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MotivationsMotivations

� Embedded VLIW processors have architectural constraints
- No out of order support, no full predication, Several functional units
- Need conditional support and compiler techniques to provide aggressive ILP 

� Traditional if-conversion techniques for partial predication:
- Local if-then-else constructs or pattern matching style optimizations.
- Global Hyperblock approach followed by a full predication if-conversion 

algorithm. 
- No “global” framework allowing to extend the ISA set of predicated 

instructions => need a configurable if-conversion algorithm.

� This paper presents :
- A SSA if-conversion algorithm using the “select” instruction and speculation
- An extension to this algorithm to support a configurable set of predicated 

instructions
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IfIf --ConversionConversion

� If-Conversion
- Process to convert a control flow region into a sequence of conditional instructions.

• Remove conditional branches and simplify control flow
• Need architectural support 

- Increase ILP  
- Increase locality
- Some optimisations are more efficient with a single basic block 

• (software pipelining, instruction scheduling)

� Global problem
- Control flow regions can be complex
- Not limited to simple regions (“hammock”) or pattern matching
- Lot of tradoffs
- Limit code size explosion or even reduce it

� Local problem
- Predicate construction and allocation
- Variable renaming
- Predicated instruction constructions 
- Predicated instruction optimizations
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3 types of architectural support3 types of architectural support

“select” if-conv

c = cmp t,0
t = r+1
r = select c,t,r

Partial predication

c = cmp t,0

c ? r = ldw

Full predication

c = cmp t,0

c ? r = r+1 

Example: conditional assignment

� Framework is able to support all or a mix of those architectural supports
- Balance speculation and predication

� Minimum requirement is a form of conditional move and predicate building 
(cmp) and merging (logical and/or)
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IfIf --Conversion (why SSA)Conversion (why SSA)

br if c

l=2
r=l+3

r = 

Q1: which r to use ? 
Q2: what is the best connection to the definition ? (smallest predicate set)
Q3: what are the value that needs to hold predicate ?

Use r
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IfIf --Conversion (why SSA) Conversion (why SSA) 

br if c

l=2
r2=l+3

r=ф(r1,r2)

r1 = 

Q1: which r to use ?
Q2: what is the best connection to the definition ? (smallest predicate set)
Q3: what are the value that needs to hold predicate ?

Use r

A1: SSA does the renaming 
A2: PHI shows variables that are conditional, merge the immediate condition
A3: Only those that have a reaching point. Other a speculated 

br if c

l=2
r=l+3

r = 

Use r
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IfIf --Conversion (why SSA) Conversion (why SSA) 

br if c

l=2
r2=l+3

r=ф(r1,r2)

r1 = 

Use r

r1 depends on TRUE 
predicate

r2 depends on ‘c’

l is not processed: 
speculed

SSA holds (almost) all the information we need
Need a global framework to handle more complex regions
And a phi walking process

br if c

l=2
r=l+3

r = 

Use r
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Local SSA transformations Local SSA transformations 

br if c

r1=s+1 r2=2

r=ф(r1,r2)

r1=s+1
r2=2
r=select c?r1:r2

br if c

r1=s+1 r2=2

r=ф(r1,r2,r3)

r1=s+1
r2=2
r4=select c?r1:r2

r=ф(r4,r3)

r1=s+1 r3=ф(r2,r4,r5)

r=ф(r1,r3)

r2=2

ф removal ф reduction ф augmentation

br if c

r1=s+1 r3=ф(r4,r5)

t=ф(r1,r6,r3)

r2=2
r6=r2

br if c
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Local SSA transformationLocal SSA transformation
(predicate merging)(predicate merging)

br if c

r1=s+1
br if c2

r2=2

r=ф(r1,r2)

c=c1&c2
br if c

r2=2

r=ф(r1,r2)

r1=s+1

Costs !

One predicate 
register

One extra op in 
critical path

Higher dependence 
height

c=c1&c2
r1=s+1
r2=2
r=select c?r1,r2

ф removal
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IFCIFC--SSA Global Framework SSA Global Framework 

� A set of transformations are applied iteratively in postorder on the 
CFG

- Considered regions are group of basic blocks with a single conditional entry 
- Blocks reached on multiple conditions are detected (predicate merge)
- Side entries can be removed using block duplication

� While the region grows, when do we stop ?
- Decision to continue reconsidered at each iteration based on cost functions 

and static information
- Decision to continue until all instructions from the candidate region can be 

removed, speculated or predicated
- Objective function is local so easy to compute

• whole don’t exceed the sum of the parts

- Stop on hazardeous instructions (generally)
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IFCIFC--SSA running SSA running exampleexample
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Region processed in postorder : BB4, BB2, BB1
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SSA for partial predication

� Problem: transforming ф into select was realizing join points
- Need to relink select into the equivalent predicated instructions
- Principle: Transforms speculation into predication

t=test1
br<t>

P=test2
r1=ldw
r2=sub
s=select p?r1:r2

r3=add

r=ф(s,r3)
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SSA for partial predication

� Problem: transforming ф into select was realizing join points
- Need to relink select into the equivalent predicated instructions
- Principle: Transforms speculation into predication

� Not very convenient: Not SSA anymore. 
- Predication introduced a renaming problem. 
- Need to keep the select form and add a new speculation->predication pass after out-of-ssa

• Breaks objective function and incompatible with SSA code generator
- Or generate directly an extended SSA for predication (current implementation uses ψ-ssa)

t=test1
br<t>

r3=add

r=ф(s,r3)

P=test2
P  ? s=ldw
!p ? s=sub

t=test1
br<t>

r3=add

r=ф(s,r3)

P=test2
r1=ldw
r2=sub
s=select p?r1,r2
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SSA for partial predication – predicate construction

� Nested predicates are automatically supported by select speculation – like any other 
instruction

- Predicate are handled has data operand dependency
� Predicated version even more difficult to express fully in SSA
� Need to express SSA renaming with “speculated merging points”

- And after SSA complicated renaming
- Let SSA do it with an extension

t=test1
P=test2
r1=ldw
r2=sub
s=select p?r1,r2
r3=add
r=select t?s,r3

t=test1
p=test2

p&t ? r=ldw
!p&t? r=sub
!t    r=add

t=test1
p=test2

p&t  ? r1=ldw
!p&t ? r2=sub

s=select p ?r1,r2
!t    r3=add

r=select t? s,r3   

r1 is defined on ‘p’ and r2 is defined 
on !p -> coalesced, can be renamed

s is defined for ‘t’, r3 defined on ‘!t’
-> can be renamed 
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StatusStatus

� Implemented for 3 kinds of conditional instructions support
- ST231 speculative model

• 4 issue VLIW (4 32 bit ALUs, 2 multipliers, 1 load store, 64 x 32 bit registers
• “select” instruction, 8 1 bit branch registers, Wired and/or instructions 
• Speculative loads using static analysis or “dismissible load”
• Speculative stores using compiler generated dummy stack slots

- ST240 Predicated variant using predicated loads and stores
- Internal experimental core with fully predicated ISA

� Implemented in the production C/C++ Open64 code generator
- After middle end optimizations and code selection
- Before loop unrolling, local and global schedulings

� Further possible improvements
- Allow multiple exits regions -> efficient region selection
- Add backedge coalescing to improve if-converted loop bodies
- Improve scalar optimisations on predicated instructions
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ResultsResults

� Bench set with MIBENCH and SPEC 2000 
� No code size bloat. (or even decrease)
� Select speculated model: 

- 23 % geometrical mean for multimedia applications 
- (~3% for scalar applications)

� Partially Predicated model with ψ SSA:
- 25 % geometrical mean for multimedia applications

� wc.c: only one back edge branch remaining. 
- Static schedule loop into a single basic block.
- 31 cycles -> 23 cycles
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ConclusionConclusion

� Performance experience
- Fitness to resources availability

• Objective function very easy to compute locally
• The if-converted region cost doesn’t exceed the sum of the parts ponderated by edge frequencies

- Dynamically adapt to speculated or predicated model when alternative possible
- Speculation shows more efficient than predication due to 

• Smaller dependence height
• Predication need many predicate registers (while speculation needs more general registers)
• But predication increases the set of if-converted regions (alleviate hazards)

� SSA naturally sets the environment for if-conversion analysis
- Need to be maintained to be used incrementally
- Nested conditionalized can be refeeded to the process

� Speculated model
- We enter in strict SSA form and produces strict SSA 
- Conditional instructions are realized into a select instruction

� Predicated model
- Enter in strict SSA form and produces extended (ψ) SSA or strict SSA+select (need post SSA transformations)

� Papers: 
- If-Conversion SSA framework for partially predicated VLIW architectures – C.Bruel

CGO – ODES-04 : Workshop on Optimizations for DSP and Embedded Systems
- If-Conversion for Embedded VLIW Atchitectures – C.Bruel

• IJES - International Journal of Embedded Systems. To be published
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ThanksThanks

� Thanks to Christophe Guillon and Francois de Ferriere for their 
feedbacks, suggestions and (sometime) bug reports.

� Questions ?


