
SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Revisiting Out-of-SSA Translation
for Correctness, Code Quality, and Efficiency

For both Static and JIT Compilation

Benoit Boissinot (LIP), Alain Darte (LIP),
Benôıt Dupont de Dinechin (STMicro), Christophe Guillon

(STMicro), Fabrice Rastello (LIP)

Compsys Team
Laboratoire de l’Informatique du Parallélisme (LIP)

École normale supérieure de Lyon

SSA Seminar, April 27, 2009, Autrans

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Context

Collaboration between Compsys team and STMicroelectronics
compiler group.

Back-end compiler: Open64 + LAO (linear assembly
optimizer) with use of SSA and ψ-SSA.

Double role: both static and just-in-time compilation for
STMicro processor family.

Applications: multimedia applications.

Optimization objectives: compiler robustness, ease of
implementation, portability, code quality, speed of compiler.

Other collaboration themes: instruction cache optimization,
register allocation.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Outline

1 SSA foundations
Dominance and SSA form
Out-of-SSA translation

2 Correctness and code quality
Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

3 Speed and memory footprint
Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

4 Conclusion

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Dominance

Control Flow Graph

one entry node r ;

every node reachable from r .

Definition (dominance)

a dominates b if every path from
the root r to b contains a.

Property

The dominance relation induces a
tree. * With classical tree
labeling, testing if a dominates b
is an O(1) operation.

r=0

1 9

2

5

6

7

8

3

4

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Dominance

Control Flow Graph

one entry node r ;

every node reachable from r .

Definition (dominance)

a dominates b if every path from
the root r to b contains a.

Property

The dominance relation induces a
tree. * With classical tree
labeling, testing if a dominates b
is an O(1) operation.

1 dominates 4?

r=0

1 9

2

5

6

7

8

3

4

1

4

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Dominance

Control Flow Graph

one entry node r ;

every node reachable from r .

Definition (dominance)

a dominates b if every path from
the root r to b contains a.

Property

The dominance relation induces a
tree. * With classical tree
labeling, testing if a dominates b
is an O(1) operation.

1 dominates 4? YES

r=0

1 9

2

5

6

7

8

3

4

1

4

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Dominance

Control Flow Graph

one entry node r ;

every node reachable from r .

Definition (dominance)

a dominates b if every path from
the root r to b contains a.

Property

The dominance relation induces a
tree. * With classical tree
labeling, testing if a dominates b
is an O(1) operation.

2 dominates 4?

r=0

1 9

2

5

6

7

8

3

4

2

4

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Dominance

Control Flow Graph

one entry node r ;

every node reachable from r .

Definition (dominance)

a dominates b if every path from
the root r to b contains a.

Property

The dominance relation induces a
tree. * With classical tree
labeling, testing if a dominates b
is an O(1) operation.

2 dominates 4? NO

r=0

1 9

2

5

6

7

8

3

4

2

4

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Dominance

Control Flow Graph

one entry node r ;

every node reachable from r .

Definition (dominance)

a dominates b if every path from
the root r to b contains a.

Property

The dominance relation induces a
tree. * With classical tree
labeling, testing if a dominates b
is an O(1) operation.

r=0

1 9

2

5

6

7

8

3

4

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Static single assignment (SSA)

SSA with dominance property

Unique definition for each variable;

Each definition dominates its uses.

Conversion into SSA

Need to introduce φ-functions at
dominance frontier.

Interests of SSA

Code optimizations: efficient,
easy-to-implement, fast;

Two-phases register allocation;

Program analysis/verification.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Static single assignment (SSA)

SSA with dominance property

Unique definition for each variable;

Each definition dominates its uses.

Conversion into SSA

Need to introduce φ-functions at
dominance frontier.

Interests of SSA

Code optimizations: efficient,
easy-to-implement, fast;

Two-phases register allocation;

Program analysis/verification.

B0

B1

b = . . .
a = . . .

a = n
b = a
n = b

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Static single assignment (SSA)

SSA with dominance property

Unique definition for each variable;

Each definition dominates its uses.

Conversion into SSA

Need to introduce φ-functions at
dominance frontier.

Interests of SSA

Code optimizations: efficient,
easy-to-implement, fast;

Two-phases register allocation;

Program analysis/verification.

B0

B1

b = . . .
a = . . .

a = n
b = a
n = b

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Static single assignment (SSA)

SSA with dominance property

Unique definition for each variable;

Each definition dominates its uses.

Conversion into SSA

Need to introduce φ-functions at
dominance frontier.

Interests of SSA

Code optimizations: efficient,
easy-to-implement, fast;

Two-phases register allocation;

Program analysis/verification.

B0

a2 = φ(a1, a3)
b2 = φ(b1, b3)

B1

b1 = . . .
a1 = . . .

n = b2

b3 = a2

a3 = n

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Static single assignment (SSA)

SSA with dominance property

Unique definition for each variable;

Each definition dominates its uses.

Conversion into SSA

Need to introduce φ-functions at
dominance frontier.

Interests of SSA

Code optimizations: efficient,
easy-to-implement, fast;

Two-phases register allocation;

Program analysis/verification.

B0

a2 = φ(a1, a3)
b2 = φ(b1, b3)

B1

b1 = . . .
a1 = . . .

n = b2

b3 = a2

a3 = n

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Static single assignment (SSA)

SSA with dominance property

Unique definition for each variable;

Each definition dominates its uses.

Conversion into SSA

Need to introduce φ-functions at
dominance frontier.

Interests of SSA

Code optimizations: efficient,
easy-to-implement, fast;

Two-phases register allocation;

Program analysis/verification.

B0

a2 = φ(a1, b2)
b2 = φ(b1, a2)

B1

a1 = . . .
b1 = . . .

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Basic dominance and SSA properties for interferences

SSA with dominance property and live range intersection

If two variables are simultaneously live at a given program point,
then the definition of one dominates the definition of the other.

(also the first is live at the definition of the second). * We will use
this to replace interference graph by queries for intersection check.

Chordal interference graph

SSA live-ranges ≡ subtrees of the dominance tree * chordal.

Forget Chaitin NP-completeness proof.
Two-phases register allocation: spill to reduce “maxlive” then
coalesce. Spill is the main issue.
Don’t be afraid to split, better coalescing schemes.

See work of F. Bouchez, P. Brisk, S. Hack, J. Palsberg, F. Pereira

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Basic dominance and SSA properties for interferences

SSA with dominance property and live range intersection

If two variables are simultaneously live at a given program point,
then the definition of one dominates the definition of the other
(also the first is live at the definition of the second). * We will use
this to replace interference graph by queries for intersection check.

Chordal interference graph

SSA live-ranges ≡ subtrees of the dominance tree * chordal.

Forget Chaitin NP-completeness proof.
Two-phases register allocation: spill to reduce “maxlive” then
coalesce. Spill is the main issue.
Don’t be afraid to split, better coalescing schemes.

See work of F. Bouchez, P. Brisk, S. Hack, J. Palsberg, F. Pereira

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Basic dominance and SSA properties for interferences

SSA with dominance property and live range intersection

If two variables are simultaneously live at a given program point,
then the definition of one dominates the definition of the other
(also the first is live at the definition of the second). * We will use
this to replace interference graph by queries for intersection check.

Chordal interference graph

SSA live-ranges ≡ subtrees of the dominance tree * chordal.

Forget Chaitin NP-completeness proof.
Two-phases register allocation: spill to reduce “maxlive” then
coalesce. Spill is the main issue.
Don’t be afraid to split, better coalescing schemes.

See work of F. Bouchez, P. Brisk, S. Hack, J. Palsberg, F. Pereira

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Basic dominance and SSA properties for interferences

SSA with dominance property and live range intersection

If two variables are simultaneously live at a given program point,
then the definition of one dominates the definition of the other
(also the first is live at the definition of the second). * We will use
this to replace interference graph by queries for intersection check.

Chordal interference graph

SSA live-ranges ≡ subtrees of the dominance tree * chordal.

Forget Chaitin NP-completeness proof.
Two-phases register allocation: spill to reduce “maxlive” then
coalesce. Spill is the main issue.
Don’t be afraid to split, better coalescing schemes.

See work of F. Bouchez, P. Brisk, S. Hack, J. Palsberg, F. Pereira

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Basic dominance and SSA properties for interferences

SSA with dominance property and live range intersection

If two variables are simultaneously live at a given program point,
then the definition of one dominates the definition of the other
(also the first is live at the definition of the second). * We will use
this to replace interference graph by queries for intersection check.

Chordal interference graph

SSA live-ranges ≡ subtrees of the dominance tree * chordal.

Forget Chaitin NP-completeness proof.
Two-phases register allocation: spill to reduce “maxlive” then
coalesce. Spill is the main issue.
Don’t be afraid to split, better coalescing schemes.

See work of F. Bouchez, P. Brisk, S. Hack, J. Palsberg, F. Pereira

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Why is out-of-SSA translation difficult?

Cytron et al. (1991): copies in
predecessor basic blocks.

Incorrect!

Bad understanding of parallel copies
Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Swap problem

B0

a2 = φ(a1, b2)
b2 = φ(b1, a2)

B1

a1 = . . .
b1 = . . .

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Why is out-of-SSA translation difficult?

Cytron et al. (1991): copies in
predecessor basic blocks.

Incorrect!

Bad understanding of parallel copies
Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Swap problem

B0

a2 = φ(a1, b2)
b2 = φ(b1, a2)

B1

b1 = . . .
a1 = . . .

a2 = a1

b2 = b1

b2 = a2

a2 = b2

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Why is out-of-SSA translation difficult?

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies.

Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Swap problem

B0

B1

b1 = . . .
a1 = . . .

a2 = a1

b2 = b1

b2 = a2

a2 = b2

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Why is out-of-SSA translation difficult?

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies.

Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x = x + 1

y

x = . . .

y = x

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Why is out-of-SSA translation difficult?

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies.

Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x2 = φ(x1, x3)

x3 = x2 + 1

x1 = . . .

y

y = x2

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Why is out-of-SSA translation difficult?

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies.

Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x2 = φ(x1, x3)

x3 = x2 + 1

x1 = . . .

x2

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Why is out-of-SSA translation difficult?

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies.

Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x2 = φ(x1, x3)

x3 = x2 + 1

x1 = . . .

x2

x2 = x1

x2 = x3

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Why is out-of-SSA translation difficult?

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies;
Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x3 = x2 + 1

x1 = . . .

x2

x2 = x1

x2 = x3

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Why is out-of-SSA translation difficult?

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies;
Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x3 = x2 + 1

x1 = . . .

x2

x2 = x1

x2 = x3

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Why is out-of-SSA translation difficult?

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies;
Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x3 = x2 + 1

x1 = . . .

x2

x2 = x1

x2 = x3

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Dominance and SSA form
Out-of-SSA translation

Why is out-of-SSA translation difficult?

Cytron et al. (1991): copies in
predecessor basic blocks. Incorrect!

Bad understanding of parallel copies;
Bad understanding of critical edges and
interferences.

Briggs et al. (1998): both problems
identified. General correctness unclear.

Sreedhar et al. (1999): correct but

handling of complex branching
instructions unclear;
interplay with coalescing unclear;
“virtualization” hard to implement.

Lost copy problem

B0

B1

x3 = x2 + 1

x1 = . . .

x2

x2 = x1

x2 = x3

* Many SSA optimizations turned off in gcc and Jikes.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Outline

1 SSA foundations
Dominance and SSA form
Out-of-SSA translation

2 Correctness and code quality
Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

3 Speed and memory footprint
Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

4 Conclusion

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Going to CSSA (conventional SSA): Sreedhar et al.

Definition (conventional SSA)

CSSA: if variables can be
renamed, without changing
program semantics, so that, for
all φ-function a0 = φ(a1, . . . , an),
a0, . . . , an have the same name.

Correctness

After introduction of variables a′
i

and copies, the code is in CSSA.

Code quality

Aggressive coalescing can remove
useless copies. But better use
accurate notion of interferences.

From SSA to CSSA
B1 Bi

B0

Bn

a0 = φ(a1, . . . , an)

“Liveness of φ” defined by the a′
i .

? Be careful with potential bugs
due to conditional branches that
use or define variables.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Going to CSSA (conventional SSA): Sreedhar et al.

Definition (conventional SSA)

CSSA: if variables can be
renamed, without changing
program semantics, so that, for
all φ-function a0 = φ(a1, . . . , an),
a0, . . . , an have the same name.

Correctness

After introduction of variables a′
i

and copies, the code is in CSSA.

Code quality

Aggressive coalescing can remove
useless copies. But better use
accurate notion of interferences.

From SSA to CSSA
B1 Bi

B0

Bn

a′
0 = φ(a′

1, . . . , a
′
n)

a0 = a′
0

a′
1 = a1 a′

i = ai a′
n = an

“Liveness of φ” defined by the a′
i .

? Be careful with potential bugs
due to conditional branches that
use or define variables.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Going to CSSA (conventional SSA): Sreedhar et al.

Definition (conventional SSA)

CSSA: if variables can be
renamed, without changing
program semantics, so that, for
all φ-function a0 = φ(a1, . . . , an),
a0, . . . , an have the same name.

Correctness

After introduction of variables a′
i

and copies, the code is in CSSA.

Code quality

Aggressive coalescing can remove
useless copies. But better use
accurate notion of interferences.

From SSA to CSSA
B1 Bi

B0

Bn

a′
0 = φ(a′

1, . . . , a
′
n)

a0 = a′
0

a′
1 = a1 a′

i = ai a′
n = an

“Liveness of φ” defined by the a′
i .

? Be careful with potential bugs
due to conditional branches that
use or define variables.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Coalesced example: the swap problem

B0

a2 = φ(a1, b2)
b2 = φ(b1, a2)

B1

a1 = . . .
b1 = . . .

B0

u0 = φ(u1, u2)
v0 = φ(v1, v2)

B1

(a2, b2) = (u0, v0)

b1 = . . .
a1 = . . .

(u1, v1) = (a1, b1)

(u2, v2) = (b2, a2)

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Coalesced example: the swap problem

a1

b1 v = (v0, v1, v2)

u = (u0, u1, u2)

b2

a2

B0

u0 = φ(u1, u2)
v0 = φ(v1, v2)

B1

(a2, b2) = (u0, v0)

b1 = . . .
a1 = . . .

(u1, v1) = (a1, b1)

(u2, v2) = (b2, a2)

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Coalesced example: the swap problem

a1

b1 v = (v0, v1, v2)

u = (u0, u1, u2)

b2

a2

B0

u0 = φ(u1, u2)
v0 = φ(v1, v2)

B1

(a2, b2) = (u0, v0)

b1 = . . .
a1 = . . .

(u1, v1) = (a1, b1)

(u2, v2) = (b2, a2)

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Coalesced example: the swap problem

B0

B1

b1 = . . .
a1 = . . .

(u2, v2) = (b2, a2)

B0

u0 = φ(u1, u2)
v0 = φ(v1, v2)

B1

(a2, b2) = (u0, v0)

b1 = . . .
a1 = . . .

(u1, v1) = (a1, b1)

(u2, v2) = (b2, a2)

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Coalesced example: the swap problem

B0

B1

b1 = . . .
a1 = . . .

(u2, v2) = (b2, a2)

B0

B1

b1 = . . .
a1 = . . .

a1 = n
b1 = a1

n = b1

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Coalesced example: the lost copy problem

B0

B1

x2 = φ(x1, x3)

x3 = x2 + 1

x1 = . . .

x2

B0

B1

u0 = φ(u1, u2)

x3 = x2 + 1

x1 = . . .
u1 = x1

x2 = u0

x2

u2 = x3

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Coalesced example: the lost copy problem

u = (u0, u1, u2)x1 x3

x2

B0

B1

u0 = φ(u1, u2)

x3 = x2 + 1

x1 = . . .
u1 = x1

x2 = u0

x2

u2 = x3

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Coalesced example: the lost copy problem

u = (u0, u1, u2)x1 x3

x2

B0

B1

u0 = φ(u1, u2)

x3 = x2 + 1

x1 = . . .
u1 = x1

x2 = u0

x2

u2 = x3

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Coalesced example: the lost copy problem

B0

B1

x1 = x2 + 1

x1 = . . .

x2 = x1

x2

B0

B1

u0 = φ(u1, u2)

x3 = x2 + 1

x1 = . . .
u1 = x1

x2 = u0

x2

u2 = x3

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Exploiting SSA: value-based interferences

Definition (Chaitin interference)

Two variables interfere if one is live
at the definition of the other, which
is not a copy of the first.

* Need to update interference
graph after coalescing.

Unique value V of a SSA variable

For a copy b = a, V (b) = V (a)
(traversal of dominance tree).

Value-based interference

a and b interfere if V (a) 6= V (b) and
Live-range(a) ∩ Live-range(b) 6= ∅.

b = . . . c = . . .

a = φ(b, c)

d = φ(b, a)

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Exploiting SSA: value-based interferences

Definition (Chaitin interference)

Two variables interfere if one is live
at the definition of the other, which
is not a copy of the first.

* Need to update interference
graph after coalescing.

Unique value V of a SSA variable

For a copy b = a, V (b) = V (a)
(traversal of dominance tree).

Value-based interference

a and b interfere if V (a) 6= V (b) and
Live-range(a) ∩ Live-range(b) 6= ∅.

b = . . . c = . . .

d ′ = b
a′ = ca′ = b

a = a′

d = d ′

d ′ = a

a′

d ′

d a

b c

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Exploiting SSA: value-based interferences

Definition (Chaitin interference)

Two variables interfere if one is live
at the definition of the other, which
is not a copy of the first.

* Need to update interference
graph after coalescing.

Unique value V of a SSA variable

For a copy b = a, V (b) = V (a)
(traversal of dominance tree).

Value-based interference

a and b interfere if V (a) 6= V (b) and
Live-range(a) ∩ Live-range(b) 6= ∅.

b = . . . c = . . .

d ′ = b
a′ = ca′ = b

a = a′

d = d ′

d ′ = a

a′

d ′

d a

b c

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Exploiting SSA: value-based interferences

Definition (Chaitin interference)

Two variables interfere if one is live
at the definition of the other, which
is not a copy of the first.

* Need to update interference
graph after coalescing.

Unique value V of a SSA variable

For a copy b = a, V (b) = V (a)
(traversal of dominance tree).

Value-based interference

a and b interfere if V (a) 6= V (b) and
Live-range(a) ∩ Live-range(b) 6= ∅.

b = . . . c = . . .
c = b

b = c

b

a′

d ′

d a

b c

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Exploiting SSA: value-based interferences

Definition (Chaitin interference)

Two variables interfere if one is live
at the definition of the other, which
is not a copy of the first.

* Need to update interference
graph after coalescing.

Unique value V of a SSA variable

For a copy b = a, V (b) = V (a)
(traversal of dominance tree).

Value-based interference

a and b interfere if V (a) 6= V (b) and
Live-range(a) ∩ Live-range(b) 6= ∅.

b = . . . c = . . .

d ′ = b
a′ = ca′ = b

a = a′

d = d ′

d ′ = a

a′

d ′

d a

b c

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Exploiting SSA: value-based interferences

Definition (Chaitin interference)

Two variables interfere if one is live
at the definition of the other, which
is not a copy of the first.

* Need to update interference
graph after coalescing.

Unique value V of a SSA variable

For a copy b = a, V (b) = V (a)
(traversal of dominance tree).

Value-based interference

a and b interfere if V (a) 6= V (b) and
Live-range(a) ∩ Live-range(b) 6= ∅.

b = . . . b = . . .

b

a′

d ′

d a

b c

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Using parallel copies instead of sequential copies

Parallel copy semantics

In (a1, . . . , an) = (b1, . . . , bn), all copies
ai = bi are simultaneous.

Fewer interferences than with
sequential copies.

Easier insertion & liveness updates.

But need to sequentialize.

Particular copy structure

Directed graph with edges bi → ai .

Directed trees with roots=circuits.

Insert copies for the leaves first.

Simple circuit: one more copy.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Using parallel copies instead of sequential copies

Parallel copy semantics

In (a1, . . . , an) = (b1, . . . , bn), all copies
ai = bi are simultaneous.

Fewer interferences than with
sequential copies.

Easier insertion & liveness updates.

But need to sequentialize.

Particular copy structure

Directed graph with edges bi → ai .

Directed trees with roots=circuits.

Insert copies for the leaves first.

Simple circuit: one more copy.

(a, b, c , d) = (c , a, b, c)

a b

cd

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Using parallel copies instead of sequential copies

Parallel copy semantics

In (a1, . . . , an) = (b1, . . . , bn), all copies
ai = bi are simultaneous.

Fewer interferences than with
sequential copies.

Easier insertion & liveness updates.

But need to sequentialize.

Particular copy structure

Directed graph with edges bi → ai .

Directed trees with roots=circuits.

Insert copies for the leaves first.

Simple circuit: one more copy.

d = c
(a, b, c) = (d , a, b)

a b

cd

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Using parallel copies instead of sequential copies

Parallel copy semantics

In (a1, . . . , an) = (b1, . . . , bn), all copies
ai = bi are simultaneous.

Fewer interferences than with
sequential copies.

Easier insertion & liveness updates.

But need to sequentialize.

Particular copy structure

Directed graph with edges bi → ai .

Directed trees with roots=circuits.

Insert copies for the leaves first.

Simple circuit: one more copy.

d = c
c = b
b = a
a = d

a b

cd

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Using parallel copies instead of sequential copies

Parallel copy semantics

In (a1, . . . , an) = (b1, . . . , bn), all copies
ai = bi are simultaneous.

Fewer interferences than with
sequential copies.

Easier insertion & liveness updates.

But need to sequentialize.

Particular copy structure

Directed graph with edges bi → ai .

Directed trees with roots=circuits.

Insert copies for the leaves first.

Simple circuit: one more copy.

d = c
c = b
b = a
a = d

a b

cd

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

Qualitative experiments with SPEC CINT2000

Key points of the out-of-SSA translation

Copy insertion (to go to CSSA and to handle register
renaming constraints) followed by coalescing.

Value-based interferences * coalescing is improved and
independent of virtualization (i.e., as in Sreedhar III).

Parallel copies followed by sequentialization.

16
4.
gz
ip

17
5.
vp
r

17
6.
gc
c

18
1.
m
cf

18
6.
cr
af
ty

19
7.
pa
rs
er

25
3.
pe
rl
bm
k

25
4.
ga
p

25
5.
vo
rt
ex

25
6.
bz
ip
2

30
0.
tw
ol
f

su
m

0.4

0.5

0.6

0.7

0.8

0.9

1

Intersection

Sreedhar I

Chaitin

Value

Sreedhar III

Value IS

Sharing

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Outline

1 SSA foundations
Dominance and SSA form
Out-of-SSA translation

2 Correctness and code quality
Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

3 Speed and memory footprint
Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

4 Conclusion

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

How to coalesce variables?

Two alternatives

Use a working interference graph where, in case of coalescing,
corresponding vertices are merged. O(1) interference query.

Manipulate congruence classes, i.e., sets of coalesced
variables. Interferences must be tested between sets.

Chaitin, Sreedhar, Budimlić use congruence classes. Also useful to
avoid interference graph. Naive algorithm: quadratic complexity.

Key properties for linear-complexity live range intersection

2 variables intersect if one is live at the definition of the other.

In this case, the first definition dominates the second one.

Budimlić: a set contains 2 intersecting variables if it contains
a variable that intersects its “parent dominating” variable.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

How to coalesce variables?

Two alternatives

Use a working interference graph where, in case of coalescing,
corresponding vertices are merged. O(1) interference query.

Manipulate congruence classes, i.e., sets of coalesced
variables. Interferences must be tested between sets.

Chaitin, Sreedhar, Budimlić use congruence classes. Also useful to
avoid interference graph. Naive algorithm: quadratic complexity.

Key properties for linear-complexity live range intersection

2 variables intersect if one is live at the definition of the other.

In this case, the first definition dominates the second one.

Budimlić: a set contains 2 intersecting variables if it contains
a variable that intersects its “parent dominating” variable.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Fast interference test for a set of variables

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

c

b

a

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Fast interference test for a set of variables

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

c

b

a

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Fast interference test for a set of variables

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

c

b

a

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Fast interference test for a set of variables

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

c

b

a

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Fast interference test for a set of variables

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

c

b

a

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Fast interference test for a set of variables

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

e

d

a

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Fast interference test for a set of variables

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

e

d

a

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Fast interference test for a set of variables

a← · · ·

b ← a + · · ·
c ← b + · · ·
← c

d ← · · ·
e ← d + · · ·
← a + e

e

d

a

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Algorithm 1: Check intersection in a set of variables

Data: list sorted according to a pre-DFS order of the dominance tree
Output: Returns true if the list contains an interference
dom ← empty stack ; i ← 0 ; /* stack of the traversal */1

while i < list.size() do2

current ← list(i++) ;3

other ← dom.top() ; /* null if dom is empty */4

while (other 6= null) and dominate(other, current) = false do5

dom.pop() ; /* not the desired parent, remove */6

other ← dom.top() ; /* consider next one */7

parent ← other ;8

if (parent 6= null) and (intersect(current, parent) = true) then9

return true ; /* intersection detected */

dom.push(current) ; /* otherwise, keep checking */10

return false ;11

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Linear interference test of two congruence classes

Generalization to interference test of two sets

Emulate a stack-based DFS traversal of dominance tree, for
two sorted sets instead of one * linear number of tests. Also
no need to test intersection of variables in the same set.

Take values into account for value-based interference: need
links of “equal ancestors”, which may increase complexity.

Sort in linear time the resulting set, in case of coalescing.

Fewer intersection tests * possible now to use more expensive
queries for intersection and liveness and avoid interference graph:

Budimlić intersection test, still using liveness sets.

Fast liveness checking of Boissinot et al. (CGO’08).

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Linear interference test of two congruence classes

Generalization to interference test of two sets

Emulate a stack-based DFS traversal of dominance tree, for
two sorted sets instead of one * linear number of tests. Also
no need to test intersection of variables in the same set.

Take values into account for value-based interference: need
links of “equal ancestors”, which may increase complexity.

Sort in linear time the resulting set, in case of coalescing.

Fewer intersection tests * possible now to use more expensive
queries for intersection and liveness and avoid interference graph:

Budimlić intersection test, still using liveness sets.

Fast liveness checking of Boissinot et al. (CGO’08).

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Fast liveness checking (Boissinot et al. CGO’08)

Definition (Liveness)

Variable a is live-in at q if there is a path from
q to a use of a, that does not contain its def.

Algorithm (see CGO’08 paper)

Precomputation:

Compute transitive closure of G’, the CFG
without DFS back edges;

For each q, compute a set Tq of
back-edge targets reached from q.

Query:

For each use, for each t ∈ Tq dominated
by def, test reachability in G’

r=0

1def 9

2

5

6

7use

88

query

3

4

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Fast liveness checking (Boissinot et al. CGO’08)

Definition (Liveness)

Variable a is live-in at q if there is a path from
q to a use of a, that does not contain its def.

Algorithm (see CGO’08 paper)

Precomputation:

Compute transitive closure of G’, the CFG
without DFS back edges;

For each q, compute a set Tq of
back-edge targets reached from q.

Query:

For each use, for each t ∈ Tq dominated
by def, test reachability in G’

r=0

1def 9

2

5

6

7use

88

query

3

4

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Fast liveness checking (Boissinot et al. CGO’08)

Definition (Liveness)

Variable a is live-in at q if there is a path from
q to a use of a, that does not contain its def.

Algorithm (see CGO’08 paper)

Precomputation:

Compute transitive closure of G’, the CFG
without DFS back edges;

For each q, compute a set Tq of
back-edge targets reached from q.

Query:

For each use, for each t ∈ Tq dominated
by def, test reachability in G’

r=0

1def 9

2

5

6

7use

88

query

3

4

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Fast liveness checking (Boissinot et al. CGO’08)

Definition (Liveness)

Variable a is live-in at q if there is a path from
q to a use of a, that does not contain its def.

Algorithm (see CGO’08 paper)

Precomputation:

Compute transitive closure of G’, the CFG
without DFS back edges;

For each q, compute a set Tq of
back-edge targets reached from q.

Query:

For each use, for each t ∈ Tq dominated
by def, test reachability in G’

r=0

1def 9

2

5

6

7use

88

query

3

4

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Fast liveness checking (Boissinot et al. CGO’08)

Definition (Liveness)

Variable a is live-in at q if there is a path from
q to a use of a, that does not contain its def.

Algorithm (see CGO’08 paper)

Precomputation:

Compute transitive closure of G’, the CFG
without DFS back edges;

For each q, compute a set Tq of
back-edge targets reached from q.

Query:

For each use, for each t ∈ Tq dominated
by def, test reachability in G’

r=0

1def 9

2

5

6

7use

88

query

3

4

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Fast liveness checking (Boissinot et al. CGO’08)

Definition (Liveness)

Variable a is live-in at q if there is a path from
q to a use of a, that does not contain its def.

Algorithm (see CGO’08 paper)

Precomputation:

Compute transitive closure of G’, the CFG
without DFS back edges;

For each q, compute a set Tq of
back-edge targets reached from q.

Query:

For each use, for each t ∈ Tq dominated
by def, test reachability in G’

r=0

1def 9

2

5

6

7use

88

query

3

4

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Speed-up for SPEC CINT2000: x2

General scheme

Sreedhar III: w.
virtualization.

Us I, Us III: our
proposal, w.o./w.
virtualization.

Interference checks

Default: liveness sets + interference graph.

InterCheck: Budimlić with liveness sets.

LiveCheck: Fast liveness checking.

Linear: Linear check instead of quadratic.

16
4.
gz
ip

17
5.
vp
r

17
6.
gc
c

18
1.
m
cf

18
6.
cr
af
ty

19
7.
pa
rs
er

25
3.
pe
rl
bm
k

25
4.
ga
p

25
5.
vo
rt
ex

25
6.
bz
ip
2

30
0.
tw
ol
f

su
m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sreedhar III Us III Us III + InterCheck

Us III + InterCheck + LiveCheck Us III + Linear + InterCheck + LiveCheck Us I

Us I + Linear + InterCheck + LiveCheck

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

Memory footprint reduction for SPEC CINT2000: x10

Interference graph: half-size bit matrix.

Liveness sets: enumerated sets. Does not count construction.

Livenesss check: bit sets. Construction taken into account.

Data structures grow during virtualization. “Perfect memory”
evaluated, with both enumerated/bit sets for liveness sets.

Sum of memory footprint

Measured Evaluated (Ordered sets) Evaluated (Bit sets)
0

0.2

0.4

0.6

0.8

1

1.2

Max of memory footprint

Measured Evaluated (Ordered sets) Evaluated (Bit sets)
0

0.2

0.4

0.6

0.8

1

1.2

Sreedhar III

Us III

Us III + InterCheck

Us III + InterCheck + LiveCheck

Us III + Linear + InterCheck + LiveCheck

Us I

Us I + Linear + InterCheck + LiveCheck

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Outline

1 SSA foundations
Dominance and SSA form
Out-of-SSA translation

2 Correctness and code quality
Translation with copy insertions
Improving code quality and ease of implementation
Qualitative experiments

3 Speed and memory footprint
Linear-time algorithm for coalescing congruence classes
Getting rid of liveness sets and interference graph
Experimental results for speed and memory footprint

4 Conclusion

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

General framework

Correctness clarified even for complex cases

Two-phases solution, based on coalescing

Results

Value-based interferences, for free, as good as Sreedhar III

Fast algorithm: Speed-up x2, memory reduction x10.

Implementation

No need to virtualize (at least for us)

Simpler implementation

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

The End

Thank you!

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Bug tracking RVM-254 of Jikes RVM

Problems with SSA form: lack of loop unrolling breaks VM

This problem is probably one of the most serious in the RVM currently. When loop
unrolling is disabled and SSA enabled the created IR is corrupt. The error has in the
past look like we were suffering from the ”lost copy” problem, but implementing a
naive solution to this didn’t solve the problem. Their is sound logic behind the code so
we need to identify a small test case where things are broken and then reason about
what’s wrong in leave SSA. This has been attempted once (with the code that
removes an element from the live set) but the problem no longer appears to surface
here. Currently these optimizations are disabled but by RVM 3.0 they should be
re-enable and this bug cured.

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Potential bugs with conditional branches

u = . . .

v = . . .

B0

B3

B1 B2

w = φ(u, v)
. . . = w

Br(u, B3, B4)

B4

Initial code

u = . . .

v = . . .

B0

B3

B1 B2

. . . = w
w = φ(u, v ′)

Br(u, B3, B4)
v ′ = v

B4

“Blind” Sreedhar III

v = . . .

B0

B3

B1 B2

. . . = w

w = . . .

Br(w , B3, B4)
w = v

B4

Wrong output code

Alain Darte Revisiting Out-of-SSA Translation



SSA foundations
Correctness and code quality
Speed and memory footprint

Conclusion

Unfeasible out-of-SSA translation example

t2 = t1 + . . .

u0

B1

B2

Br(u2, B1, B2)
t0 = u2

u2 = u1 − 1
u1 = φ(u0, u2)

Br(t2, B1, B2)

. . . = u2

B3

t1 = φ(t0, t2)

Initial code

t2 = t1 + . . .

u

B1

B2

Br(t2, B1, B2)

. . . = u
B3

t1 = φ(u, t2)

Br dec(u, B1, B2)

After optimization

t2 = t1 + . . .

u

B1

B2

Br(t2, B1, B2)

. . . = u
B3

Br dec(u, B1, B2)

t0 = u

t1 = φ(t0, t2)

Needs edge splitting

Alain Darte Revisiting Out-of-SSA Translation


	SSA foundations
	Dominance and SSA form
	Out-of-SSA translation

	Correctness and code quality
	Translation with copy insertions
	Improving code quality and ease of implementation
	Qualitative experiments

	Speed and memory footprint
	Linear-time algorithm for coalescing congruence classes
	Getting rid of liveness sets and interference graph
	Experimental results for speed and memory footprint

	Conclusion

