considered in previous loop iterations. As a newly obtained lower bound
lower1 always subsumes the previous lower bound lower, adding the negated symbolic
concretizations of all so far encountered lower bounds is equivalent to adding only the
subexpression for the newest lower bound to the solver call:

lower Ď lower1 ñ pγplowerq Ñ pγplower1q

ñ pγplower1q Ñ pγplowerq

ñ p pγplower1q ^ pγplowerqq ” pγplower1q

Despite having a larger formula as input for the SMT solver, the fact that previous
clauses are kept as assumptions for the solver allows the solver to reuse information
that has been generated for one call to the solver in the following calls without having
to recompute it every time. This can potentially improve the actual runtime of the
algorithm significantly.
A version of the algorithm that is similar to the one presented in [Reps et al., 2004] in

its use with conjuncts for previous lower bounds is shown as pαÒincpϕq in Algorithm 2.2.
An example run of this algorithm is visualized in Figure 2.7.

Bilateral Algorithm

Depending on the model generation of the SMT solver, the unilateral algorithm can
involve checking for every element in a maximal ascending chain of the abstract domain
whether it subsumes the concrete values that should be represented for every abstract
transformer.

13

2 Theoretical Background

concrete symbolic abstract

JϕK

lower0

ψ0

(a)

concrete symbolic abstract

JϕK

lower0

ψ0
S0

solver

βpS0q
β

(b)

concrete symbolic abstract

JϕK

γplower1q

S0

lower1

ψ1

S1

solver βpS1q

β

(c)

concrete symbolic abstract

JϕK

γplower2q

γplower1q

S0

S1

lower2

ψ2

solver

(d)

Figure 2.7: Example run of the unilateral pαÒincpϕq algorithm.
Initially (a), lower0 is K and ψ0 is initialized as ϕ^ false. None of the concrete
states represented by ϕ (the dashed ellipsis) is captured by lower0. Next (b), the
solver finds a model S0 for ψ0 with the representative βpS0q. In the following step
(c), lower1 is set to the join of lower0 and βpS0q (here: βpS0q as lower0 “ K).
lower1 covers only a part of the concrete states in JϕK (blue area), therefore the
solver finds a model S1 for ψ1 :“ ψ0 ^ pγplower1q. Finally (d), with the new lower
bound lower2 “ lower1 \ βpS1q, the solver finds that ψ2 :“ ψ1 ^ pγplower2q is
unsatisfiable, hence lower2 over-approximates the concrete states represented by ϕ
(red area).

The bilateral algorithm for symbolic abstraction presented in [Thakur, 2014] intro-
duces a notion to improve the performance of symbolic abstraction in such cases (here
described as pαÙpϕq, cf. Algorithm 2.3).
The following definition formalizes a necessary concept for this algorithm:

Definition 2.9. A function AbsCons : AˆAÑ A is said to be an abstract consequence
operation if for all l, u P A the following implication holds:

l Ĺ uñ l Ď AbsConspl, uq ^ AbsConspl, uq Ğ u

An abstract consequence operation has to provide for its arguments l, u an abstract
value that is greater than or equal to l and neither greater than nor equal to u. Note

14

2.3 Symbolic Abstract Interpretation

that this guarantees that the meet of the abstract consequence and u lies “between” l
and u (including l and excluding u). If the operation provides abstract values such that
maximal ascending chains from l to the value and from the value to u are of similar
length, it can be used to determine the symbolic abstraction of a formula in a binary-
search-like manner, effectively reducing the runtime in comparison to the unilateral
algorithm.
Furthermore, the abstract consequence operation can be implemented to yield ab-

stract values with possibly less complex symbolic concretized formulas, potentially re-
ducing the runtime of the calls to the solver and therefore improving the overall perfor-
mance.
With this concept, all operations necessary for the bilateral algorithm are available:

In addition to the operations that a domain has to support for the unilateral algorithm,

• a lattice meet [: AˆAÑ A and

• a valid abstract consequence operation AbsCons : AˆAÑ A

is needed.

Algorithm 2.3: pαÙpϕq
1 upper Ð J

2 lower Ð K

3 while lower ‰ upper do
4 p Ð AbsCons (lower ,upper)
5 S Ð FindModel (ϕ^ pγppq)
6 if S is None then
7 upper Ð upper [p
8 else
9 lower Ð lower \ βpSq

10 done
11 ans Ð upper
12 return ans

The bilateral algorithm keeps upper and lower bounds upper, lower of the precise
result of the symbolic abstraction function. It starts with the trivial upper and lower
bounds J and K, respectively. With the abstract consequence operation, an abstract
value p “between” lower and upper is generated. The solver is called to provide a model
for the conjunction of the input formula ϕ with the negated symbolic concretization pγppq
of p. If a model S is found, it represents a concrete state that is not captured by lower,
hence lower\βpSq is also a valid lower bound of the correct result and lower is updated
accordingly. Otherwise, if there is no such model, p is already an upper bound of the
precise result and so is the meet of upper and p.
Either way, one of the bounds can be refined and the algorithm can start its next

iteration if the bounds are not yet identical.

15

2 Theoretical Background

concrete symbolic abstract

γpupper0q

JϕK

lower0

upper0

ϕ

(a)

concrete symbolic abstract

γpupper0q

JϕK

ϕ

ψ0

p0

solver

(b)

concrete symbolic abstract

γpupper1q

JϕK

ϕ

ψ1

upper1

p1

S1

βpS1q
solver

β

(c)

concrete symbolic abstract

γplower1q

γpupper1q

JϕK

ϕ

upper1

S1

lower1

(d)

concrete symbolic abstract

γplower1q

γpupper1q

JϕK

ϕ

upper1

S1 lower1ψ2

p2

solver

(e)

concrete symbolic abstract

JϕK

γplower1q

γpupper2q

ϕ

S1
lower1
“ upper2

p2

(f)

Figure 2.8: Example run of the bilateral pαÙpϕq algorithm.
Initially (a), lower0 (upper0) is defined as K (J). Hence, γplower0q is the empty set
whereas γpupper0q subsumes the set C of all program states (red area). The input ϕ
represents the dashed subset of C. First (b), an abstract consequence p0 of lower0

and upper0 is computed and a solver call is issued for ψ0 :“ ϕ ^ pγpp0q. Here,
the solver finds no model, so in the next step (c), the upper bound is refined to
upper1 :“ upper0 [p0 “ p0. Again, an abstract consequence p1 of lower0 and upper1

is generated and the formula ψ1 :“ ϕ ^ pγpp1q is used as an input for the solver.
The solver discovers a model S1 whose representative βpS1q refines the lower bound.
Now (d), lower1 “ lower0\βpS1q captures a non-empty subset of the concrete domain
(blue area). Once again (e), a solver call for the conjunction ψ2 of ϕ and the negated
symbolic concretization of an abstract consequence p2 of the bounds is issued. As no
model is found, the p2 [upper1 is used as the new upper bound upper2 in (f). Now,
both bounds have the same value, with which the algorithm terminates.

16

2.3 Symbolic Abstract Interpretation

Notice that always returning the first argument is a valid behavior for an abstract
consequence operation. With such an abstract consequence operation, the bilateral
algorithm degenerates to perform the same steps as the unilateral algorithm: First,
only the lower bound is refined until it reaches the correct result, then the solver is
called for an unsatisfiable formula and the upper bound is refined to the value of the
lower bound. However, there is no obvious way of modifying the bilateral algorithm to
benefit in runtime from previous solver queries like it is done in the pαÒincpϕq algorithm.

One further benefit of the bilateral algorithm is that the upper bound that it keeps
throughout the application of the algorithm always is a sound over-approximation of
the precise result of the symbolic abstraction. Hence, the algorithm can be modified
to restrict the overall time for calls to the solver and to still provide sound, non-trivial
results in cases where the time is not sufficient to generate precise results. In such a
case, the loop of the algorithm can be broken and the upper bound is returned.
On the other side, one can observe that — compared to the unilateral algorithm —

the bilateral algorithm can issue significantly more calls to the SMT solver if one starts
the algorithm with an already valid over-approximation of the result as a lower bound.
The bilateral algorithm has to refine the upper bound until it reaches the lower bound
whereas the unilateral algorithm only needs to perform a single unsatisfiable solver call.

2.3.2 Reduced Products in Symbolic Abstract Interpretation

Symbolic Abstract Interpretation allows a flexible and modular domain design. Small
and easy to specify abstract domains can be combined without additional effort in a
reduced product:
Given two abstract domains pA,ĎAq and pB,ĎBq with operations \A, [A, pγA, βA

and \B, [B, pγB, βB, respectively, for the reduced product pA,ĎAq ˚ pB,ĎBq, we define:

A ˚B :“ AˆB

pa, bq \A˚B pc, dq :“ pa\A c, b\B dq

pa, bq [A˚B pc, dq :“ pa[A c, b[B dq

pγA˚Bppa, bqq :“ pγApaq ^ pγBpbq

βA˚Bpσq :“ pβApσq, βBpσqq.

The new product domain is the cartesian product of the combined domains. Join,
meet and representation function are applied component-wise and the new symbolic con-
cretization function returns the conjunction of the results of the symbolic concretization
functions of the combined domains.

As the symbolic abstraction algorithm is guaranteed to return the most precise ele-
ment of the cartesian product that over-approximates the input, this construction yields
the same results as applying the reduction operator ς to a direct product of the con-
tributing domains.

This construction can be lifted to an arbitrary number of combined abstract domains
in a straightforward way.

17

3 Used Frameworks

The software developed in the thesis uses and builds upon existing frameworks that are
described in this chapter.

3.1 LLVM

The goal of the LLVM project [Lattner and Adve, 2004] is providing a modular com-
piler framework that uses modern techniques to support expressive code analyses and
optimizations. For this purpose, LLVM defines a low-level intermediate representa-
tion (LLVM IR) based on a control flow graph in Single Static Assignment (SSA)
form [Cytron et al., 1991] with high-level type information.
In practice, this means that the program representation is a directed graph with basic

blocks as nodes. These basic blocks represent sequences of simple instructions that are
all executed unconditionally if the basic block is executed. The instructions can be
divided into two categories: the φ-nodes and the non-φ instructions. The latter ones
include typical assembly-like instructions, e.g. for arithmetical operations or branches.
Their result only depends on the values of their operands. In contrast to that, the former
ones are conditional copy-operations depending on the previously executed block. A
basic block always consists of a (possibly empty) sequence of φ-nodes (the “φ-part”)
and a sequence of other instructions ending in a terminator instruction that determines
the basic block to be executed afterwards (together the “non-φ-part”).
Most LLVM instructions generate a result from their operands. For reasons of disam-

biguation, the representations of instruction results will be referred to as SSA-variables
or just variables in the rest of the thesis. These variables have a static type and —
following the lines of the definition of the SSA representation — are defined exactly
once in a function and each use of an SSA-variable is dominated by its definition. The
possible results of instructions in concrete runs of the program will be called values
throughout the rest of the thesis. This is in contrast to the terminology used in the
LLVM source code, where the class Value is a superclass of most of the CFG constructs
(including basic blocks and instructions).
The choice of a program representation in SSA form simplifies the implementation of

program optimizations. Its benefits for this thesis are explained in section 4.2.
The semantics of the LLVM IR instructions is designed to follow the semantics of C

and C++ in most aspects; nevertheless its structure is simple enough to be compiled
to efficient machine code for different hardware platforms.

19

3 Used Frameworks

LLVM front ends are available for many commonly used programming languages like
C/C++1, Haskell2 and Rust3 which makes optimizations on LLVM IR available for all
those languages without extra effort.
Optimizations in the LLVM world are typically implemented as passes that can

easily be run on the IR code or directly in the compilation process. LLVM comes with
a considerable range of optimization and analysis passes whose results can be used in
newly created passes.

Existing passes that are used and discussed in this thesis include4:

SCCP Sparse Conditional Constant Propagation, a program transformation proposed
in [Wegman and Zadeck, 1991]. It combines the folding and propagation of vari-
ables with a constant value at compile time with the elimination of unreachable
code. As constant values often imply constant branching conditions which can
cause unreachable code and the removal of unreachable code in turn can make
constant values discoverable at compile time, this is a powerful program optimiza-
tion.

The LLVM implementation handles most kinds of LLVM values, including float-
ing point values. An inter-procedural version that considers constants from call
sites is also available.

SimplifyCFG A pass that simplifies the control flow graph syntactically by removing
obviously unreachable basic blocks, eliminating trivial φ-node and merging basic
blocks if possible.

DCE The LLVM Dead Code Elimination removes instructions whose results are not
used in further computations. Together with SimplifyCFG, it provides a powerful
set of clean up transformations.

GVN LLVM also comes with a version of the global value numbering analysis pre-
sented in [Kildall, 1973] with sophisticated transformations based on their results.
It does not only eliminate redundant computations and common subexpressions,
but also removes dead loads. New φ-nodes can be introduced to propagate re-
sults from a non-dominating basic block to remove redundant computations more
effectively.

3.2 Z3
Z3 [de Moura and Bjørner, 2008] is an efficient and advanced SMT solver intended
for software verification and software analysis, developed by Microsoft Research. It

1http://clang.llvm.org/
2https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/Backends/LLVM
3http://www.rust-lang.org/
4a complete list of LLVM passes can be found at http://llvm.org/docs/Passes.html

20

http://clang.llvm.org/
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/Backends/LLVM
http://www.rust-lang.org/
http://llvm.org/docs/Passes.html

3.2 Z3

supports several theories that can be used for modeling software behavior such as bit
vectors (for machine integer arithmetics) and arrays (for memory). There is also basic
support for floating point types that can be used for modeling floating point arithmetics.
Due to the nature of the implemented conflict-driven clause learning algorithm [Biere

et al., 2009], an instance of the Z3 solver learns additional lemmas that help in the
process of proving or disproving satisfiability of the formula during a satisfiability check.
Hence, it can be beneficial to reuse solver instances for formulas that share significant
common conjuncts as the lemmas from previous runs can be reused avoiding unnecessary
slowdowns because of lemma recomputation.
The key arguments for the use of Z3 are its relatively good performance and the C++

interface that reveals most of the relevant functionality in a convenient way.

21

4 Sprattus

Sprattus (Static Program Analysis ToolkiT Using Satisfiability) is a framework for
static analysis of programs in the LLVM intermediate representation. It emerged from
a project for the Static Program Analysis course in WS 2014/15 at Saarland University.
Major advantages of the toolkit are its flexibility in the design of new abstract domains

and the simple generation of reduced products of arbitrary combinations of domains.
Based on algorithms for symbolic abstraction described in section 2.3 and powered
by Z3, a domain designer only needs to specify a few essential operations on single
abstract states as well as their semantics in SMT formulas. Providing abstract trans-
formers for the numerous LLVM instructions is not necessary.
The toolkit enables precise results even for domains with very limited expressiveness

by supporting abstract transformers for large program fragments and only abstracting
at few necessary program points, e.g. for handling loops. This fact makes Sprattus
interesting for program analysis purposes as well as for applications in software verifi-
cation.
On the other side, the performance of Sprattus is limited by the immense worst-

case complexity of the approach given by the interaction with the SMT solver. Pre-
cisely modeling memory behavior or floating point operations can increase the expected
analysis time heavily. Furthermore, LLVM vector instructions as well as some other
operations are not supported in Sprattus.

The Sprattus framework provides several features that are necessary for a static
program analysis based on symbolic abstraction:

• formula generation for constructing symbolic transformers for LLVM IR,

• implementations of the generic symbolic abstraction function,

• an engine for computing fixed points of the program semantics,

• an interface for specifying abstract domains, and

• a library of abstract domains that can be used directly or as a base for the
implementation of new domains.

These components and their interaction are described in the following sections.

23

4 Sprattus

4.1 Program Representation
To be analyzed in the Sprattus framework, an input program in a high-level pro-
gramming language like C or C++ has to be translated into the LLVM intermediate
representation in SSA form.

LLVM IR is usually represented graphically as a control flow graph (CFG) with basic
blocks as nodes and (directed) edges representing possible control flow between them.
In static analysis, it is more convenient to assign instructions to edges instead of nodes

(so-called edge effects). Since φ-nodes behave differently depending on the incoming
edge, we have chosen an interpretation in which an edge from a basic block a to a basic
block b represents the non-φ-instructions of a and the φ-nodes of b. In this scenario,
the φ-nodes of an edge are just unconditional copies of the values corresponding to
a transition from the source basic block of the edge. To have the non-φ-instructions
of function exit blocks included in control flow edges, it is necessary to add an artifi-
cial EXIT node that contains no instructions and that is a successor of all nodes that
correspond to basic blocks without regular successors.

1 int f oo (int z)
2 {
3 int x = 1 ;
4 int y = z ;
5 while (dontknow ())
6 {
7 i f (y != z)
8 x = 2 ;
9 x = 2 ´ x ;

10 i f (x != 1)
11 y = 2 ;
12 }
13 return x ;
14 }

(a) input program

entry:
 br label %loop.header

loop.header:
 %x = phi i32 [1, %entry], [%xs, %if.end2]
 %y = phi i32 [%z, %entry], [%ym, %if.end2]
 %unknown = call i32 @dontknow()
 %tobool = icmp eq i32 %unknown, 0
 br i1 %tobool, label %exit, label %loop.body

T F

exit:
 ret i32 %x

loop.body:
 %cmp1 = icmp eq i32 %y, %z
 br i1 %cmp1, label %if.end1, label %if.then1

T F

if.end1:
 %xm = phi i32 [%x, %loop.body], [2, %if.then1]
 %xs = sub nsw i32 2, %xm
 %cmp2 = icmp eq i32 %xs, 1
 br i1 %cmp2, label %if.end2, label %if.then2

T F

if.then1:
 br label %if.end1

if.end2:
 %ym = phi i32 [%y, %if.end1], [2, %if.then2]
 br label %loop.header

if.then2:
 br label %if.end2

(b) LLVM IR CFG

S

1

2

3

4

5

6

7

E

entry‚

loop.header˝

loop.header‚

loop.body˝

loop.body‚

if.then1˝

if.then1‚

if.end1˝

loop.body‚

if.end1˝

if.end1‚

if.then2˝

if.then2‚

if.end2˝

if.end1‚

if.end2˝
if.end2‚

loop.header˝

loop.header‚

exit˝

exit‚

(c) edge-based CFG

Figure 4.1: Representations of an example program, which is taken from [Click and
Cooper, 1995]. (a) Shows the program in the C programming language, (b) is a
graphical depiction of the LLVM IR that the Clang compiler generates from the
input. The edge-based CFG in (c) shows how the IR is interpreted for Sprattus.
Here, bb‚ represents the instructions from basic block bb that are no φ-nodes, bb˝
represents the φ-nodes of bb.

24

4.2 Formula Construction

This interpretation of the LLVM IR is not made explicit in Sprattus, however it
substantially determines the structure of the symbolic transformer formulas as described
in section 4.2.
These three program representations — source code in a high-level language, a graph-

ical representation of the LLVM IR and the interpretation as a control flow graph with
instructions assigned to edges — are displayed for an example program in Figure 4.1.

4.2 Formula Construction
In order to analyze a program using symbolic abstract interpretation, it is necessary to
convert all the program parts to SMT formulas capturing their respective semantics.
The size of the program fragments that are translated into a single formula influences
the precision of the program analysis. With larger fragments, longer subsequent parts
of the program are covered by a single abstract transformer. Consequently, results are
abstracted at fewer program points and therefore potentially more precise.
For example, the control flow graph depicted in Figure 4.2 contains two nodes S and 3

that include a conditional branch influencing the flow of control in the function. If the
conditions for both branches are equal, a best abstract transformer for the complete
function yields the information that no execution can possibly take a path through
the function that contains the nodes 1 and 5 (and similarly for 2 and 4). An analysis
that only uses abstract transformers for single control flow edges cannot give this result
without a very expressive and specifically-crafted abstract domain.
Despite producing fewer solver calls with larger fragments, those that are issued are

more complex and might result in a worse overall performance than smaller fragments.

S

1 2

3

4 5

E

T F

T F

Figure 4.2: Example CFG for which larger fragments improve analysis precision.

4.2.1 Basic-Block-Level Construction

As basic blocks are always executed as a whole and they are directly accessible in the
IR, it is tempting to use them as smallest elements for atomically analyzed program
fragments. However, a similar approach using the edges of the edge-based control

25

4 Sprattus

flow graph as described above for formula construction involves less complex formulas
because of the simpler representation of φ-instructions. The formula generation of
Sprattus exploits this advantage of the edge-based interpretation of the program.
As LLVM IR enforces SSA form, each code section corresponding to an edge in the

CFG is guaranteed to contain at most one definition for each program variable. Thus,
only two sets of SMT variables are necessary for a formula describing an edge: one for
the state before executing the corresponding instruction sequence and one for the state
afterwards. In a non-SSA program representation, each new definition of a program
variable inside a single fragment would require a fresh SMT variable to represent the
value of the assigned variable after the definition. Note that the distinction between
values before and after a program edge is only necessary because of variable definitions
in loops. In such cases, the state before an edge that defines a variable can contain
valid information about this variable.

if.end1:
 %xm = phi i32 [%x, %loop.body], [2, %if.then1]
 %xs = sub nsw i32 2, %xm
 %cmp2 = icmp eq i32 %xs, 1
 br i1 %cmp2, label %if.end2, label %if.then2

T F

if.end2:
 %ym = phi i32 [%y, %if.end1], [2, %if.then2]
 br label %loop.header

Figure 4.3: Subgraph of CFG from Figure 4.1b.

For example, for the transition r4 Ñ 6s in Figure 4.1c that represents the non-φ-
instructions of if.end1 and the φ-nodes of if.end2 as displayed in Figure 4.3, the
constructed formula is equivalent to the following:

pno_overflow Ñ xs1 “ 2´ xmq
^ p no_overflow Ñ undefq
^ pxs1 “ 1 Ø cmp21 “ 1q
^ pcmp21 “ 0 Ñ falseq

^ pym1 “ yq

^ px1 “ xq ^ py1 “ yq ^ pz1 “ zq
^ punknown1 “ unknownq ^ pxm1 “ xmq
^ pcmp11 “ cmp1q ^ ptobool1 “ toboolq

The first four conjuncts of the formula capture the semantics of the non-φ-instructions
of if.end1, with the first two conjuncts for the subtraction, the third for the comparison
operation and the last one for the conditional branch instruction. By implying false if
the branch that contributes to the analyzed edge is not taken, only program executions
that really contribute to the edge are considered for the analysis. The φ-nodes from

26

4.2 Formula Construction

if.end2 is captured as a simple copy by the conjunct pym1 “ yq and the program
variables that are not defined inside the program fragment are defined to keep their
values with the remaining conjuncts.
In the formula, no_overflow represents a subexpression that is true if and only if

the subtraction of the signed interpreted 32-bit numbers 2 and xm is representable as
a signed interpreted bit vector of width 32. undef is an additional SMT variable that
does not correspond to any program variable but simply indicates the use of undefined
behavior in the analyzed fragment. This construction guarantees that in case of possible
undefined behavior in the execution of an instruction, the computation can have any
result. Although this is necessary for program verification purposes, for applications
for which it is sound to assume that no undefined behavior occurs, e.g. for program
transformations in a compiler, it would be more desirable to encode this assumption
in the SMT formula. This can be achieved by adding a further conjunction with the
expression undef.
In Sprattus, the relation between SSA-variables and SMT variables is captured in

ValueMappings that specify for each SSA-variable x for a certain program point P in
a certain fragment F , which SMT variable represents its current state. If x is defined
inside F before P, the corresponding output SMT variable for x has to be used whereas
in other cases, i.e. if x has no definition inside F or if the definition of x inside F occurs
after P, the corresponding element of the set of input variables has to be chosen.

4.2.2 Fragment-Level Construction

The guarantees of the SSA form extend even further since every acyclic subgraph of
an SSA control flow graph fulfills the same requirement: during execution of the in-
structions that comprise the subgraph, each variable is defined at most once. So, the
framework for obtaining formulas for control flow edges can be extended to arbitrary
acyclic fragments without modifying the ValueMapping mechanism.

Sprattus supports formula generation for subgraphs of the CFG that can be de-
scribed by a single starting node S and a single ending node E. The fragment contains
all edges that are a part of paths from S to E without any redundant nodes. S and E do
not have to be distinct nodes of the CFG, however, if they are equal, only the non-trivial
paths from S to E that contain at least one edge are considered as valid executions
for this fragment. Note that even in this case no definition can be executed twice in
a fragment as only the non-φ-instructions of the starting node and the φ-nodes of the
ending node are contained in the fragment.
Within this construction, Sprattus translates the block-based CFG that is implied

by the LLVM IR into SMT formulas that reflect an edge-based view on the control flow
graph.
It is necessary to encode the flow of control inside a fragment if more than one edge

is represented. The formulas used in Sprattus capture control flow by introducing
a unique boolean SMT variable for each control flow edge. A model for such a for-
mula assigns an edge variable to be true if and only if it represents the state after a
computation that passes through the corresponding edge of the control flow graph.

27

4 Sprattus

This behavior is achieved by a general algorithm for creating the formulas for an arbi-
trary loop-free fragment F :

1. As before, for each edge raÑ bs in F , corresponding formulas ψ‚a,exec and ψ˝b,exec for
the non-φ-instructions of the source block and for the φ-nodes of the destination
block, respectively, are generated.

2. For each such ψ‚a,exec and ψ˝b,exec, formulas ψ‚a,preserve and ψ˝b,preserve are constructed
to encode that the values of all variables that are defined in the non-φ-part of a
or in the φ-part of b, respectively, are not modified.

3. For each basic block a that is part of an edge of F , the condition ψ˝a,cond for the
execution of the φ-part of a is computed as the disjunction over all SMT variables
corresponding to edges in F with destination a. Similarly, the condition ψ‚a,cond
for the execution of the non-φ-part of a is constructed considering all edges that
start in a.

4. From the previously defined subformulas, the formula ψinsts is built as
ľ

aPBB

`

pψ˝a,cond Ñ ψ˝a,execq ^ p ψ
˝
a,cond Ñ ψ˝a,preserveq

^ pψ‚a,cond Ñ ψ‚a,execq ^ p ψ
‚
a,cond Ñ ψ‚a,preserveq

˘

where BB is the set of all basic blocks that are source or destination of an edge of F .
This formula guarantees that whenever a model for it has an edge variable set, the
corresponding instructions have to be taken into account and whenever an edge
variable is not set, that the SSA-variables that are defined in the corresponding
instructions are not modified.

5. The values of function arguments and program variables that are not defined
inside F are preserved throughout the fragment by the subformula ψunmod. It
contains for each such variable or argument v a conjunct pv1 “ vq.

6. The validity of executions with respect to control flow edges in a model is ensured
by a formula ψCFG that is a conjunction of implications. For each basic block a
that occurs in F and is not its starting basic block, it contains the subformula

ψ˝a,cond Ñ ψ‚a,cond

to enforce executions to end nowhere but in the ending point of the fragment.
Similarly, it also contains formulas

ψ‚b,cond Ñ ψ˝b,cond

28

4.2 Formula Construction

for each basic block b that occurs in F except for the ending block to forbid
executions that start “out of thin air”. Additionally, conjuncts for each basic
block stating that at most one edge to a successor block can be taken in an
execution have to be added. For a basic block a with a set of successor blocks S,
the necessary formula is:

ľ

bPS

´

from_a_to_bÑ
ľ

cPSztbu

 from_a_to_c
¯

where from_a_to_b is the SMT variable that represents the edge from basic
block a to basic block b.

7. Executions beginning in the starting point of F are allowed by the formula ψstart
which only contains the condition ψ‚start,cond for the execution of the non-φ-part
of the starting basic block.

The subformula construction for most instructions is completely unaware of the con-
trol flow encoding except for a few special cases:

• φ-nodes depend in their evaluation on the preceding block in the execution. Thus,
the semantics of a φ-node in basic block C of the form

v = phi <ty> [x, A], [y, B]

that assigns to v the value x if execution comes from basic block A and y if
execution comes from basic block B can be captured by the formula

pfrom_A_to_CÑ v1 “ xq ^ pfrom_B_to_CÑ v1 “ yq.

• conditional branch instructions (and similarly switch instructions) constrain the
executed edges, hence they should restrict the values of corresponding edge vari-
ables: A conditional branch instruction in basic block C of the form

br i1 c A, B

that continues execution in basic block B if c is 0 and in basic block A otherwise
can be represented by the formula

pc ‰ 0 Ñ from_C_to_Aq ^ pc “ 0 Ñ from_C_to_Bq.

The resulting formula that captures the semantics of the fragment is the conjunction
of the previously defined formulas:

ψ ” ψinsts ^ ψunmod ^ ψCFG ^ ψstart.

29

4 Sprattus

Consider the function displayed in Figure 4.4 as an example for the formula generation.
It returns the absolute value of the difference of its two unsigned interpreted bit vector
arguments a and b by comparing them to each other and then subtracting the smaller
from the greater value. As the function is acyclic, a formula describing its semantics
can be constructed following the above algorithm.

A:
 %cmp = icmp ult i32 %a, %b
 br i1 %cmp, label %B, label %C

T F

B:
 %x = sub i32 %b, %a
 br label %D

C:
 %y = sub i32 %a, %b
 br label %D

D:
 %z = phi i32 [%x, %B], [%y, %C]
 ret i32 %z

Figure 4.4: Example CFG for control flow encoding.

The subformula ψinsts that captures the semantics of the instructions in the involved
basic blocks can be simplified to the following formula (omitting implications of the
form xÑ true):

ψinsts ”
`

pfrom_A_to_B_ from_A_to_Cq Ñ ppa ă bØ cmp1 “ 1q
^pcmp1 ‰ 0 Ñ from_A_to_Bq
^pcmp1 “ 0 Ñ from_A_to_Cqq

˘

^ p pfrom_A_to_B_ from_A_to_Cq Ñ cmp1 “ cmpqq

^ pfrom_B_to_DÑ x1 “ b´ aq
^ p from_B_to_DÑ x1 “ xq

^ pfrom_C_to_DÑ py1 “ a´ bqq
^ p from_C_to_DÑ y1 “ yq

^ ppfrom_B_to_D_ from_C_to_Dq Ñ ppfrom_B_to_DÑ z1 “ x1q
^pfrom_C_to_DÑ z1 “ y1qqq

^ p pfrom_B_to_D_ from_C_to_Dq Ñ z1 “ zq

In this formula, each of the four pairs of consecutive conjuncts describes the semantics
of instructions from one of the basic blocks A, B, C and D, respectively.
The only SSA-variables in the fragment that are not defined in the function are the

function arguments a and b, hence they are preserved with the fragment preservation
formula ψunmod:

ψunmod ” a1 “ a^ b1 “ b

30

4.2 Formula Construction

A valid control flow is ensured by the formula ψCFG as defined below.

ψCFG ”pfrom_A_to_BÑ from_B_to_Dq
^pfrom_B_to_DÑ from_A_to_Bq

^pfrom_A_to_CÑ from_C_to_Dq
^pfrom_C_to_DÑ from_A_to_Cq

^ppfrom_B_to_D_ from_C_to_Dq Ñ from_D_to_EXITq
^pfrom_D_to_EXITÑ pfrom_B_to_D_ from_C_to_Dqq

^pfrom_A_to_BÑ from_A_to_Cq
^pfrom_A_to_CÑ from_A_to_Bq

The first four conjuncts of the formula guarantee that control flow neither ends sponta-
neously nor starts in the nodes B and C. The next two subformulas assert the same for
control flow at D, note the artificial exit node EXIT that is needed for non-φ-instructions
of function ending blocks. The last two conjuncts forbid executions that take more than
one of the edges rAÑ Bs and rAÑ Cs.
Finally, the formula ψstart that guarantees that one of the edges rAÑ Bs and rAÑ Cs

has to be taken in a valid execution of the fragment is defined as:

ψstart ” from_A_to_B_ from_A_to_C

An extended formula generation for program fragments that contain loops is not imple-
mented in Sprattus. Such fragments would lack an important property for an elegant
formula construction: An execution of a loop can (re-)define the values of program
variables arbitrarily often. Hence, they would require a more complex SMT variable
management that would yield relatively few benefits: a formula can only represent a
fixed number of loop iterations and since the precise number of iterations is often not
known (and can even be unbounded), support for fragments containing loops would not
remove the necessity of abstraction points inside loops.

4.2.3 Fragment Decompositions

Sprattus provides various default fragment decompositions that partition the input
program into acyclic, connected fragments by specifying abstraction points that mark
fragment starting and ending nodes. The currently supported strategies are Edges,
Headers, Bodies and Backedges. They are described in the following:

Edges The most fine-grained supported fragment decomposition specifies every node
in the control flow graph (i.e. every basic block) to be an abstraction point. This way,
every fragment only contains the non-φ-instructions of the starting basic block and the
φ-nodes of the ending basic block of a single control flow edge.

31

4 Sprattus

Headers A potential candidate for placing as few abstraction points as necessary is
placing them at loop headers, i.e. at the entry nodes of every loop. An example of this
decomposition strategy applied to the example from Figure 4.1 is shown in Figure 4.5.

Bodies Instead of inserting abstraction points at loop headers, another approach is
to abstract at the starting nodes of each loop back edge in the program, i.e. at the
end of every loop body. A sample decomposition using this strategy is also depicted in
Figure 4.5.
Loop body fragment decompositions contain larger, overlapping fragments than simi-

lar decompositions following the header-based strategy. Hence, stronger invariants may
be available at the loop condition which may yield more precise results. Especially with
abstraction points before the end of the loop, the analysis can use results of computa-
tions that are associated to the back edge of a loop when analyzing the fragments that
leave the loop.

Backedges The combination of both previous approaches assumes abstraction points
both at loop headers and at back edge origins. This leads to smaller fragments which
cause less precise information than any of the header and body strategies.

Notice that for loop-free functions, all of the mentioned strategies except for the simple
edgewise decomposition generate a single fragment.

4.3 Analyzer
The integrated fixed-point engine of Sprattus intra-procedurally calculates analysis
results for an LLVM function by computing the least fixed point of its abstract seman-
tics (cf. [Cousot and Cousot, 1977]) with the best abstract transformers provided by
symbolic abstract interpretation. The transformers are only calculated for the abstrac-
tion points given by the chosen fragment decomposition. All of the abstract domains
that are associated with the abstraction points are provided by a general abstract do-
main interface and can be different for every program location.
The modular design of the analyzer allows to parameterize the analysis in different

aspects such as the algorithms used for symbolic abstraction and the computation of the
best abstract transformer. The initial set of available analyzer configurations started
with implementations of the incremental unilateral algorithm presented in section 2.3.1
and an even more incrementalized version of it that exploits internal features of the
SMT solver by reusing an individual solver instance for each computation of an abstract
transformer for a specific fragment. For this thesis, it has been supplemented by an
implementation of the bilateral algorithm from section 2.3.1.
By default, Sprattus uses a recursive, lazy algorithm presented in [Seidl et al.,

2012, chapter 1.12] to obtain the least fixed point of the implied system of equalities.
As the internal program representation relates basic blocks with the program states

after the execution of all φ-nodes of the block and before the execution of the remaining

32

4.3 Analyzer

Strategy: headers

S

1

2

3

4

5

6

7

E

(a)

S

1

2

3

4

5

6

7

E

(b)

S

1

2

3

4

5

6

7

E

(c)

Strategy: body

S

1

2

3

4

5

6

7

E

(d)

S

1

2

3

4

5

6

7

E

(e)

S

1

2

3

4

5

6

7

E

(f)

S

1

2

3

4

5

6

7

E

(g)

Figure 4.5: Example fragment decompositions with abstraction points at loop headers
(a-c) and at the ends of loop bodies (d-g) for the program from Figure 4.1. Double
circles denote fragment starting and ending points. For (b) and (f), starting and
ending nodes coincide.

33

4 Sprattus

instructions, complete information about the state after the execution of the basic
block cannot immediately be obtained from the analysis results. Nevertheless, this
information is relevant for some applications, e.g. to perform the necessary analysis for a
compiler optimization that argues about abstract values inside basic blocks. Therefore,
the analyzer supports additional queries for such states after a basic block. To generate
these states for a basic block B, the usual abstract values for all abstraction points
from which B is reachable without passing other abstraction points are calculated first.
Then, special abstract transformers for the subfragments starting in these preceding
abstraction points and ending after all of the instructions of B are constructed and
used to calculate the join of all corresponding abstract values. The result is the most
precise information for the state after the execution of B that can be deduced from the
preceding abstract states.

As the SMT-solving problem is NEXPTIME-complete in general (cf. [Kovásznai et al.,
2012]), solver calls tend to dominate the overall run time of the analyzer by far. Thus,
any worst-case complexity consideration of the analyzer can only yield run times that
are at least exponential in the program size. However, the actual execution time of
the solver calls may vary dramatically. More meaningful run time estimates can be
achieved by calculating the number of calls to the solver that are issued at most during
the analysis of a function F with the abstract domain A.
Solver queries are only issued in the symbolic abstraction algorithms used for the

computation of the best abstract transformers. Of the presented algorithms, both the
unilateral and the bilateral algorithm perform at most heightpAq solver calls.
With this information, estimations for the number of abstract transformer evaluations

of the used fixed-point algorithms can be used as upper bounds on the number of issued
solver calls. Assuming that the used decomposition strategy divides F intoN fragments,
an upper bound for the number of performed abstract transformer evaluations in the
recursive algorithm that is implemented in Sprattus is given by heightpAq ¨N in [Seidl
et al., 2012]. Hence, Sprattus performs not more than heightpAq2 ¨N calls to the SMT
solver during the analysis of F .

4.4 Abstract Domains

In Sprattus, abstract domains are realized by implementing the AbstractValue in-
terface. It contains the typical lattice operations like join \ and meet [, checks for
equality to J or K (cf. section 2.1) and symbolic-abstraction-specific operations such as
the symbolic concretization function pγ and the abstract consequence operation needed
for the bilateral algorithm (cf. section 2.3).
Most of the domains that have been designed before and during this thesis focus

on rather limited parts of the program semantics (for example statical determined
values of a single variable instead of common constructions with mappings from vari-
ables to static knowledge about their values as e.g. in [Wegman and Zadeck, 1991]).
These simple elements can then be combined using a product domain as described in

34

4.4 Abstract Domains

subsection 4.4.6 to more expressive domains. The behavior of the above described com-
mon variable mapping construction can thus be achieved by creating a product that
contains an abstract value for each variable that should be tracked. The framework
provides Product::ForValues() and Product::ForValuePairs() functions to create
such products for all reachable SSA-variables in a given basic block.
As many of the so far implemented domains have a small height, for many of them

no better abstract consequence operation than returning the first argument can be
implemented. If not stated otherwise, the described abstract domains only support the
always sound default abstract consequence operation that returns the first argument
without modification.

4.4.1 Constant Propagation

The Constant Propagation domain describes for an SSA-variable x whether it has the
same constant value in every feasible program run and if so, which value that is. It
consists of a flat lattice of the possible variable values (Figure 4.6).
A constant value in the domain signals that the respective variable has this value

in every program run, J denotes that the constant could not be proven to have the
same value in every program run, and K denotes that the variable has no value in any
program run because it is unreachable.

J

¨ ¨ ¨ ´1 0 1 ¨ ¨ ¨

K

Figure 4.6: Constant Propagation lattice.

The symbolic concretization function pγCP rxs and the representation function βCP rxs
for an instantiation of this domain that tracks the value of the SSA-variable x are
straightforwardly defined (where r. . . , x “ v, . . . s is a concrete state that contains a
mapping from x to the value v):

pγCP rxspAq “

$

’

&

’

%

false : A “ K

true : A “ J

x “ A : otherwise

βCP rxspr. . . , x “ v, . . . sq “ v

The representation function βCP rxs maps a concrete state just to the value that it
assigns to x. It is impossible to get an overdefined or underdefined value for representing

35

4 Sprattus

a single concrete state, as the concrete state has to provide exactly one assignment for
each variable. Notice that in the implementation, concrete states are based on models
of the SMT solver. Therefore, even for transformers that do not define any mapping
for a variable x, the SMT solver completes concrete states to contain a mapping for x
to some arbitrary, solver-dependent value.

The domain is implemented in a way such that it supports SSA-variables of any type
that is representable in the SMT semantics. In the current implementation these are
bitvectors and floating point variables. As a generic flat lattice, its height is 3.

Because of the structure of LLVM IR, which enforces condition variables for ev-
ery conditional branch, this domain can also be used to track control flow and basic
block reachability: The abstract value corresponding to a branch condition will be 1 if
and only if the false-Successor of the parent basic block can be proven unreachable
from this basic block by Sprattus and 0 if and only if the true-Successor is proven
unreachable from the parent basic block by Sprattus.

This way, the Constant Propagation domain of Sprattus alone is sufficient for
the analyses necessary for the well known Sparse Conditional Constant Propagation
transformation [Wegman and Zadeck, 1991].

4.4.2 Scalar Relations

For some applications, abstract states only describing properties concerning single vari-
ables are not expressive enough to represent the desired results. In this case, consider-
ing relations between multiple program variables can improve the expressiveness of an
analysis significantly. One example for such a relational domain is the Scalar Relations
domain implemented in Sprattus. It tracks the relation of two scalar SSA-variables
x and y in a program. Possible relations are strict scalar comparisons and equality as
well as all the combinations thereof. Hence, the corresponding lattice can be described
as the power set lattice of the set tă,“,ąu where non-singleton sets represent the
disjunction of the contained elements. For example, the abstract state tă,“u soundly
over-approximates every concrete state in which the value of x is either less than or
equal to the value of y. Thus, this state can also be described as ď, as done in Fig-
ure 4.7. The other subsets of size two, t“,ąu and tă,ąu, are similarly described by
the respective combined relations ě and ‰. J represents that the values of x and y
could be in any relation whereas K represents concrete states in which x and y are in
no relation, i.e. no states at all.

As a power set lattice over a set containing three elements, the height of the Scalar
Relations lattice is 4.

36

4.4 Abstract Domains

J

ď ‰ ě

ă “ ą

K

Figure 4.7: Scalar Relations lattice.

Conforming with their intuitive meaning as described above, symbolic concretization
and representation functions for this domain are defined as follows:

pγSRrx, yspAq “

$

’

&

’

%

false : A “ K

true : A “ J

xA y : otherwise

βSRrx, yspr. . . , x “ v, y “ w, . . . sq “

$

’

&

’

%

ă : v ă w

“ : v “ w

ą : v ą w

The Scalar Relations domain can be of particular use in the context of branch con-
ditions depending on the relation between two program variables. Here, non-trivially
unreachable code sections can be entirely eliminated with the help of an analysis incor-
porating this domain.

4.4.3 Predicates

The Predicates domain tracks the validity of an arbitrary binary predicate ψ over two
SSA-variables x and y.
Its behavior can be described by a generic flat lattice over the set ttrue, falseu

(Figure 4.8). Therein, true and false represent the fact that the predicate for the
chosen SSA-variables is always true or always false, respectively. J and K stand for
the predicate not being proven to always have the same truth value or not having any
truth value, respectively.
If the second variable for the construction of a Predicates domain is omitted, oc-

currences of the second variable in the predicate are replaced by zero values of the
type of the first variable. This allows using a single predicate both for relational and
non-relational analyses. The height of this domain is 3 since it is a flat lattice.

37

4 Sprattus

J

true false

K

Figure 4.8: Predicates lattice.

These design choices reflect directly in the definitions of pγBP rψ, x, ys and βBP rψ, x, ys
for abstract values covering the validity of the binary predicate ψ for the variables x
and y as well as the derived non-relational versions pγBP rψ, xs and βBP rψ, xs.

pγBP rψ, x, yspAq “

$

’

’

’

&

’

’

’

%

false : A “ K

true : A “ J

ψrx, ys : A “ true

 ψrx, ys : A “ false

βBP rψ, x, yspr. . . , x “ v, y “ w, . . . sq “

#

true : ψrv, ws

false : otherwise

pγBP rψ, xspAq “

$

’

’

’

&

’

’

’

%

false : A “ K

true : A “ J

ψrx, 0s : A “ true

 ψrx, 0s : A “ false

βBP rψ, xspr. . . , x “ v, . . . sq “

#

true : ψrv, 0s

false : otherwise

In the following, some instantiations of the Predicates domain that have been imple-
mented for this thesis are presented.

Equality

A very simple but expressive relational domain that is implementable as a Predicates
domain is the equality domain. The predicate is

ψpa, bq :“ pa “ bq

which tracks the equality of two SSA-variables that are represented in Z3 with the same
type.

38

4.4 Abstract Domains

This domain is strictly less expressive than the Scalar Relations domain (subsec-
tion 4.4.2) as it only distinguishes between equality and inequality. Hence, an analysis
using the Scalar Relations domain will yield at least as precise results as one using the
Equality Predicate domain. However, the Equality Predicate domain benefits from the
reduced lattice height which directly influences the overall run time.
The information gathered with this domain can be used to create a global value

numbering [Kildall, 1973], as an aggressive form of a copy propagation analysis and as
a simple intraprocedural alias analysis.
For the purpose of an immediate use for global value numbering or copy propagation,

it can be sufficient to only track equalities between SSA-variables of which one could
possibly be replaced by another in a certain basic block bb. This is the case if one
of the variables is used in an instruction i in bb and the definition of the other one
dominates i.
For this thesis, a variation of the previously described Product::For*() functions has

been implemented to create a reduced product of abstract values for equality tracking
for these restricted variable pairs.

Equality to null

The non-relational variant of the Equality domain tracks equality and inequality to an
appropriate null value for a single SSA-variable. The predicate is thus reduced to:

ψpaq :“ pa “ 0q.

Simple equality to 0 can also be expressed in the Constant Propagation domain, the
power of this domain lies in the representation of definite inequality to 0. Expressing this
relation can be useful in the context of C-like condition evaluation, i.e. null corresponds
to a false value, everything else is a true value. Checks for null pointers and division-
by-zero errors can also be proven obsolete with this domain.

Parity

A rather specialized instantiation of the Predicates domain is the Parity domain. This
non-relational domain uses the predicate

ψpaq :“ pamod 2 “ 0q

to check for a program variable of bit vector type whether it is even or odd if interpreted
as unsigned integer. A true abstract value thus represents a variable with always even
values whereas a false value represents a variable that only contains odd values during
any computation.

4.4.4 BitMasks

For creating a domain, it is not necessary to interpret bit vectors as signed or unsigned
integers. For example, the BitMasks domain ignores any interpretation of the bit vec-

39

4 Sprattus

tors: it tracks must-information on the values of the separate bits of the values that an
SSA-variable can have in an execution.
This abstract domain can be formalized for a given bit width bw as BMK “ pt0, . . . , bw´

1u Ñ t0, 1, ˚uq Y tKu, the set of functions that map positions in a bit vector to either
a definite zero, definite one or a statically unknown value, extended with a separate
bottom element K. The J element of this domain is the function pλx . ˚q that repre-
sents no information about any position of the bit vector. From the information of two
states a and b, their join can be obtained as

a\ b “

$

’

’

’

’

&

’

’

’

’

%

a : b “ K

b : a “ K

λn .

#

c : c “ apnq “ bpnq

˚ : otherwise
: otherwise

A maximal ascending chain in the lattice with the order that is induced by the
definition of \ contains apart from K and J for each natural number k that is less than
the bit width exactly one abstract state that contains k assignments to ˚. Hence, the
height of the lattice is bw` 2.
A notion of the appropriate symbolic concretization function and the representation

function for this domain can be introduced as follows:

pγBM rxspaq “

#

false : a “ K
Ź

iPt0,...,bw´1u^apiq‰˚ xris “ apiq : otherwise

βBM rxspr. . . , x “ v, . . . sq “ λn . vrns

However, in the implementation, this domain is realized using bitwise operations on
bitvectors to generate more compact formulas.
The BitMasks domain can be useful in the context of analyzing complex expressions

containing bitwise operations. For implementations that encode information in the
particular bits of values, it performs as a more fine grained version of the Constant
Propagation domain.

4.4.5 Intervals

A Sprattus counterpart for the well-known interval analysis as described e.g. in [Niel-
son et al., 1999, example 4.10] has also been implemented for this thesis. It determines
two values for an SSA-variable that denote upper and lower bounds for the values that
the SSA-variable may contain in an execution. For the corresponding lattice (Fig-
ure 4.9), the intervals are ordered by set inclusion and an additional K element is
introduced. Bit vector values are interpreted as signed integers for this domain.
As the analysis is designed for LLVM IR, the possible values for these bounds have

to lie within the range of the SSA-variable’s type, therefore no additional J element

40

4.4 Abstract Domains

is needed. The unique maximal element of the lattice is rMIN, MAXs where MIN and MAX
are the minimal and maximal representable values for the variable type. A maximal
ascending chain for this lattice starts from K and contains for each possible interval
cardinality an interval of this cardinality. There is an interval for each cardinality
from 1 to 2bw where bw is the bit width of the tracked variable, hence the height of the
lattice is 2bw ` 1.

K

¨ ¨ ¨ r´1,´1s r0, 0s r1, 1s ¨ ¨ ¨

¨ ¨ ¨ r´1, 0s r0, 1s ¨ ¨ ¨

r´1, 1s¨ ¨ ¨ ¨ ¨ ¨

...

rMIN` 1, MAX´ 1s¨ ¨ ¨ ¨ ¨ ¨

rMIN` 1, MAXs rMIN, MAX´ 1s

rMIN, MAXs

Figure 4.9: Intervals lattice.

Another consequence of the limited value range is that — in contrast to typical
theoretical interpretations of the Intervals domain — the domain for this lattice has
finite height. Therefore, no widening [Cousot and Cousot, 1977] is needed to ensure
termination of fixed point algorithms. Nevertheless, the immense lattice height of 2bw`1
yields enough motivation for simplified versions of the Intervals domain.
An example for such a simplification of the Intervals domain that has been imple-

mented for this thesis is the domain of Threshold Intervals that has a limited set of
threshold values which are considered for either upper or lower bounds of non-singleton
intervals. Singleton intervals are still represented precisely. By specifying the thresh-
olds, the analysis designer can choose any trade-off between complexity and expressive-
ness of the domain: the lattice height is defined by #thresholds` 1. Possible sets of
thresholds would be e.g. the set of powers of two that lie within the variable’s ranges
or the set of constants occurring in the program source code.

41

4 Sprattus

Both the Threshold Intervals and the standard Intervals domain rely on the following
straightforward symbolic concretization and representation functions:

pγIrxspAq “

#

false : A “ K

x ě a^ x ď b : A “ ra, bs

βIrxspr. . . , x “ v, . . . sq “ rv, vs

The Intervals domain is a lattice of sufficient height to provide a reasonable non-
trivial abstract consequence operation. For two abstract states rl1, u1s, rl2, u2s from the
Intervals domain such that rl1, u1s Ĺ rl2, u2s (i.e. l2 ď l1^u1 ď u2 and l1 ‰ l2_u1 ‰ u2),
abstractConsequenceprl1, u1s, rl2, u2sq returns the abstract value

„

l1 ´

Z

l1 ´ l2
2

^

, u1 `

Z

u2 ´ u1

2

^

This produces an abstract consequence with bounds exactly in the middle of the
respective bounds of the arguments as depicted in Figure 4.10. Thus, the bilateral
algorithm performs a binary search on both interval bounds.

l2 u2l1 u1l u

Figure 4.10: Abstract consequence operation for Intervals,
with rl, us “ abstractConsequenceprl1, u1s, rl2, u2sq.

4.4.6 Reduced Product

The key to abstract domains of significant expressiveness lies in combining simple do-
mains into more complex ones. In Sprattus, this is done by composing the simpler
abstract domains in a Reduced Product abstract domain. It is implemented using an
extension to arbitrary numbers of component domains of the technique described in sub-
section 2.3.2 and hence needs no additional modification of the component domains.
The symbolic concretization function as well as the representative function of the

product generalize the respective functions given in subsection 2.3.2 to k component
domains:

pγP rA1rp1s, . . . ,Akrpkssppa1, . . . , akqq “
k
ľ

i“1

pγAi
rpispaiq

βP rA1rp1s, . . . ,Akrpksspσq “ pβA1rp1spσq, . . . , βAk
rpkspσqq

As this abstract domain describes the reduced product of k domains, its height de-
pends not only on the height of the component domains but also on the amount of

42

4.4 Abstract Domains

information that can be represented in both and would thus be redundantly represented
in a direct product. For worst-case considerations, one has to expect the represented
information in the component domains to be completely disjoint and hence forming a
direct product with height

řk
i“1 heightpAirpisq. However, significantly less states in an

actual maximal ascending chain are possible, a tight lower bound would be the maximal
height of any component domain.
The potentially large number of component values in a product abstract value en-

ables the use of a non-trivial abstract consequence operation for this domain. For the
defining requirements on an abstract consequence operation in products to hold, it is
sufficient to recursively compute the abstract consequence for any strictly positive num-
ber of components of the argument abstract values in which the component of the first
argument is strictly smaller than the respective component of the second argument and
to set every other component to J:

absConsppl1, . . . , lkq, pu1, . . . , ukqq “

pJ, . . . ,J, absConsi1pli1 , ui1q,J, . . . ,J, absConsipplip , uipq,J, . . . ,Jq

for ij P I with I Ď tn | ln Ĺ unu such that p :“ |I| ě 1

This abstract consequence operation significantly differs from the solution suggested
in [Thakur, 2014] for conjunctive domains: In the setting of the Reduced Product do-
main, the operation proposed by Thakur is equivalent to setting every component to J
except for one component from the first argument that is not equal to or higher in the
lattice than the corresponding component in the second argument. Compared to the
here proposed implementation, this abstract consequence operation can lead to a larger
number of solver calls.

For proving the above defined function absCons to be a valid abstract consequence
operation, two statements have to be proven:

• @l Ĺ u. l Ď absConspl, uq

• @l Ĺ u. absConspl, uq Ğ u

Proof. The first statement follows immediately from the definition of absCons: each
component value ai of absConspl, uq is either J or the abstract consequence absConspli, uiq
of the corresponding components of l and u. By definition, J is greater than every other
possible value and absConspli, uiq has to fulfill the defining conditions of an abstract
consequence operation, thus it is also greater to or equal than the corresponding com-
ponent li of l. Hence, the inequality holds for each component of the product abstract
values and therefore also for the complete product values.

43

4 Sprattus

For the second statement, consider the following equivalence:

pa1, . . . akq Ď pb1, . . . bkq ”
k
ľ

i“1

ai Ď bi

ôpa1, . . . akq Ę pb1, . . . bkq ”
k
ł

i“1

ai Ę bi

This implies that a product abstract value b is not greater than or equal to another
product abstract value a if at least one of the component abstract values of b is not
greater than or equal to the corresponding component of a. As the definition of absCons
states, at least one component ci of its resulting abstract value c “ absConspa, bq is an
abstract consequence absConspai, biq of components of the arguments a and b. By the
definition of the abstract consequence operation, the following holds:

absConspai, biq Ğ bi

ñabsConsppa1, . . . , akq, pb1, . . . , bkqq Ğ pb1, . . . , bkq

Therefore, the defined absCons function is a valid abstract consequence operation. �

The relative position of the abstract consequence of a product value “between” the
arguments depends on the number p of components that are not set to J: the more
components are set to J, the higher in the lattice is the abstract consequence. Hence,
it is a natural choice of design to craft the abstract consequence operation of Product
abstract values parameterized in p as it is done in the Sprattus implementation. Here,
a percentage Pmax can be specified to configure the abstract consequence operation to
prevent a randomly chosen subset of at most maxp1, Pmax ¨ kq from being set to J.

4.5 Application in Compiler Optimizations
A main contribution of this thesis is the implementation of appropriate versions of
two known intraprocedural compiler optimizations on LLVM IR using the Sprattus
framework. They are implemented as a highly configurable LLVM function pass that
can be used at any point within the LLVM optimization pipeline.
The optimizations that have been implemented are

• a Constant Replacement transformation that replaces uses of SSA-variables
that Sprattus can statically prove constant with their value, and

• a Redundant Computation Elimination transformation that replaces uses of
SSA-variables with uses of other variables with equal values.

These program transformations are realized in a single optimization pass that can be
configured to perform any combination of the transformations with the analysis results
provided by Sprattus.

44

4.5 Application in Compiler Optimizations

By construction of the framework, the optimization pass is parametric in all of the
aforementioned options that Sprattus provides. This includes the symbolic abstrac-
tion algorithm to apply, the fragment decomposition to use for the best abstract trans-
formers and the abstract domains that determine the expressiveness and precision of
the analysis.

4.5.1 Constant Replacement

The Constant Replacement transformation is inspired by the Sparse Conditional Con-
stant Propagation (SCCP) transformation proposed in [Wegman and Zadeck, 1991]. It
already combines two program optimizations: constant propagation and unreachable
code elimination. Of those, the former reduces run-time computations by performing as
many operations with statically determined constant result as possible during compila-
tion time. The latter removes code parts that cannot be executed in any program run
and consequently reduces the size of the resulting program and eliminates unnecessary
branch instructions.
The transformation uses and requires the Constant Propagation abstract domain

presented in subsection 4.4.1 to track information about constant values of variables.
Hence, the optimization has the same restriction to SSA-variables of bit vector type
as the Constant Propagation domain. In the LLVM scenario, it is not necessary to
introduce an additional domain for obtaining reachability information. LLVM branch
conditions are necessarily represented as bit vector SSA-variables, so statically deter-
mined branch destinations can be analyzed by computing information on statically
constant values of these variables.
However, there are conceptual differences between the Sprattus Constant Replace-

ment transformation and SCCP. The Sprattus implementation computes for each
basic block of the analyzed function whether the occuring uses of SSA-variables always
yield the same constant result whereas the classical SCCP (and also the default LLVM
implementation thereof) exploits the sparse program representation and only calculates
for each SSA-variable in the program whether it has the same constant value in every
execution of the function.
Thus, the Constant Replacement transformation as implemented in Sprattus is in

this respect strictly more expressive than SCCP. The strictness of this relation can be
observed for example when optimizing a function that contains a structure as displayed
in Figure 4.11: Here, the presented transformation is able to prove that x is constant
when it is used in any instruction from basic block B and can perform subsequent
transformations based on this result whereas standard SCCP lacks this information
and cannot state any non-trivial information about the occuring variables.
Furthermore, the implementation presented here only replaces uses of the variables that
it proved to be constant by the respective constants or special undef values if they can-
not have any value in an execution, i.e. they are never reached in execution. Especially,
it does not remove any newly unused variable definitions or unreachable basic blocks.
These remaining tasks can be performed by purely syntactical transformations, like
removing instructions whose results are never used and replacing conditional branch

45

4 Sprattus

A:
 ...
 %cond = icmp eq i32 %x, 0
 br i1 %cond, label %A, label %B

T F

B:
 ...
 use(%x)
 ...

C:
 ...
 use(%x)
 ...

Figure 4.11: Example CFG fragment.

instructions with constant conditions by unconditional branches. For these transfor-
mations, appropriate LLVM passes such as Dead Code Elimination and SimplifyCFG
exist and can be used for clean-up operations after the Sprattus pass.

1 int pow(int b , int e) {
2 int r e s = 1 ;
3 int i ;
4 for (i = 0 ; i < e ; i++) {
5 r e s ∗= b ;
6 }
7 return r e s ;
8 }
9

10 int f oo (void) {
11 . . .
12 int u = unknown () ;
13 int v = pow(u , 4) ;
14 assert(v >= 0);
15 . . .
16 }

Figure 4.12: Example C program
for Constant Replacement.

It is worth noticing that the Constant Replace-
ment transformation is more than just a syntacti-
cal (sparse conditional) constant propagation. The
C program given in Figure 4.12 is a case where the
Sprattus pass can provide better results than the
transformations implemented in common C com-
pilers.
Here, the function pow(x, y) naively computes

the power xy of its arguments. Hence, the value
of v is always non-negative if no overflow occurs
(x4 ě 0 holds for each x P Z). Since signed in-
teger overflows entail undefined behavior (cf. [ISO
9899:2011, 2011]), a compiler transformation can
soundly remove the assertion in foo().
The Clang compiler for example however fails

to do so. Within its optimization pipeline, the call
to pow() is inlined and the corresponding loop is
unrolled, but it is not able to prove the condition of the assertion statically as true.
The Constant Replacement transformation, if applied to the IR that is generated by
Clang (after inlining and loop unrolling), proves the assertion condition (v >= 0) true
for each valid execution that does not entail undefined behavior and therefore replaces
it with a constant value. It is an easy task for the aforementioned clean-up passes to
remove the assertion afterwards. So, the instructions for computing the conditions and
those for handling the error case are removed.

46

4.5 Application in Compiler Optimizations

4.5.2 Redundant Computation Elimination

The second program transformation that has been developed, the Redundant Compu-
tation Elimination, reduces the number of executed instructions by avoiding unneces-
sary recomputations of already available values. Its effects are similar to a common-
subexpression elimination as achieved with the Global Value Numbering approach de-
scribed in [Kildall, 1973] or the more sophisticated equality detection algorithms pre-
sented in [Alpern et al., 1988].
This program optimization is based on the results provided by the Equality Predicates

abstract domain as described in section 4.4.3. However, not all possible combinations of
SSA-variables that are represented with the same type in Z3 can be used for Redundant
Computation Elimination. The definitions of potential replacement candidates for a use
of an SSA-variable have to dominate the considered use and their LLVM types have to
agree.
A restricted Equality domain that provides only this information that could possibly

be used for Redundant Computation Elimination has been implemented for this thesis.
It only tracks for each basic block b the relation between each SSA-variable v that is
used inside b on one hand and each variable that has the same LLVM type as v and
whose definition dominates a use of v in b on the other hand. From these available
candidates, one has to choose a variable that is beneficial to use instead of v at the
considered program location.
The heuristic for the profitability of replacement candidates that is implemented

is based on the dominance order ľ on the set candidates of the definitions of the
candidates1: Each use of v is replaced by a use of the maximum of all the available
candidate SSA-variables that are proven to be equal (regarding the dominance order).
As dominance is a partial order as well as a tree order and all the candidate definitions
dominate the considered use, the candidate definitions are totally ordered by dominance:

p@x, y, z. px ľ z ^ y ľ zq Ñ x ľ y _ y ľ xq ^ p@r P candidates. r ľ vq

ñ @r, s P candidates. r ľ s_ s ľ r

Hence, the “maximum dominating” candidate is well-defined and contained in the set
of available candidates.
Like the Constant Replacement transformation, this optimization only replaces uses.

Thus, a subsequently executed clean-up pass like Dead Code Elimination is required to
syntactically eliminate the computations that are proven to be unnecessary by Sprat-
tus.

The LLVM project contains a GVN transformation pass that performs similar opti-
mizations. In addition to simple redundancy of SSA-variables, it performs non-trivial
analysis of memory contents for dead-load elimination which can only be realized in
Sprattus by enabling an expensive memory model for the analysis. The LLVM GVN

1A node u in a CFG dominates a node v if and only if every path from the starting node to v
contains u.

47

4 Sprattus

pass is also able to introduce new φ-nodes to reuse computations from basic blocks that
might be executed before the considered use but do not dominate the use.
However, just like the standard global value numbering from [Kildall, 1973], it is

syntax-based and hence not able to detect all equivalent values. For example, in [Buch-
wald, 2015] it has been shown that at the current state, no transformation in the -O3
optimization pipeline of LLVM is able to prove the equivalence

´px& 0x80000000q “ x& 0x80000000

as it would occur in the following pseudo-LLVM program fragment:

1 %y = and i32 %x, 0x80000000
2 %z = sub i32 0x00000000 , %y
3 ret i32 %z

The Sprattus Redundant Computation Elimination discovers that %z always has the
same value as %y and is therefore able to replace the use of %z in line 3 by a use of %y.
This makes the instruction in line 2 dead and easily removable by the DCE pass.

4.5.3 Improving Performance

Both of the previously described transformations can be improved by enriching the
corresponding analysis with additional abstract domains. These enable Sprattus to
detect more potential program executions as infeasible and therefore irrelevant for the
analysis results.
Consider for example the control flow graph in Figure 4.13. It contains a function

argument %a for which no static information is available. Nevertheless, %x is guaranteed
to have the second-to-least significant bit set and thus cannot be equal to zero. There-
fore, the comparison in B has to yield a false result and consequently, C is unreachable.
In the optimal case, the Constant Replacement transformation would replace the use
of %z in E by the constant 7 rendering all other instructions dead.
However, with its default settings (i.e. Constant Propagation domain and Edges

fragment decomposition strategy), said transformation is not able to replace anything
in this example: The abstract value at the node corresponding to basic block B only
contains the information that %a and %x cannot be proven to be constant. This infor-
mation is not sufficient to exclude any of the branch destinations in B. This issue can be
overcome by adding the Equality to null abstract domain described in section 4.4.3. It
provides the necessary information that %x is not equal to zero at B allowing subsequent
simplifications.

The fragment decomposition is another effective factor for increasing the expressiveness
of the presented program transformations. In larger fragments, no additional over-
approximation is performed, resulting in fewer infeasible executions contributing to the
analysis.

48

4.5 Application in Compiler Optimizations

A:
 %x = or i32 %a, 2
 br label %B

B:
 %cmp = icmp eq i32 %x, 0
 br i1 %cmp, label %C, label %D

T F

C:
 br label %E

D:
 br label %E

E:
 %z = phi i32 [3, %C], [7, %D]
 ret i32 %z

Figure 4.13: Example CFG with an infeasible path, basic block C is unreachable.

Returning to the example from Figure 4.13, the desired results can also be achieved
by choosing a decomposition strategy that contains no abstraction point at B like e.g.
Bodies. In this case, an abstract transformer for the entire function is used for the
analysis without over-approximating possible executions at any point.

Sprattus is also capable of excluding executions that involve certain kinds of undefined
behavior, such as division-by-zero errors from analysis considerations. This can reduce
the search space for the SMT solver and consequently improve its performance. For the
purpose of compiler optimizations, this is a valid approach as it is legitimate to assume
correct input programs that do not contain any undefined behavior. This allows more
aggressive optimizations compared to the default configuration of Sprattus that allows
every kind of result for computations including undefined behavior.

Other features of Sprattus that are not considered in this thesis such as non-trivial
memory models and support of floating-point arithmetics provide further expressiveness
in a trade-off for increased analysis time.

49

5 Evaluation

For the empirical evaluation of the described contributions of this thesis, the Sprattus-
based compiler optimizations have been tested on a broad set of practically relevant
benchmarking suites, namely the SingleSource benchmarks of the LLVM 3.6 test suite1.
All runs of the Sprattus pass that contribute to the presented data are performed on
IR that has already run through the standard LLVM optimization pipeline in the most
aggressive configuration, -O3. Hence, the transformations that the Sprattus pass
performs are improvements compared to the set of optimizations that LLVM provides.
Performance data has been measured with an Intel Core i5-4590 CPU (3.30 GHz, 6MB
cache) and 12 GB RAM with a time limit of 1800 s per optimization run.
The obtained results, which are presented in the following, give answers to questions

concerning the performance of the Sprattus framework and the underlying algorithms,
the expressiveness of the presented program transformations and the general use of
reduced products in the context of compiler optimizations.

For all of the test runs that are described in the following to use an abstract domain
A, the domain contains for each program location B a product of instantiations of A
for all available SSA-variables at B. Consequently, if A is a non-relational domain,
the resulting product for the location B contains an entry Arxs for each variable x
whose definition dominates B. If A is a relational domain, the product for B contains
a component Arx, ys for each pair px, yq of variables whose definitions dominate B and
that have a type that is represented with the same Z3 type.
The only exception from this is the Restricted Equality domain that is needed for the

Redundant Computation Elimination transformation. It is a relational domain whose
product for B contains an instance of the Equality Predicates domain (cf. section 4.4.3)
for each pair px, yq of distinct SSA-variables where x is used in B, y dominates B, and
both have the same LLVM type (i.e. if x and y had the same values, y could be used
inside B to replace a use of x).

As described in chapter 4, Sprattus is parameterized in the symbolic abstraction algo-
rithm, the abstract domains and the fragment decomposition strategy. Benchmarking
results for different parameter combinations in these aspects are presented in the fol-
lowing.

1http://llvm.org/docs/TestingGuide.html#test-suite-overview

51

http://llvm.org/docs/TestingGuide.html#test-suite-overview

5 Evaluation

5.1 Analyzer Implementations

For the analyzer, implementations of the bilateral algorithm and the standard ver-
sion of the unilateral algorithm as well as the incrementalized version as described in
section 4.3 are compared. The results are generated with the Constant Propagation ab-
stract domain and the Edges fragment decomposition strategy assuming no undefined
behavior.
Notice that all of the presented algorithms are guaranteed to give the same results,

hence it would be of no use to compare their expressiveness in the analysis results.
Therefore, only the relative analysis times of the different analyzer implementations are
considered here.

5.1.1 Abstract Consequence for Products

As described in section 2.3.1, the performance of the bilateral symbolic abstraction
algorithm depends heavily on the abstract consequence operation that is used. All
of the presented abstract domains are implemented to express very restricted program
properties that only consider single variables or pairs of variables. For an actual program
analysis, abstract values of these domains are composed in larger product domains.
Thus, the parameterized abstract consequence operation of the product domain (cf.
subsection 4.4.6) is a promising candidate for influencing the runtime of the bilateral
algorithm.
The key figure for the proposed product abstract consequence operation is the number

of components for which all information is discarded. Sprattus provides an interface
to specify the percentage p of the component abstract values of a product value that
should not be subject to such a discarding operation.
On one hand, if p is chosen to be 0%, the abstract consequence operation yields a

value that has exactly one component that is not at its J value. Hence, the resulting
formulas are relatively simple, but more solver calls might be necessary to reach the
final result2.
On the other hand, for p “ 100%, all of the component values are chosen not to be

discarded, so the resulting operation is a component-wise application of the respective
abstract consequence operations. For most of the domains that are described in this the-
sis, these operations just return the lower bound, thus the bilateral algorithm performs
the same steps as the unilateral algorithm: the lower bound is refined with models until
the final result is reached, afterwards one additional call with an unsatisfiable formula
is issued and the upper bound is adjusted to be equal to the lower bound.

Figure 5.1 shows an excerpt from benchmarking runs with the bilateral algorithm and
different values for p. Overall, the configurations are evaluated on 126 benchmarks
from the LLVM SingleSource benchmark suite. Of these, 9 of the benchmarks cause

2this closely resembles the abstract consequence operation for conjunctive domains as proposed in
[Thakur, 2014]

52

5.1 Analyzer Implementations

wor
dfre

q

cor
rela

tion cho
mp fast

a

nsie
ve-b

its

spe
ctra

l-no
rm

jaco
bi-1

d-im
per

rich
ard

s-bm
0

0.2

0.4

0.6

0.8

1

no
rm

al
iz
ed

ru
nt
im

e

p “ 0% p “ 25% p “ 50% p “ 75% p “ 100%

Figure 5.1: Runtimes of the Sprattus pass with the bilateral algorithm and a keep
ratio of p%. Runtimes are normalized to the maximal encountered runtime for each
test.

the Sprattus pass to exceed the time limit. Further 34 benchmarks differed in their
optimization time by a negligible amount for all of the configurations.
The optimization times of the remaining benchmarks closely resemble examples that

are given in Figure 5.1:

(i) With 61 cases, the majority of the benchmarks show similar optimization times
as correlation, chomp and wordfreq. This means p “ 100% yields the shortest
optimization time and the more elements are set to J, the more time has to be
spent in the optimization process.

(ii) Another six benchmarks provide similar results as fasta: The extremal values
p “ 0% and p “ 100% yield the smallest optimization times whereas for values of
p between those extremal points, the optimization time is increased.

(iii) The inverse case to (i) also occurs for six benchmarks: As depicted for the
spectral-norm benchmark, preventing as many components as possible from be-
ing set to J unnecessarily extends the optimization time here.

(iv) A situation like for nsieve-bits is reached for four of the benchmarks: all p P
t0%, 25%, 50%, 75%u perform with an almost identical optimization time whereas
p “ 100% dramatically increases the necessary amount of time.

53

5 Evaluation

(v) The remaining six benchmarks behave similar to the cases jacobi-1d-imper and
richards-benchmark: Best performance is achieved with p “ 100%, the opti-
mization requires most time for one of the non-extremal values t25%, 50%, 75%u
for p.

Overall, this leads to the following conclusion: For the considered cases, p “ 100%,
i.e. keeping as many components as possible, yields the best performance on average.
Notice that this is the abstract consequence operation that resembles the one proposed
in [Thakur, 2014] least.

5.1.2 Symbolic Abstraction Algorithms

For comparing the symbolic abstraction algorithms that are implemented in the Sprat-
tus framework so far, one has to consider the simple unilateral algorithm pαuni as well as
the incremental version pαinc of the unilateral algorithm that is optimized with respect
to solver-specific reusage of computed information and the bilateral algorithm pαbi.
In Figure 5.2, the respective results for the different symbolic abstraction algorithms

for some representative test cases are depicted. Results for pαbi are gathered with
p “ 100%, the configuration that yields the best average results on the considered
benchmarks.

fan
nku

ch
puz

zlemis
r

step
ano

v-v
1p2per

lin 2m
m

dur
bin

sho
oto

ut-h
ash

0

0.2

0.4

0.6

0.8

1

no
rm

al
iz
ed

ru
nt
im

e

pαuni pαinc pαbi

Figure 5.2: Runtimes of the Sprattus pass with the different symbolic abstraction
algorithms. Runtimes are normalized to the maximal encountered runtime for each
test.

54

5.2 Fragment Decompositions

For 25 of the 126 benchmarks, the optimization times are equal. For all benchmarks,
for which the incremental unilateral algorithm did not require too much memory (that
is all but six) it terminates fastest. Of these cases, on one hand, 75 are analyzed
faster with the non-incremental unilateral algorithm than with the bilateral algorithm.
Their achieved optimization times are similar to those of one of the first five entries
in Figure 5.2. On the other hand, 20 further benchmarks are cases where the bilat-
eral algorithm computes the correct result faster than the non-incremental unilateral
algorithm as depicted in the remaining entries of Figure 5.2.
For the considered set of benchmarks, the incremental algorithm only crashed because

of insufficient memory in cases in which both the unilateral and the bilateral algorithm
would exceed the established time limit.
So, on this set of benchmarks and with these configurations, the incremental unilateral

algorithm always performs significantly better than the other two algorithms. Of these,
the non-incremental unilateral algorithm often outperforms the bilateral algorithm.

5.2 Fragment Decompositions
The specified fragment decomposition strategy can have an impact on both, the analysis
results and the runtime of the analyzer. The decomposition strategies under evaluation
are Edges, Headers, Bodies and Backedges as described in subsection 4.2.3. The
analyses are performed with a product domain that contains the Constant Propagation
domain and the Restricted Equality domain to obtain results for both transformations
of the Sprattus pass.
Of the 126 benchmarks under test, 79 are analyzed without discovering an opportu-

nity for optimization for any of the configurations. Moreover, the analysis of 10 further
benchmarks is not successful due to the time limit. For the remaining benchmarks,
the Sprattus pass is able to prove transformations applicable. Some characteristic
examples for these cases are given in Table 5.1.
Of the remaining 37 benchmarks,

(i) for 18, the four configurations only compute two different results: a weaker result
with fewer applicable transformations for Edges and for every other decomposi-
tion strategy one and the same stronger result. Examples for this are exptree
and ary3.

(ii) For another nine benchmarks, the fragment decomposition had no influence on
the number of transformations (cf. dry, puzzle).

(iii) Three benchmarks had strictly stronger results with the Headers strategy than
with any other strategy.

Examples like sphereflake, chomp and moments trigger time-outs only for strategies
with larger fragments.

In analysis time, the benchmarks follow patterns like they are visualized in Figure 5.3.
Notable trends here are that an analyzer with the Edges strategy usually terminates

55

5 Evaluation

Edges Headers Bodies Backedges
Consts Eqs Consts Eqs Consts Eqs Consts Eqs

BenchmarkGame/puzzle 1 4 1 4 1 4 1 4
McGill/exptree 0 8 0 9 0 9 0 9
McGill/misr 0 0 0 1 0 1 0 1

Misc-C++/sphereflake 0 1 0 1 — — 0 1
Misc/whetstone 13 0 14 3 13 0 13 0

Shootout-C++/ary 1 4 1 5 1 5 1 5
Shootout-C++/moments 14 0 — — — — — —

Shootout/ary3 22 2 22 3 22 3 22 3
Shootout/lists 1 3 1 3 14 3 1 3

Table 5.1: Examples for transformations performed for the supported fragment decom-
positions. The “Consts” columns contain the numbers of variable uses that have been
replaced with constants or undef values by Constant Replacement. “Eqs” columns
contain the numbers of variable uses that have been replaced with uses of other vari-
ables by Redundant Computation Elimination. Empty entries are due to time-outs.

faster than with other strategies (cf. puzzle, ary, moments). Furthermore, the analysis
time for Bodies is often among the largest of the evaluated configurations (like in
sphereflake, whetstone and shootout-ary3). However, there are examples which do
not fulfill these criteria like exptree and shootout-lists.

puz
zle

exp
tree mis

r

sph
erefl

ake

whe
tsto

ne ary

mo
men

ts

sho
oto

ut-a
ry3

sho
oto

ut-l
ists

0

0.2

0.4

0.6

0.8

1

no
rm

al
iz
ed

ru
nt
im

e

Edge Header Body Backedges

Figure 5.3: Runtimes of the Sprattus pass with different fragment decomposition
strategies. They are normalized to the maximal encountered runtime for each test.

56

5.3 Abstract Domains

5.3 Abstract Domains
A key parameter in the configuration of Sprattus is the choice of the abstract domain
(cf. section 4.4). In section 4.3, it has been shown that the number of issued calls to
the SMT solver and hence the runtime of the analyzer depends quadratically on the
height of the abstract domain in use. Therefore, differences in the height of the abstract
domain can have potentially large impact on the runtime of the system.

Sprattus permits arbitrary combinations of abstract domains in reduced products,
hence the space of evaluated configurations for this thesis has to be restricted to some
sane domain combinations.
The configurations under evaluation are:

• Constant Propagation (C),

• Constant Propagation and Equality to null (C+EN),

• Restricted Equality (ER),

• Constant Propagation and Restricted Equality (C+ER), and

• Constant Propagation, Equality to null and Restricted Equality (C+EN+ER).

They are tested with the incremental unilateral algorithm.

Here, 81 benchmarks are not modified by the Sprattus pass. Table 5.2 gives examples
from the remaining benchmarks.
Analysis results that often occur are:

(i) For the larger benchmarks, the analysis only terminates within the time limit
for simple configurations such as C or C+EN (overall 11 cases, cf. lpbench,
oourafft).

(ii) Ten of the 34 remaining benchmarks that are subject to actual transformations
just have the same set of redundant computations for each configuration that
contains the Restricted Equality domain (e.g. fannkuch).

(iii) Similarly, benchmarks like whetstone only provide optimization opportunities for
the Constant Replacement transformation.

(iv) Moreover, 11 benchmarks can take advantage of the Equality to null domain in
the product, like nestedloop, queens or chomp.

Considering analysis time, most benchmarks yield results that fulfill the following
restrictions, as displayed for some examples in Figure 5.4:

(i) C+EN needs slightly more time for terminating than C.

(ii) C+ER or C+EN+ER are most time-consuming.

(iii) C+ER needs more time than C and than ER. However, the sum of the analysis
times of both analyses in separate usually exceeds the time consumption of C+ER.

57

5 Evaluation

C C+EN ER C+ER C+EN+ER
Consts Consts Eqs Consts Eqs Consts Eqs

BenchmarkGame/fannkuch 0 0 3 0 3 0 3
CoyoteBench/lpbench 29 — — — — — —

Dhrystone/dry 7 7 1 7 1 7 1
McGill/chomp 0 3 37 0 38 3 38
McGill/queens 0 9 0 0 0 9 0
Misc/oourafft 75 75 — — — — —
Misc/whetstone 13 13 0 13 0 13 0

Shootout-C++/ary 1 1 4 1 4 1 4
Shootout-C++/lists 0 3 0 2 0 3 0

Shootout-C++/wordfreq 0 1 2 0 2 1 2
Shootout/ary3 22 23 2 22 2 23 2
Shootout/lists 1 1 0 1 3 1 3

Shootout/nestedloop 0 25 4 0 4 25 0

Table 5.2: Transformations performed for different abstract domains. The “Consts”
columns contain the numbers of variable uses that have been replaced with constants
or undef values by Constant Replacement. “Eqs” columns contain the numbers of
variable uses that have been replaced with uses of other variables by Redundant
Computation Elimination.

fan
nku

ch dry
cho

mp
que

ens

whe
tsto

ne

sho
oto

ut-c
++

-ary

sho
oto

ut-c
++

-list
s

wor
dfre

q

sho
oto

ut-a
ry3

sho
oto

ut-l
ists

sho
oto

ut-n
este

dlo
op

0

0.2

0.4

0.6

0.8

1

no
rm

al
iz
ed

ru
nt
im

e

C C+EN ER C+ER C+EN+ER

Figure 5.4: Runtimes of the Sprattus pass with different abstract domains. Runtimes
are normalized to the maximal encountered runtime for each test.

58

5.4 Combining Compiler Optimizations

5.4 Combining Compiler Optimizations
There exist publications on the topic of combined compiler optimizations which sub-
stantiate their work with examples for cases where the additional effort is profitable,
but it is not investigated whether these cases are common in practical programming or
they are just exceptional corner cases that seldom occur.
An example for such a publication is [Click and Cooper, 1995], where the small

program that is referenced at different points of this thesis is used to motivate for the
combination of program analyses and transformations. The above presented results
give a measure of how often such cases occur in the considered benchmarks: Click and
Cooper compare the performance of a constant propagation domain (comparable with
the Constant Propagation configuration C) and a scalar congruence domain (which
expresses facts that are similar to the information that the Restricted Equality domain
ER provides) with the results from the reduced product thereof. Table 5.3 summarizes
the evaluation results for the corresponding configurations of the Sprattus pass.

C ER C+ER
Consts Eqs Consts Eqs

McGill/chomp 0 37 0 38
Shootout-C++/lists 0 0 2 0

Shootout/lists 1 0 1 3

Table 5.3: Entries from Table 5.2 for which the reduced product of Constant Propaga-
tion and Restricted Equality is beneficial. The values that differ between separate
analysis and the application of the reduced product are highlighted.

Of the 34 cases described in section 5.3 for which the analysis was able to prove
transformations to be correct, only three could benefit from the reduced product of
Constant Propagation domain and Restricted Equality domain. Moreover, the actual
improvements in the number of performed transformations in these examples are very
small.
Overall, for these benchmarks, the combined compiler optimization from [Click and

Cooper, 1995] could not be proven generally useful. There exist only a few cases where
the results differ from analyses in separate. However, for many of the benchmarks,
the analysis time costs of computing results for both analyses separately exceed the
time that is required for performing the corresponding analyses together. This way,
combining analyses can be beneficial by reducing the overall runtime of the whole
optimization process without improving precision significantly.

59

6 Related Work

Besides literature about the concept of symbolic abstraction, which is discussed in
detail in section 2.3, related work can be classified into the use of decision procedures
for satisfiability problems such as SMT in program analysis on one hand and work on
the combination of program analyses, especially in the field of compiler optimization,
on the other hand.

6.1 Satisfiability in Program Analysis
With increasing availability of computational power and efficient decision procedures
for certain satisfiability problems, the use of automatic theorem provers for finding
and proving properties of programs became more and more fashionable within the last
decade.
Several examples for this trend are developed at Microsoft Research. These tools

use the Z3 theorem prover to check or prove different aspects of program correctness.
For example, the SLAM1 project is used to check compliance with critical conditions
of interfaces. Its results improve the performance of verifiers for hardware drivers.
Another example from Microsoft’s SMT-based software engineering instruments is

HAVOC2, a tool for checking properties of potentially unsafe operations in the C pro-
gramming language in the context of pointer manipulations, casts, and memory alloca-
tion including invariants of linked lists and arrays.
Notice that both of these tools are model checkers, i.e. in contrast to Sprattus, they

are in general not able to handle arbitrary loops and derive loop invariants.
In principle, Sprattus also provides the tools for applications like the aforemen-

tioned Microsoft Research projects, i.e. for verifying arbitrary complex invariants of
low-level programs. However, significant additional effort might be necessary to de-
velop the necessary abstract domains.

In the LLVM project, there is also an application of SMT-based algorithms for software
development: the KLEE3 symbolic execution engine uses an SMT solver to automati-
cally create high coverage test cases. KLEE generates traces of possible program runs
of LLVM IR code encoding them in SMT formulas and identifies those traces that can
lead to erroneous behavior. Some of the mechanics that are necessary for Sprattus
have already been implemented similarly in KLEE, e.g. the SMT encoding of LLVM

1http://research.microsoft.com/en-us/projects/slam/
2http://research.microsoft.com/en-us/projects/HAVOC/
3https://klee.github.io/

61

http://research.microsoft.com/en-us/projects/slam/
http://research.microsoft.com/en-us/projects/HAVOC/
https://klee.github.io/

6 Related Work

IR to gather valid execution traces. The algorithm used for KLEE’s test generation has
also some aspects in common with the symbolic abstraction algorithms used in Sprat-
tus. Still, the Sprattus framework provides a more general functionality for program
analysis as it is not only limited to test generation. An application of Sprattus in the
field of automatic test generation, in turn, would be conceivable as it could be used to
generate preconditions that suffice to reach unintended program states.

The Alive project [Lopes et al., 2015] is an approach aiming at improving the correct-
ness of compiler transformations in the LLVM framework. It provides a specification
language for local rewrite rules, so called peephole optimizations. Besides simplifying
the implementation of such rewrite rules, Alive also permits verifying the correctness
of the specified transformations with the Z3 theorem prover.
For this purpose, just like Sprattus, Alive requires an SMT semantics for the

supported LLVM instructions. However, Alive has strong restrictions with respect to
the locality of the instructions in comparison to the formula generation of Sprattus.
For example, Alive is neither able to handle loops nor to analyze connected code
sequences over the boundaries of basic blocks as no branch instructions are supported.

6.2 Analysis Cooperation

Especially with a look at the compiler optimization setting, Click and Cooper describe
the notion of a combined analysis that is stronger than the sum of its components
in [Click and Cooper, 1995]. They describe the reduced product of the constant propa-
gation analysis, dead code analysis and global value numbering with manually designed
transformers. They motivate their work with an example program where this product
is able to proof facts that none of the components could proof on its own. Yet, they do
not investigate the relevance of such examples in practice.

A more generalized approach to the construction of reduced products for abstract do-
mains in the restricted setting of logical programs is established in [Codish et al., 1995].
It requires an analysis designer to implement a reduce function that removes redundant
information from the involved abstract states for every combination of domains that
is created. They compare their generated domain products with existing hand-made
combinations of the same domains on a standard set of benchmarks. Their generated
combinations are always at least as good as the hand-made ones, for some domains the
generated combinations perform even significantly better.

The Astrée static analyzer [Cousot et al., 2005] is a commercial and industrially used
program analysis tool that makes use of the combination of several abstract domains. It
achieves this, as described in [Cousot et al., 2007], by hierarchically interacting domains.
This hierarchy is constructed from simple abstract domains with a binary approximate
reduced product operator. The values in the operand abstract domains of this product
operator are sequentially evaluated in the analysis. Here, the operations in the secondly

62

6.2 Analysis Cooperation

evaluated abstract domain can benefit from the results computed in the firstly evaluated
domain.
To allow domain cooperation, the abstract domain has to explicitly provide interac-

tion mechanisms using a message system to refine the own information and to propagate
gathered information to other domains.
The abstract transformer functions used in Astrée are handcrafted and not nec-

essarily optimal, however this enables Astrée to provide its results with significantly
smaller run time compared to Sprattus.

63

7 Conclusion

This thesis describes the realization of an application of the Sprattus framework in
the field of compiler optimizations. Despite its shortcomings at competing in runtime
with handcrafted implementations of common program transformations, the powerful
interface and the flexibility in configuration presented Sprattus as a useful tool for
rapid prototyping of new program analyses and transformations.

The set of program analyzer configurations that Sprattus supports has been extended
by a bilateral symbolic abstraction algorithm as proposed in [Thakur, 2014]. The imple-
mentation was used to evaluate the performance of the bilateral algorithm in comparison
to two versions of the unilateral algorithm. For the considered cases, one instance of the
unilateral algorithm that made use of solver-internal features outperformed the bilateral
algorithm.

Furthermore, new abstract domains have been introduced to the Sprattus framework.
These include an implementation of the well-known intervals analysis and a domain
that captures the truth value of an arbitrary unary or binary predicate over SSA-
variables. For the latter, instantiations with applications in program optimization have
been presented.
Moreover, the existing domains have been augmented with the functionality that is

necessary for supporting the bilateral algorithm, especially the product abstract do-
main has been supplemented with a non-trivial abstract consequence operation that on
average in the benchmarks performed better than the one described in [Thakur, 2014].

The developed compiler transformation pass was able to discover opportunities for pro-
gram optimization that a default LLVM-based compiler could not perform. This gives
an idea of potential uses of Sprattus-based compiler optimizations with specifically
crafted domains for highly optimized release builds of larger software projects or for
small embedded software.

However, no evidence for the profitability of combined compiler transformations as
proposed in [Click and Cooper, 1995] could be found during the evaluation of the
approach on a part of the LLVM benchmark suite.

The results of this thesis provide promising perspectives for the Sprattus framework.
Although the approach entails drawbacks in the runtime behavior of the analysis, the
thesis showed that it is applicable to real-world problems.
Besides the work on general purpose compiler transformations, many further appli-

cations of the framework are conceivable. This includes the implementation of highly

65

7 Conclusion

domain specific compiler optimizations as well as the verification of complex program
properties. Current work on the project is concerned with memory safety and tech-
niques to further improve the overall performance of Sprattus.

66

Bibliography

[Alpern et al., 1988] Alpern, B., Wegman, M. N., and Zadeck, F. K. (1988). Detect-
ing equality of variables in programs. In Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’88, pages
1–11, New York, NY, USA. ACM.

[Barrett et al., 2009] Barrett, C. W., Sebastiani, R., Seshia, S. A., and Tinelli, C.
(2009). Satisfiability modulo theories. Handbook of satisfiability, 185:825–885.

[Biere et al., 2009] Biere, A., Heule, M., van Maaren, H., and Walsh, T. (2009).
Conflict-driven clause learning sat solvers. Handbook of Satisfiability, Frontiers in
Artificial Intelligence and Applications, pages 131–153.

[Buchwald, 2015] Buchwald, S. (2015). Optgen: A generator for local optimizations.
In Compiler Construction, pages 171–189. Springer.

[Click and Cooper, 1995] Click, C. and Cooper, K. D. (1995). Combining analyses,
combining optimizations. ACM Trans. Program. Lang. Syst., 17(2):181–196.

[Codish et al., 1995] Codish, M., Mulkers, A., Bruynooghe, M., de la Banda, M. G., and
Hermenegildo, M. (1995). Improving abstract interpretations by combining domains.
ACM Trans. Program. Lang. Syst., 17(1):28–44.

[Cousot and Cousot, 1977] Cousot, P. and Cousot, R. (1977). Abstract interpretation:
A unified lattice model for static analysis of programs by construction or approxi-
mation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’77, pages 238–252, New York, NY,
USA. ACM.

[Cousot and Cousot, 1979] Cousot, P. and Cousot, R. (1979). Systematic design of
program analysis frameworks. In Proceedings of the 6th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’79, pages 269–282, New
York, NY, USA. ACM.

[Cousot et al., 2005] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monni-
aux, D., and Rival, X. (2005). The astrée analyzer. In Sagiv, M., editor, Programming
Languages and Systems, volume 3444 of Lecture Notes in Computer Science, pages
21–30. Springer Berlin Heidelberg.

67

Bibliography

[Cousot et al., 2007] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Mon-
niaux, D., and Rival, X. (2007). Combination of abstractions in the astrée static
analyzer. In Okada, M. and Satoh, I., editors, Advances in Computer Science -
ASIAN 2006. Secure Software and Related Issues, volume 4435 of Lecture Notes in
Computer Science, pages 272–300. Springer Berlin Heidelberg.

[Cytron et al., 1991] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and
Zadeck, F. K. (1991). Efficiently computing static single assignment form and the
control dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490.

[de Moura and Bjørner, 2008] de Moura, L. and Bjørner, N. (2008). Z3: An efficient
smt solver. In Ramakrishnan, C. and Rehof, J., editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 4963 of Lecture Notes in Computer
Science, pages 337–340. Springer Berlin Heidelberg.

[ISO 9899:2011, 2011] ISO 9899:2011 (2011). Programming languages - C. Standard,
International Organization for Standardization, Geneva, CH.

[Kildall, 1973] Kildall, G. A. (1973). A unified approach to global program optimiza-
tion. In Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL ’73, pages 194–206, New York, NY,
USA. ACM.

[Kovásznai et al., 2012] Kovásznai, G., Fröhlich, A., and Biere, A. (2012). On the
complexity of fixed-size bit-vector logics with binary encoded bit-width. In SMT@
IJCAR, pages 44–56.

[Lattner and Adve, 2004] Lattner, C. and Adve, V. (2004). LLVM: A Compilation
Framework for Lifelong Program Analysis & Transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California.

[Lopes et al., 2015] Lopes, N. P., Menendez, D., Nagarakatte, S., and Regehr, J. (2015).
Provably correct peephole optimizations with alive. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2015, pages 22–32, New York, NY, USA. ACM.

[Nielson et al., 1999] Nielson, F., Nielson, H. R., and Hankin, C. (1999). Principles of
program analysis. Springer.

[Reps et al., 2004] Reps, T., Sagiv, M., and Yorsh, G. (2004). Symbolic implementation
of the best transformer. In Steffen, B. and Levi, G., editors, Verification, Model
Checking, and Abstract Interpretation, volume 2937 of Lecture Notes in Computer
Science, pages 252–266. Springer Berlin Heidelberg.

[Seidl et al., 2012] Seidl, H., Wilhelm, R., and Hack, S. (2012). Compiler Design: Anal-
ysis and Transformation. Springer Science & Business Media.

68

Bibliography

[Thakur, 2014] Thakur, A. V. (2014). Symbolic Abstraction: Algorithms and Applica-
tions. dissertation, University of Wisconsin-Madison.

[Wegman and Zadeck, 1991] Wegman, M. N. and Zadeck, F. K. (1991). Constant prop-
agation with conditional branches. ACM Trans. Program. Lang. Syst., 13(2):181–210.

69

	List of Figures
	Introduction
	Theoretical Background
	Abstract Interpretation
	Satisfiability Modulo Theories
	Symbolic Abstract Interpretation

	Used Frameworks
	LLVM
	Z3

	Sprattus
	Program Representation
	Formula Construction
	Analyzer
	Abstract Domains
	Application in Compiler Optimizations

	Evaluation
	Analyzer Implementations
	Fragment Decompositions
	Abstract Domains
	Combining Compiler Optimizations

	Related Work
	Satisfiability in Program Analysis
	Analysis Cooperation

	Conclusion
	Bibliography

