SSA representatld"n
for

redicated Code1 ke

Francois de Ferriere

SSAFor PredlcatedCode =
 What is different with predicated code
e An extension to SSA for predicated code

e Going out-of-SSA requires additional work

e Conclusion

[’II SSA Seminar 09 - Autrans JZ

[T |
A how

A 4l

j Why predlcated cé&ﬁe UnderfSSA

L1 =

 Internal representation is at target instruction level

e QOur target processors have full or partial support for
predication

e Some optimizations can generate predicated code

— Code selection
— Peephole transformations
— If-conversion algorithm

 We need SSA for various optimizations
— Value-range analysis
— Target specific optimizations
— If-conversion

‘y,, SSA Seminar 09 - Autrans -“3

!."I1 ‘rl N ‘:.;;- ,‘_ JI.I & e ‘
bk AT L
ort for oreclicatior
i *;‘z-_ !:‘ff{ y - ""l =

Differsi [2vels of sugg

 Asel ect instruction
— But this not really predicated code

a =1load @..
b = add ...
c =select p?a: b
* Only MOV instructions are predicated
a =1load @..
b = add ...
p? ¢ = a
Ip? ¢ = Db
e Most instructions are predicated
p? ¢c = load @..
p? ¢ = add ...

‘ ’ l/ SSA Seminar 09 - Autrans i f_,.d-;;;...‘.].--n-.m-..-;.h

Jn

h'—' predlcaTEd code >

T ﬁf}

e A use may refer to several optional definitions :

a =1load @.. a, = load @. .
b =0 b, =0

p? a =20 p? a, = 0

p? b = a p? b, = a,or a;

Ip? a = Db | p? a; = b, or b,
Non SSA form SSA form

— When definitions are renamed, how to rename uses ?

‘ ’ l/ SSA Seminar 09 - Autrans ,.,_._».-"'“'""'"-""""""";""""F
s 5

'1“. A .-_~.._'
t ' | [}

X B e

A\ L8

&

Wit 5 eliifsrsme with o

 First solution: no renaming of predicated

definitions

— Variables defined on predicated operations are not
renamed into SSA variables

radiczed cods (o)

a =load @..

b =0
p? a = 0
p? b = a
Ip? a =Db

— This may have a large impact even if predication is
used on a few Iinstructions

‘ y I/ SSA Seminar 09 - Autrans JG

3 I’ O

l |
]

'Q-c M q »
\ "5-. {" ;#1' i

e Second solution: Add an implicit use on
predicated instructions

f tht is dn‘ferent Witzh__ﬁl"r'edlcated(‘ @de (Cont d)

a, = load @..
b, =0
p? a, = 0[, a]
p? b, = a,[, b]
I p? a3 = by, a,]

— Non-predicated definitions/uses can still benefit from
the SSA form

— This Is a significant modification in the intermediate
representation

— Predicated code is still difficult to analyze/optimize

‘y’ SSA Seminar 09 - Autrans ,,.,_-:-*"'“"-":"'mm;'m

o A WL . T iy -'. ¥
; 0 I
I t s G ._r:__. B

: Wha{t ISidifierent With'F

‘ébﬂcated(é‘éde (Cont d)

- f -
-—','_. ;) 'l(H 'f' q
\ .! "==e:_""" 1».. Ly }J? .Y

 Third solution: A sel ect Instruction is used to
express the semantics of a predlcated definition

577

a, = load @.
p? a, = 0

a; = select p ? a, : a,
p? b, = a,

b, = select p ? b, : b,
I p? a, = b,

a. = select I'p ? a, : a;

— Only one instruction is added in the intermediate

representation

— Peephole optimizations on the sel ect instruction can

be used to optimize predicated code

SSA Seminar 09 - Autrans

i i e

‘.. I-I i
s o Ry '
L %

* A new pseudo instruction :

p? a, = load @.. p? a, = load @..
lp? a, = add ... | p? a, = add ...
a; = select p ? a; : a, a; = y(p?a,,!p?a,)
:a3 :a3

e Generalization of the semantics of a sel ect instruction

— 1, 2 or more arguments
— Each argument has an associated predicate

— The result is the value of the rightmost argument whose predicate
Is TRUE at execution time.

— The predicates need not be disjoint
— The order of the arguments is significant

» A predicated definition can be used in several | operations

‘y’ SSA Seminar 09 - Autrans I,.._-_—r"'“"-":'-""mm;'m

e A { Instruction is a regular instruction
— It is not different from any other instructions in the intermediate
representation

— It has a simple semantics, without side effects

— There is no restriction on the variable defined on a instruction, in
particular it can be used in ® operations

 Predicated definitions are now real definitions

— For SSA analysis and optimizations, a variable defined on a
predicated operation is an unconditional definition

— Predicated instructions can be moved with the same rules as non-
predicated ones
e By construction, uses of a predicated definition will only
occur in ¢ instructions

K’I// SSA Seminar 09 - Autrans P e

10

[1

Praclicatac cocla o) szsily b optimized

. ol
- i X - '
— 4, i

- b, -0

e Local analysis and transformations on
operations are enough to optimize predicated

code
a, = load @..
b, = 0
p? a, = 0
a; = y(1?a,, p?a,)
p? b, = a,
b; = ¥(1?b;, p?b,)
' p? a, = b;
as = v(1?a,, p?a,, ! p?a,)

R

SSA Seminar 09 - Autrans e

4

¥/ Pars
‘l' Jlli .I..I ‘.I _I i

Bradicaiad] ol Ca

Ry 4 I

sily ve optimized

e Local analysis and transformations on
operations are enough to optimize predicated

code
a, = load @.. b, = 0
b, =0 p? a, = 0
p? a, = 0 ag = U(p?a,)
a, = y(1?a,, p?a,) N\ p?2 b, = a,
as = U(p?a,) / b, = u(!p?b,)
p? b, = a, lp? a, = b,
b; = ¥(1?b,, p?b,) a, = y(p?a,, ! p?a,)
b, = (! p?b,)
I p? a, = by
as = y(1l?a,, p?a,, ! p?a,)
a, = v(p?a,, ! p?a,)

R

SSA Seminar 09 - Autrans e

<

= !: }I ..: . 1 /
P_redi_cated cocla ez

B

x . ._.a'qu_
T
= YR, FlreoF

e Local analysis and transformations on
operations are enough to optimize predicated

5ily 0 ooiimizad
) H‘J L e ,:.:.] s e

code
a, = load @.. b, =0
b, =0 p? a, = 0
p? a, = 0 ag = Y(p?a,)
a; = v(1?ay, p?a,) N p? b, = a,
a, = Y(p?ay) / b, = y(!p?by)
p? b, = a, l p? a, = b,
b; = ¥(1?b;, p?b,) a; = v(p?a,, ! p?a,)
b, = u(!p?by)
2 a, = b, 4l
as = y(1l?a,, p?a,, ! p?a,) b, =0
a; = y(p?a, ! p?a,) a; =0

R

SSA Seminar 09 - Autrans e

)

N

. .

= ..:_._:_H.%
._H\
S .
i, !
B,

l\l‘ b
i
""f-?;:'ﬁ.*. clel=
e LY

 When going out of SSA, | operations are similar
to ® operations

e Simple elimination

— A ¢ operation can be replaced by predicated copies for
each of its arguments.

— But the resulting predicated copies will not be easily
coalesced

e Optimized elimination

— Interferences between arguments in | operations are
analyzed

— A predicate query system is used to eliminate false
Interferences between definitions on disjoint predicates

KYI SSA Seminar 09 - Autrans

14

G oine Our of S requ'lres aicleitic
- (Contle) o &

LA

* Needs to restore the semantics of the Psi for non-disjoint
predicates
« The order of the definitions may have to be repaired
e Speculation may require predicated copies

| n? =
Ip? a, = add ... P az_add...
- a, = load @..
a, = load @.. >|p')a = a
a. = ?a,, ! p?a T v
3 :d;(3p 1 ! p?ay) a, = y(1?a,,!p?a,)
:a3

* Then, the elimination of the Psi is a coalescing problem
« Similar to coalescing on Phi operations
* Done at the same time as elimination of PHI

‘y’ SSA Seminar 09 - Autrans r,,.,_-:-*"'“"-":'"""m-";'m
s 15

 This SSA extension for predicated code Is easy to_
Implement on top of an SSA representation

e There Is no penalty if no predicated operation

|t gives more flexibility in optimization ordering

— Optimizations that generates predicated code can be
performed before going in SSA or directly on the SSA
representation

o Standard SSA algorithms are easy to adapt to this
SSA extension

e Optimization of predicated code is simple under
this representation

‘YI SSA Seminar 09 - Autrans

16

- e
- et :{.{‘i
_otC S L e W e T

Mors o SSA for gradicaiad coda

e Two publications describe the Psi-SSA
representation:

— “Efficient static single assignment form for predication”
A.Stouchinin, F. de Ferriere - Micro-34

— “Improvements to the Psi-SSA Representation”
F. de Ferriere — Scopes 2007

‘ ’ l SSA Seminar 09 - Autrans H,.,_.;.-"'“"'"'""""""""'""""P
II'IIII.": 17

