
If-Conversion
SSA Framework and

Transformations

SSA’09

Christian Bruel
29 April 2009

SSA 09 - Autrans

MotivationsMotivations

� Embedded VLIW processors have architectural constraints
- No out of order support, no full predication, Several functional units
- Need conditional support and compiler techniques to provide aggressive ILP

� Traditional if-conversion techniques for partial predication:
- Local if-then-else constructs or pattern matching style optimizations.
- Global Hyperblock approach followed by a full predication if-conversion

algorithm.
- No “global” framework allowing to extend the ISA set of predicated

instructions => need a configurable if-conversion algorithm.

� This paper presents :
- A SSA if-conversion algorithm using the “select” instruction and speculation
- An extension to this algorithm to support a configurable set of predicated

instructions

SSA 09 - Autrans

IfIf --ConversionConversion

� If-Conversion
- Process to convert a control flow region into a sequence of conditional instructions.

• Remove conditional branches and simplify control flow
• Need architectural support

- Increase ILP
- Increase locality
- Some optimisations are more efficient with a single basic block

• (software pipelining, instruction scheduling)

� Global problem
- Control flow regions can be complex
- Not limited to simple regions (“hammock”) or pattern matching
- Lot of tradoffs
- Limit code size explosion or even reduce it

� Local problem
- Predicate construction and allocation
- Variable renaming
- Predicated instruction constructions
- Predicated instruction optimizations

SSA 09 - Autrans

3 types of architectural support3 types of architectural support

“select” if-conv

c = cmp t,0
t = r+1
r = select c,t,r

Partial predication

c = cmp t,0

c ? r = ldw

Full predication

c = cmp t,0

c ? r = r+1

Example: conditional assignment

� Framework is able to support all or a mix of those architectural supports
- Balance speculation and predication

� Minimum requirement is a form of conditional move and predicate building
(cmp) and merging (logical and/or)

SSA 09 - Autrans

IfIf --Conversion (why SSA)Conversion (why SSA)

br if c

l=2
r=l+3

r =

Q1: which r to use ?
Q2: what is the best connection to the definition ? (smallest predicate set)
Q3: what are the value that needs to hold predicate ?

Use r

SSA 09 - Autrans

IfIf --Conversion (why SSA) Conversion (why SSA)

br if c

l=2
r2=l+3

r=ф(r1,r2)

r1 =

Q1: which r to use ?
Q2: what is the best connection to the definition ? (smallest predicate set)
Q3: what are the value that needs to hold predicate ?

Use r

A1: SSA does the renaming
A2: PHI shows variables that are conditional, merge the immediate condition
A3: Only those that have a reaching point. Other a speculated

br if c

l=2
r=l+3

r =

Use r

SSA 09 - Autrans

IfIf --Conversion (why SSA) Conversion (why SSA)

br if c

l=2
r2=l+3

r=ф(r1,r2)

r1 =

Use r

r1 depends on TRUE
predicate

r2 depends on ‘c’

l is not processed:
speculed

SSA holds (almost) all the information we need
Need a global framework to handle more complex regions
And a phi walking process

br if c

l=2
r=l+3

r =

Use r

SSA 09 - Autrans

Local SSA transformations Local SSA transformations

br if c

r1=s+1 r2=2

r=ф(r1,r2)

r1=s+1
r2=2
r=select c?r1:r2

br if c

r1=s+1 r2=2

r=ф(r1,r2,r3)

r1=s+1
r2=2
r4=select c?r1:r2

r=ф(r4,r3)

r1=s+1 r3=ф(r2,r4,r5)

r=ф(r1,r3)

r2=2

ф removal ф reduction ф augmentation

br if c

r1=s+1 r3=ф(r4,r5)

t=ф(r1,r6,r3)

r2=2
r6=r2

br if c

SSA 09 - Autrans

Local SSA transformationLocal SSA transformation
(predicate merging)(predicate merging)

br if c

r1=s+1
br if c2

r2=2

r=ф(r1,r2)

c=c1&c2
br if c

r2=2

r=ф(r1,r2)

r1=s+1

Costs !

One predicate
register

One extra op in
critical path

Higher dependence
height

c=c1&c2
r1=s+1
r2=2
r=select c?r1,r2

ф removal

SSA 09 - Autrans

IFCIFC--SSA Global Framework SSA Global Framework

� A set of transformations are applied iteratively in postorder on the
CFG

- Considered regions are group of basic blocks with a single conditional entry
- Blocks reached on multiple conditions are detected (predicate merge)
- Side entries can be removed using block duplication

� While the region grows, when do we stop ?
- Decision to continue reconsidered at each iteration based on cost functions

and static information
- Decision to continue until all instructions from the candidate region can be

removed, speculated or predicated
- Objective function is local so easy to compute

• whole don’t exceed the sum of the parts

- Stop on hazardeous instructions (generally)

SSA 09 - Autrans

IFCIFC--SSA running SSA running exampleexample

BB1

BB2

BB4

BB5

BB6

BB3

BB1

BB2

BB4

BB5

BB6

BB3

BB1

BB2

BB4

BB5

BB6

BB3

BB1

BB2

BB4

BB5

BB6

BB3

Region processed in postorder : BB4, BB2, BB1

SSA 09 - Autrans

SSA for partial predication

� Problem: transforming ф into select was realizing join points
- Need to relink select into the equivalent predicated instructions
- Principle: Transforms speculation into predication

t=test1
br<t>

P=test2
r1=ldw
r2=sub
s=select p?r1:r2

r3=add

r=ф(s,r3)

SSA 09 - Autrans

SSA for partial predication

� Problem: transforming ф into select was realizing join points
- Need to relink select into the equivalent predicated instructions
- Principle: Transforms speculation into predication

� Not very convenient: Not SSA anymore.
- Predication introduced a renaming problem.
- Need to keep the select form and add a new speculation->predication pass after out-of-ssa

• Breaks objective function and incompatible with SSA code generator
- Or generate directly an extended SSA for predication (current implementation uses ψ-ssa)

t=test1
br<t>

r3=add

r=ф(s,r3)

P=test2
P ? s=ldw
!p ? s=sub

t=test1
br<t>

r3=add

r=ф(s,r3)

P=test2
r1=ldw
r2=sub
s=select p?r1,r2

SSA 09 - Autrans

SSA for partial predication – predicate construction

� Nested predicates are automatically supported by select speculation – like any other
instruction

- Predicate are handled has data operand dependency
� Predicated version even more difficult to express fully in SSA
� Need to express SSA renaming with “speculated merging points”

- And after SSA complicated renaming
- Let SSA do it with an extension

t=test1
P=test2
r1=ldw
r2=sub
s=select p?r1,r2
r3=add
r=select t?s,r3

t=test1
p=test2

p&t ? r=ldw
!p&t? r=sub
!t r=add

t=test1
p=test2

p&t ? r1=ldw
!p&t ? r2=sub

s=select p ?r1,r2
!t r3=add

r=select t? s,r3

r1 is defined on ‘p’ and r2 is defined
on !p -> coalesced, can be renamed

s is defined for ‘t’, r3 defined on ‘!t’
-> can be renamed

SSA 09 - Autrans

StatusStatus

� Implemented for 3 kinds of conditional instructions support
- ST231 speculative model

• 4 issue VLIW (4 32 bit ALUs, 2 multipliers, 1 load store, 64 x 32 bit registers
• “select” instruction, 8 1 bit branch registers, Wired and/or instructions
• Speculative loads using static analysis or “dismissible load”
• Speculative stores using compiler generated dummy stack slots

- ST240 Predicated variant using predicated loads and stores
- Internal experimental core with fully predicated ISA

� Implemented in the production C/C++ Open64 code generator
- After middle end optimizations and code selection
- Before loop unrolling, local and global schedulings

� Further possible improvements
- Allow multiple exits regions -> efficient region selection
- Add backedge coalescing to improve if-converted loop bodies
- Improve scalar optimisations on predicated instructions

SSA 09 - Autrans

ResultsResults

� Bench set with MIBENCH and SPEC 2000
� No code size bloat. (or even decrease)
� Select speculated model:

- 23 % geometrical mean for multimedia applications
- (~3% for scalar applications)

� Partially Predicated model with ψ SSA:
- 25 % geometrical mean for multimedia applications

� wc.c: only one back edge branch remaining.
- Static schedule loop into a single basic block.
- 31 cycles -> 23 cycles

SSA 09 - Autrans

ConclusionConclusion

� Performance experience
- Fitness to resources availability

• Objective function very easy to compute locally
• The if-converted region cost doesn’t exceed the sum of the parts ponderated by edge frequencies

- Dynamically adapt to speculated or predicated model when alternative possible
- Speculation shows more efficient than predication due to

• Smaller dependence height
• Predication need many predicate registers (while speculation needs more general registers)
• But predication increases the set of if-converted regions (alleviate hazards)

� SSA naturally sets the environment for if-conversion analysis
- Need to be maintained to be used incrementally
- Nested conditionalized can be refeeded to the process

� Speculated model
- We enter in strict SSA form and produces strict SSA
- Conditional instructions are realized into a select instruction

� Predicated model
- Enter in strict SSA form and produces extended (ψ) SSA or strict SSA+select (need post SSA transformations)

� Papers:
- If-Conversion SSA framework for partially predicated VLIW architectures – C.Bruel

CGO – ODES-04 : Workshop on Optimizations for DSP and Embedded Systems
- If-Conversion for Embedded VLIW Atchitectures – C.Bruel

• IJES - International Journal of Embedded Systems. To be published

SSA 09 - Autrans

ThanksThanks

� Thanks to Christophe Guillon and Francois de Ferriere for their
feedbacks, suggestions and (sometime) bug reports.

� Questions ?

