
Beyond Scalar SSA: Compilers for manycore processors Need
Dynamic SA and some form of Stream SSA

Albert Cohen and many other (in)direct contributors

ALCHEMY group
INRIA Saclay and LRI, Paris-Sud 11 University, Orsay, France

April 28, 2009

SSA Seminar – April 2009 1 / 12



Position of the Problem

Claim 1: Lost Portability

Compilers (and runtime systems) have lost a round, and we cannot afford to
concede the game

I Fundamental point: we still don’t really know how to optimize (parallel) programs for
non-uniform memory hierarchies, assuming we reasonably understand scalar
optimization

I Applied point: software developers are in dire need for an answer

Claim 2: Our Research Area is Hot

The problem will not be solved by advances in compiler construction alone, but the
compiler side of the story is the most interesting challenge for the manycore era

Goal

Regaining the lost performance portability

SSA Seminar – April 2009 2 / 12



Scalar Data Flow

Motivation
x0 = 0;
while (1) {
x1 = Φ(x0, x2);
x2 = f(x1); // Sequential

g(x2); // May pipeline f() and g() if x2 is privatized

}

Trivial to extract plenty of data and pipeline parallelism

But what about the effective exploitation of this parallelism?

SSA Seminar – April 2009 3 / 12



Array Data Flow

Coarsening Synchronization/Computation Ratio
x0 = 0;
while (1) {
for (i=0; i<n; i++) {
x1 = Φ(x0, x2);
x2 = f(x1);
a[i] = x2;

}

for (i=0; i<n; i++) // Should align concurrent iterations of f() and g() to exploit locality

g(a[i]);
}

This is not sufficient

x2 is fundamentally a well-behaved (single-assignment) stream of data, not a
random access array with nasty side-effects, and a circular window of size n even less

SSA Seminar – April 2009 4 / 12



Array Data Flow

Synchronization at Merge Point
x0 = 0;
while (1) {
for (i=0; i<n; i++) {
x1 = Φ(x0, x2);
x2 = f(x1);
a[i] = x2;

}
x3 = Φ(x0, x2); // Needed in general if x is live beyond its use in g()

for (i=0; i<n; i++)
g(a[i]);

}

In fact, this is really bad...

Critical issue: sequentialization induced by a scalar Cond-Φ node

SSA Seminar – April 2009 5 / 12



Array Data Flow

Synchronization at Merge Point
x0 = 0;
while (1) {
for (i=0; i<n; i++) {
x1 = Φ(x0, x2); // Loop-Φ node: ‘‘pre’’ operator in the data-flow synchronous language Lustre

x2 = f(x1);
a[i] = x2;

}
x3 = Φ(x0, x2); // Cond-Φ node: ‘‘mux’’ operator of logic circuits

for (i=0; i<n; i++)
g(a[i]);

}

In fact, this is really bad...

Critical issue: sequentialization induced by a scalar Cond-Φ node

Need to distinguish between “pre” and “mux” semantics

An instance of a not-so-well-understood aliasing pitfall in the history of data-flow
computing and parallel functional languages

SSA Seminar – April 2009 6 / 12



Does Polyhedral Compilation Help?

Dynamic Single Assignment
x = 0;
// Peeled one iteration of the global loop

a[0] = f(x);
for (i=1; i<n; i++)
a[i] = f(a[i-1]);

for (i=0; i<n; i++)
g(a[i]);

while (1) {
a[0] = f(a[n-1]);
for (i=1; i<n; i++)
a[i] = f(a[i-1]);

for (i=0; i<n; i++)
g(a[i]);

}

Feautrier’s Array Dataflow Analysis and Array Expansion (ICS’88)
I Static control programs, reaching production with IBM XL (in progress) and GCC 4.4

Beyond static control: Collard, Griebl, Wonnacott, Barthou, Cohen et al. 94–99
I E.g., Maximal Static Expansion (POPL’98), no runtime data-flow recollection overhead
I New results in polyhedral code generation and affine transformation for arbitrary

control flow (intraproc.), but still many complexity issues, submitted for publication

SSA Seminar – April 2009 7 / 12



Data-Flow Computing on Streams

Towards Stream SSA
x0 = 0;
while (1) {
for (i=0; i<n; i++) {
x1 = Φ(x0, x2); // Identical to ‘‘pre’’ in Lustre

x2 = f(x1); // Iterative definition of stream x

}
x3 = Φ(x0, x2); // Pointwise extension of Cond-Φ to streams

for (i=0; i<n; i++)
g(x3); // Iterative use of stream x

}

Aim for a denotational definition: e.g., Pop’s formalism (and distinction between
loop- and merge- Φ nodes)

I Leverage Kahn semantics: continuous functions over the prefix ordering of streams
I Leverage synchronous clocks to establish the pointwise mapping from definitions to

uses of streams, and to generate efficient sequential code from the concurrent
streaming representation: see Lustre and extensions in Lucid Synchrone,
n-synchronous clocks at POPL’06, etc.

SSA Seminar – April 2009 8 / 12



Data-Flow Computing on Streams

Optimizations on Stream SSA
x0 = 0;
// Anticipate computation of f() for latency-hiding

for (i=0; i<n; i++) {
x1 = Φ(x0, x2);
x2 = f(x1); // Sequential execution

}
x3 = Φ(x0, x2);

while (1) { // May require extra ‘‘task’’ decoration to make parallelism explicit

for (i=0; i<n; i++) {
x4 = Φ(x3, x5);
x5 = f(x4); // Sequential execution

}
x6 = Φ(x3, x5);

}

while (1) // May require extra ‘‘task’’ decoration to make parallelism explicit

for (i=0; i<2*n; i++) // Further coarsening for load-balancing purposes

g(x6); // Could be executed in parallel

Express aggressive transformations on data- and pipeline-parallel programs

Serious liveness/boundedness challenges: much to learn from synchronous languages,
with the huge advantage that the original code is causal and has bounded memory!

SSA Seminar – April 2009 9 / 12



Research Directions

Conjecture 1

Stream SSA subsumes SSA for all classical analysis and optimization purposes

Conjecture 2

Stream SSA enables seamless extension of classical optimizations to concurrent programs

(forget about interleaving and memory models... for a moment at least, it strikes back at a lower level)

Conjecture 3

Stream SSA is good enough for common parallelizing compilation purposes

(good = expressive, robust to transformations and complexity-effective)

SSA Seminar – April 2009 10 / 12



Work Program

Define Stream SSA (and name it properly)

Revisit analysis and optimization problems on Stream SSA

Glue it with polyhedral compilation as seamlessly as possible (graceful degradation
of accuracy and aggressiveness)

Implement in GCC (see related projects on OpenMP + streams, Graphite for
polyhedral compilation, and transactional memory support)

SSA Seminar – April 2009 11 / 12



Thank You

SSA Seminar – April 2009 12 / 12


