
April 29th, 2009

An extension to the
SSA representation

for predicated code

François de Ferrière

2
SSA Seminar 09 - Autrans

SSA For Predicated CodeSSA For Predicated Code

• What is different with predicated code

• An extension to SSA for predicated code

• Going out-of-SSA requires additional work

• Conclusion

3
SSA Seminar 09 - Autrans

Why predicated code under SSAWhy predicated code under SSA

• Internal representation is at target instruction level
• Our target processors have full or partial support for

predication
• Some optimizations can generate predicated code

– Code selection
– Peephole transformations
– If-conversion algorithm

• We need SSA for various optimizations
– Value-range analysis
– Target specific optimizations
– If-conversion

4
SSA Seminar 09 - Autrans

Different levels of support for predicationDifferent levels of support for predication

• A select instruction
– But this not really predicated code

• Only MOV instructions are predicated

• Most instructions are predicated

a = load @...
b = add ...
c = select p ? a : b

a = load @...
b = add ...

p? c = a
!p? c = b

p? c = load @...
!p? c = add ...

5
SSA Seminar 09 - Autrans

What is different with predicated codeWhat is different with predicated code

• A use may refer to several optional definitions :

– When definitions are renamed, how to rename uses ?

a1 = load @...
b1 = 0

p? a2 = 0
p? b2 = a2 or a1
!p? a3 = b2 or b1

SSA form

a = load @...
b = 0

p? a = 0
p? b = a
!p? a = b

Non SSA form

6
SSA Seminar 09 - Autrans

What is different with predicated code (Cont’d)What is different with predicated code (Cont’d)

• First solution: no renaming of predicated
definitions
– Variables defined on predicated operations are not

renamed into SSA variables

– This may have a large impact even if predication is
used on a few instructions

a = load @...
b = 0

p? a = 0
p? b = a
!p? a = b

7
SSA Seminar 09 - Autrans

What is different with predicated code (Cont’d)What is different with predicated code (Cont’d)

• Second solution: Add an implicit use on
predicated instructions

– Non-predicated definitions/uses can still benefit from
the SSA form

– This is a significant modification in the intermediate
representation

– Predicated code is still difficult to analyze/optimize

a1 = load @...
b1 = 0

p? a2 = 0[,a1]
p? b2 = a2[,b1]
!p? a3 = b2[,a2]

8
SSA Seminar 09 - Autrans

What is different with predicated code (Cont’d)What is different with predicated code (Cont’d)

• Third solution: A select instruction is used to
express the semantics of a predicated definition

– Only one instruction is added in the intermediate
representation

– Peephole optimizations on the select instruction can
be used to optimize predicated code

a1 = load @...
b1 = 0

p? a2 = 0
a3 = select p ? a2 : a1

p? b2 = a3
b3 = select p ? b2 : b1

!p? a4 = b3
a5 = select !p ? a4 : a3

9
SSA Seminar 09 - Autrans

An extension to SSA for predicated codeAn extension to SSA for predicated code

• A new pseudo instruction : ψ

• Generalization of the semantics of a select instruction
– 1, 2 or more arguments
– Each argument has an associated predicate
– The result is the value of the rightmost argument whose predicate

is TRUE at execution time.
– The predicates need not be disjoint
– The order of the arguments is significant

• A predicated definition can be used in several ψ operations

p? a1 = load @...
!p? a2 = add ...

a3 = select p ? a1 : a2
= a3

p? a1 = load @...
!p? a2 = add ...

a3 = ψ(p?a1,!p?a2)
= a3

10
SSA Seminar 09 - Autrans

This is still standard SSAThis is still standard SSA

• A ψ instruction is a regular instruction
– It is not different from any other instructions in the intermediate

representation
– It has a simple semantics, without side effects
– There is no restriction on the variable defined on a ψ instruction, in

particular it can be used in Φ operations

• Predicated definitions are now real definitions
– For SSA analysis and optimizations, a variable defined on a

predicated operation is an unconditional definition
– Predicated instructions can be moved with the same rules as non-

predicated ones

• By construction, uses of a predicated definition will only
occur in ψ instructions

11
SSA Seminar 09 - Autrans

Predicated code can easily be optimizedPredicated code can easily be optimized

• Local analysis and transformations on ψ
operations are enough to optimize predicated
code
a1 = load @...
b1 = 0

p? a2 = 0
a3 = ψ(1?a1,p?a2)

p? b2 = a3
b3 = ψ(1?b1,p?b2)

!p? a4 = b3
a5 = ψ(1?a1,p?a2,!p?a4)

12
SSA Seminar 09 - Autrans

Predicated code can easily be optimizedPredicated code can easily be optimized

• Local analysis and transformations on ψ
operations are enough to optimize predicated
code
a1 = load @...
b1 = 0

p? a2 = 0
a3 = ψ(1?a1,p?a2)
a6 = ψ(p?a2)

p? b2 = a3
b3 = ψ(1?b1,p?b2)
b4 = ψ(!p?b1)

!p? a4 = b3
a5 = ψ(1?a1,p?a2,!p?a4)
a7 = ψ(p?a2,!p?a4)

b1 = 0
p? a2 = 0

a6 = ψ(p?a2)
p? b2 = a6

b4 = ψ(!p?b1)
!p? a4 = b4

a7 = ψ(p?a2,!p?a4)

13
SSA Seminar 09 - Autrans

Predicated code can easily be optimizedPredicated code can easily be optimized

• Local analysis and transformations on ψ
operations are enough to optimize predicated
code
a1 = load @...
b1 = 0

p? a2 = 0
a3 = ψ(1?a1,p?a2)
a6 = ψ(p?a2)

p? b2 = a3
b3 = ψ(1?b1,p?b2)
b4 = ψ(!p?b1)

!p? a4 = b3
a5 = ψ(1?a1,p?a2,!p?a4)
a7 = ψ(p?a2,!p?a4)

b1 = 0
p? a2 = 0

a6 = ψ(p?a2)
p? b2 = a6

b4 = ψ(!p?b1)
!p? a4 = b4

a7 = ψ(p?a2,!p?a4)

b4 = 0
a7 = 0

14
SSA Seminar 09 - Autrans

Going out of SSA requires additional workGoing out of SSA requires additional work

• When going out of SSA, ψ operations are similar
to Φ operations

• Simple elimination
– A ψ operation can be replaced by predicated copies for

each of its arguments.
– But the resulting predicated copies will not be easily

coalesced

• Optimized elimination
– Interferences between arguments in ψ operations are

analyzed
– A predicate query system is used to eliminate false

interferences between definitions on disjoint predicates

15
SSA Seminar 09 - Autrans

Going out of SSA requires additional work
(Cont’d)
Going out of SSA requires additional work
(Cont’d)

• Needs to restore the semantics of the Psi for non-disjoint
predicates
• The order of the definitions may have to be repaired

• Speculation may require predicated copies

• Then, the elimination of the Psi is a coalescing problem
• Similar to coalescing on Phi operations

• Done at the same time as elimination of PHI

!p? a2 = add ...
a1 = load @...
a3 = ψ(p?a1,!p?a2)

= a3

!p? a2 = add ...
a1 = load @...

!p? a4 = a2
a3 = ψ(1?a1,!p?a2)

= a3

!p? a2 = add ...
a1 = load @...

!p? a4 = a2
a3 = ψ(1?a1,!p?a2)

= a3

!p? a2 = add ...
a1 = load @...

!p? a4 = a2
a3 = ψ(1?a1,!p?a2)

= a3

!p? a2 = add ...
a1 = load @...
a3 = ψ(p?a1,!p?a2)

= a3

16
SSA Seminar 09 - Autrans

ConclusionConclusion

• This SSA extension for predicated code is easy to
implement on top of an SSA representation

• There is no penalty if no predicated operation
• It gives more flexibility in optimization ordering

– Optimizations that generates predicated code can be
performed before going in SSA or directly on the SSA
representation

• Standard SSA algorithms are easy to adapt to this
SSA extension

• Optimization of predicated code is simple under
this representation

17
SSA Seminar 09 - Autrans

More on SSA for predicated codeMore on SSA for predicated code

• Two publications describe the Psi-SSA
representation:

– “Efficient static single assignment form for predication”
A.Stouchinin, F. de Ferrière - Micro-34

– “Improvements to the Psi-SSA Representation”
F. de Ferrière – Scopes 2007

