
What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Fast Liveness Checking for SSA-Form Programs

Benoit Boissinot (LIP), Sebastian Hack (Saarland University),
Daniel Grund (Saarland University),

Benôıt Dupont de Dinechin (STMicro),
Fabrice Rastello (LIP)

Compsys Team
Laboratoire de l’Informatique du Paralllisme (LIP)

cole normale suprieure de Lyon

SSA Seminar, April 29, 2009, Autrans, France

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Outline

1 Liveness checking: what & why

2 Foundations

3 Algorithm

4 Loop Nesting Forest & Depth First Search

5 Experimental Results

6 Conclusion

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Outline

1 Liveness checking: what & why

2 Foundations

3 Algorithm

4 Loop Nesting Forest & Depth First Search

5 Experimental Results

6 Conclusion

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Why do we need liveness analysis?

Resources analysis

Scheduling

Coalescing/Register-allocation

PRE sensitive to register pressure

a =

b =

= a

= b

a

b

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Two approaches

Classical Approach: Liveness Sets (LS)

For every block boundary, the set of all live variables

Expensive precomputation (space & time), fast query

Usually, not all computed information is needed

Adding, (re-)moving instructions ⇒ recompute information

Our Approach: Liveness Checking (LC)

Answer on demand: Is variable live at program point?

Faster precomputation, slower queries

Information depends only on CFG and def-use chains

Information invariant to adding, (re-) moving instructions

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Outline

1 Liveness checking: what & why

2 Foundations

3 Algorithm

4 Loop Nesting Forest & Depth First Search

5 Experimental Results

6 Conclusion

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Foundations

Control Flow Graph

SSA with dominance property

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Liveness

Concept

Defined in the past:
reaching definition

Used in the future:
upward exposed use

Definition (live-in)

A variable a is live-in at a node q
if there exists a path from q to a
node u where a is used and that
path does not contain its
definition d

r=0

1 9

2

5

6

7

8

3

4

x =

= x

1

2

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Liveness

Concept

Defined in the past:
reaching definition

Used in the future:
upward exposed use

Definition (live-in)

A variable a is live-in at a node q
if there exists a path from q to a
node u where a is used and that
path does not contain its
definition d

r=0

1 9

2

5

6

7

8

3

4

x =

= x

1

2

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Liveness

Concept

Defined in the past:
reaching definition

Used in the future:
upward exposed use

Definition (live-in)

A variable a is live-in at a node q
if there exists a path from q to a
node u where a is used and that
path does not contain its
definition d

r=0

1 9

2

5

6

7

8

3

4

x =

= x

1

2

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Liveness

Concept

Defined in the past:
reaching definition

Used in the future:
upward exposed use

Definition (live-in)

A variable a is live-in at a node q
if there exists a path from q to a
node u where a is used and that
path does not contain its
definition d

r=0

1 9

2

5

6

7

8

3

4

x =

= x

1

2

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Liveness

Concept

Defined in the past:
reaching definition

Used in the future:
upward exposed use

Definition (live-in)

A variable a is live-in at a node q
if there exists a path from q to a
node u where a is used and that
path does not contain its
definition d

r=0

1 9

2

5

6

7

8

3

4

x =

= x

1

2

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Liveness

Concept

Defined in the past:
reaching definition

Used in the future:
upward exposed use

Definition (live-in)

A variable a is live-in at a node q
if there exists a path from q to a
node u where a is used and that
path does not contain its
definition d

r=0

1 9

2

5

6

7

8

3

4

x =

= x

1

2

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Liveness

Concept

Defined in the past:
reaching definition

Used in the future:
upward exposed use

Definition (live-in)

A variable a is live-in at a node q
if there exists a path from q to a
node u where a is used and that
path does not contain its
definition d

r=0

1 9

2

5

6

7

8

3

4

x =

= x

1

2

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Liveness

Concept

Defined in the past:
reaching definition

Used in the future:
upward exposed use

Definition (live-in)

A variable a is live-in at a node q
if there exists a path from q to a
node u where a is used and that
path does not contain its
definition d

r=0

1 9

2

5

6

7

8

3

4

x =

= x

1

2

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Liveness

Concept

Defined in the past:
reaching definition

Used in the future:
upward exposed use

Definition (live-in)

A variable a is live-in at a node q
if there exists a path from q to a
node u where a is used and that
path does not contain its
definition d

r=0

1 9

2

5

6

7

8

3

4

x =

= x

1

2

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Liveness

Concept

Defined in the past:
reaching definition

Used in the future:
upward exposed use

Definition (live-in)

A variable a is live-in at a node q
if there exists a path from q to a
node u where a is used and that
path does not contain its
definition d

r=0

1 9

2

5

6

7

8

3

4

x =

= x

1

2

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Liveness

Concept

Defined in the past:
reaching definition

Used in the future:
upward exposed use

Definition (live-in)

A variable a is live-in at a node q
if there exists a path from q to a
node u where a is used and that
path does not contain its
definition d

r=0

1 9

2

5

6

7

8

3

4

x =

= x

1

2

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Liveness

Concept

Defined in the past:
reaching definition

Used in the future:
upward exposed use

Definition (live-in)

A variable a is live-in at a node q
if there exists a path from q to a
node u where a is used and that
path does not contain its
definition d

r=0

1 9

2

5

6

7

8

3

4

x =

= x

1

2

q4

x is not live at q

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Liveness

Concept

Defined in the past:
reaching definition

Used in the future:
upward exposed use

Definition (live-in)

A variable a is live-in at a node q
if there exists a path from q to a
node u where a is used and that
path does not contain its
definition d

r=0

1 9

2

5

6

7

8

3

4

x =

= x

1

2

q8

x is live at q

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Liveness: precomputation versus queries

Classical liveness (data-flow):

Costly precomputation
Almost constant queries

Our solution:

Fast precomputation
Queries almost linear in the number of uses

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Queries

Cycles

0 200 400 600 800 1000
0k

100k

200k

300k

400k

Avg

native
new

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Outline

1 Liveness checking: what & why

2 Foundations

3 Algorithm

4 Loop Nesting Forest & Depth First Search

5 Experimental Results

6 Conclusion

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Principle

Goal:
From all the paths from query to
use, remove those going through
def .

Highest point

Last point of the path such that
all the following points are below.

If the highest point is dominated
by def then the whole path is.

r=0

1def 9

2

5

6

7use

88 query

3

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Principle

Goal:
From all the paths from query to
use, remove those going through
def .

Highest point

Last point of the path such that
all the following points are below.

If the highest point is dominated
by def then the whole path is.

r=0

1def 9

2

5

6

7use

88 query

3

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Principle

Goal:
From all the paths from query to
use, remove those going through
def .

Highest point

Last point of the path such that
all the following points are below.

If the highest point is dominated
by def then the whole path is.

r=0

1def 9

2

5

6

7use

88 query

3

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Principle

For each node q of the CFG,
compute the set of potential
highest points of every path
starting at q.

From this set, remove the
points above def (not
dominated by def).

From the remaining highest
points, test the descending
reachability to use. Example 1

r=0

1def 9

2

5

6

7use

8

33 q

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Principle

For each node q of the CFG,
compute the set of potential
highest points of every path
starting at q.

From this set, remove the
points above def (not
dominated by def).

From the remaining highest
points, test the descending
reachability to use. Example 1

r=0

1def 9

2

5

6

7use

8

33 q

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Principle

For each node q of the CFG,
compute the set of potential
highest points of every path
starting at q.

From this set, remove the
points above def (not
dominated by def).

From the remaining highest
points, test the descending
reachability to use. Example 1

r=0

1def 9

2

5

6

7use

8

33 q

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Principle

For each node q of the CFG,
compute the set of potential
highest points of every path
starting at q.

From this set, remove the
points above def (not
dominated by def).

From the remaining highest
points, test the descending
reachability to use. Example 1

r=0

1def 9

2

5

6

7use

8

33 q

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Principle

For each node q of the CFG,
compute the set of potential
highest points of every path
starting at q.

From this set, remove the
points above def (not
dominated by def).

From the remaining highest
points, test the descending
reachability to use. Example 1

r=0

1def 9

2

5

6

7use

8

33 q

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Principle

For each node q of the CFG,
compute the set of potential
highest points of every path
starting at q.

From this set, remove the
points above def (not
dominated by def).

From the remaining highest
points, test the descending
reachability to use. Example 2

r=0

1def 9

2

5

6

7use

88 q

3

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Principle

For each node q of the CFG,
compute the set of potential
highest points of every path
starting at q.

From this set, remove the
points above def (not
dominated by def).

From the remaining highest
points, test the descending
reachability to use. Example 2

r=0

1def 9

2

5

6

7use

88 q

3

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Principle

For each node q of the CFG,
compute the set of potential
highest points of every path
starting at q.

From this set, remove the
points above def (not
dominated by def).

From the remaining highest
points, test the descending
reachability to use. Example 2

r=0

1def 9

2

5

6

7use

88 q

3

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Principle

For each node q of the CFG,
compute the set of potential
highest points of every path
starting at q.

From this set, remove the
points above def (not
dominated by def).

From the remaining highest
points, test the descending
reachability to use. Example 2

r=0

1def 9

2

5

6

7use

88 q

3

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Principle

For each node q of the CFG,
compute the set of potential
highest points of every path
starting at q.

From this set, remove the
points above def (not
dominated by def).

From the remaining highest
points, test the descending
reachability to use. Example 2

r=0

1def 9

2

5

6

7use

88 q

3

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Principle

For each node q of the CFG,
compute the set of potential
highest points of every path
starting at q.

From this set, remove the
points above def (not
dominated by def).

From the remaining highest
points, test the descending
reachability to use. Example 2

r=0

1def 9

2

5

6

7use

88 q

3

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Principle

For each node q of the CFG,
compute the set of potential
highest points of every path
starting at q.

From this set, remove the
points above def (not
dominated by def).

From the remaining highest
points, test the descending
reachability to use. Example 2

r=0

1def 9

2

5

6

7use

88 q

3

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Algorithm

Precomputation

1 Compute transitive closure on the reduced graph G ′

G ′ = CFG without DFS back edges (cycle-free)
Simple to compute: post-order traversal

2 For each node q compute a set Tq of possible highest points
(back-edge targets)

Also simple to compute: pre-order and post-order traversal

Query

For each use:
For each t ∈ Tq dominated by def :

Test reachability in the reduced graph

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Implementation Tricks

Reachability and Tq can be efficiently implemented as bitsets

For reducible CFGs there is exactly one “highest” back-edge
target

dominates all the other back-edge targets
sufficient to check from there

Hence, order nodes according to dominance
+ “highest” node is first set bit in Tq

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Outline

1 Liveness checking: what & why

2 Foundations

3 Algorithm

4 Loop Nesting Forest & Depth First Search

5 Experimental Results

6 Conclusion

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Loop Nesting Forest

Use the same idea:

Pre-compute reachability

Filter path that does not contain d in constant time

Instead of the highest point, use the loop nesting information to
filter.

Loop nesting forest: recursive definition using decomposition in
Strongly Connected Components (SCC).

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

r=0

1 9

2

5

6

7

8

3

4

Lr

L5

L6

L2

r 1 5 6 7 8 2 3 4 9

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Loop Nesting Forest & Liveness

Theorem (loop-edge free path)

Given d, q, and u such that:

d dominates u

d dominates q

A path from q to u does not
contain d iff it does not contain
any loop-edge of any loop
containing d

r=0

d 9

2

5

6

u

8

q

4

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Algorithm

Pre-computation

Compute reachability in the
following Directed Acyclic Graph
(DAG):

G − {loop-edge}
replace edge a→ b into
edge a→ h (h header of the
largest loop containing b not
a)

Complexity: O(#BB) operations
on bit-sets

Lr

L5

L6

L2

r 1 5 6 7 8 2 3 4 9

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Algorithm

Pre-computation

Compute reachability in the
following Directed Acyclic Graph
(DAG):

G − {loop-edge}
replace edge a→ b into
edge a→ h (h header of the
largest loop containing b not
a)

Complexity: O(#BB) operations
on bit-sets

Lr

L5

L6

L2

r 1 5 6 7 8 2 3 4 9

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Algorithm

Pre-computation

Compute reachability in the
following Directed Acyclic Graph
(DAG):

G − {loop-edge}
replace edge a→ b into
edge a→ h (h header of the
largest loop containing b not
a)

Complexity: O(#BB) operations
on bit-sets

Lr

L5

L6

L2

r 1 5 6 7 8 2 3 4 9

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Algorithm

Pre-computation

Compute reachability in the
following Directed Acyclic Graph
(DAG):

G − {loop-edge}
replace edge a→ b into
edge a→ h (h header of the
largest loop containing b not
a)

Complexity: O(#BB) operations
on bit-sets

Lr

L5

L6

L2

r 1 5 6 7 8 2 3 4 9

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Algorithm

Query (O(#uses) operations on
bit-sets)

For each use u:

h: the largest loop
containing q and not not d

test if u is reachable from h

Lr

L5

L6

L2

r d 5 6 7 u 2 q 4 9

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Algorithm

Query (O(#uses) operations on
bit-sets)

For each use u:

h: the largest loop
containing q and not not d

test if u is reachable from h

Lr

L5

L6

L2

r d 5 6 7 u 2 q 4 9

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Algorithm

Query (O(#uses) operations on
bit-sets)

For each use u:

h: the largest loop
containing q and not not d

test if u is reachable from h

Lr

L5

L6

L2

r d 5 6 7 u 2 q 4 9

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Algorithm

Query (O(#uses) operations on
bit-sets)

For each use u:

h: the largest loop
containing q and not not d

test if u is reachable from h

Lr

L5

L6

L2

r d u 6 7 q 2 3 4 9

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Algorithm

Query (O(#uses) operations on
bit-sets)

For each use u:

h: the largest loop
containing q and not not d

test if u is reachable from h

Lr

L5

L6

L2

r d u 6 7 q 2 3 4 9

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Algorithm

Query (O(#uses) operations on
bit-sets)

For each use u:

h: the largest loop
containing q and not not d

test if u is reachable from h

Lr

L5

L6

L2

r d u 6 7 q 2 3 4 9

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Outline

1 Liveness checking: what & why

2 Foundations

3 Algorithm

4 Loop Nesting Forest & Depth First Search

5 Experimental Results

6 Conclusion

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Evaluation

Setup

Implemented in LAO, code generator developed by
STMicroelectronics

Benchmarked with a subset of SPEC2000 (CINT)

Liveness-analysis used during SSA deconstruction

The main factors influencing the speed of our algorithm are:

the number of uses per variable (#uses)

the number of basic blocks (#BB)

the number of CFG edges (#edges)

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Quantitative Evaluation

of Uses per Variable

Benchmark Maximum % ≤ 1 % ≤ 2 % ≤ 3

164.gzip 51 65.64 86.38 92.81
175.vpr 75 70.36 88.90 93.93
176.gcc 422 73.99 87.81 92.42
181.mcf 46 66.91 83.50 89.33
186.crafty 620 72.98 90.09 93.85
197.parser 96 65.12 86.75 94.26
254.gap 156 70.46 85.95 91.26
255.vortex 254 65.99 90.80 95.02
256.bzip2 36 69.89 89.89 94.47
300.twolf 165 69.71 87.59 93.23

Total 620 71.30 87.85 92.76

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Quantitative Evaluation

of Basic Blocks

Benchmark Average % ≤ 32 % ≤ 64

164.gzip 33.35 69.51 85.36
175.vpr 34.45 68.88 84.44
176.gcc 38.96 72.85 86.03
181.mcf 20.31 84.61 100.00
186.crafty 69.28 59.63 76.14
197.parser 23.60 84.82 93.49
254.gap 32.89 67.60 87.44
255.vortex 26.46 77.57 90.68
256.bzip2 22.97 78.37 91.89
300.twolf 56.97 59.47 77.36

Total 35.21 72.71 87.18

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Runtime Experiments

Speedup

Benchmark Precomputation Queries Both

164.gzip 3.12 0.53 1.16
175.vpr 2.17 0.48 1.41
176.gcc 3.03 0.26 1.00
181.mcf 1.85 0.44 1.39
186.crafty 2.78 0.49 0.73
197.parser 2.13 0.49 1.54
254.gap 3.45 0.52 2.08
255.vortex 1.67 0.45 1.32
256.bzip2 3.45 0.51 2.32
300.twolf 4.76 0.49 1.92

Total 2.94 0.36 1.16

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Bonus: Liveness under SSI

Proof that the interference graph is an interval graph

The linearization of the CFG doesn’t respect the dominance
relation

We can do liveness query in constant time

q included in the interval?

Still not sure of the usefulness of SSI

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Bonus: Liveness under SSI

Proof that the interference graph is an interval graph

The linearization of the CFG doesn’t respect the dominance
relation

We can do liveness query in constant time

q included in the interval?

Still not sure of the usefulness of SSI

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Outline

1 Liveness checking: what & why

2 Foundations

3 Algorithm

4 Loop Nesting Forest & Depth First Search

5 Experimental Results

6 Conclusion

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Contributions

Novel approach for liveness checking relying only on the CFG

Uses information available from the loop nesting forest

Fast construction algorithm

Overall speedup in most cases

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

Future Work

Dynamic update for CFG transformations

Memory efficient reachability

What & Why Foundations Algorithm Loop Nesting Forest Experimental Results Conclusion

The End

Thank you!

My topics of interest

Graph algorithms

CFG properties, dominance/post-dominance

SSI and other SSA extensions

	Liveness checking: what & why
	Foundations
	Algorithm
	Loop Nesting Forest & Depth First Search
	Experimental Results
	Conclusion

