
Register Allocation by
 Puzzle Solving

Fernando M Q Pereira
Jens Palsberg

UCLA
University of California, Los Angeles

Presented at PLDI 2008

Call for papers and participation

• Jul 15, 2009: POPL submission deadline
– Principles of Programming Languages
– POPL will be in Madrid, Jan 20-22, 2010

• Aug 9-15, 2009 at UCLA:
– LICS, IEEE Logic in Computer Science
– SAS, Static Analysis Symposium
– Six workshops

Three messages

• SSA-based register allocation for x86

• Register allocation = solving puzzles

• Split live ranges everywhere!

A compiler

source language

intermediate representation

machine code

parser

code generator

A better compiler

source language

intermediate representation

machine code

parser

code generator with a
register allocator

What is register allocation?

A = 10
B = 20
C = A + 30
Print C + 40 + B

Assume we have
two registers

Reg. allocation = liveness analysis + graph coloring

A = 10

B = 20

C = A + 30

Print C + 40 + B

A

B,A

B,C
A B C

Interference graph:

With colors:

A B C

After register allocation

A = 10
B = 20
C = A + 30
Print C + 40 + B A B C

R1 = 10
R2 = 20
R1 = R1 + 30
Print R1 + 40 + R2

Many models of register allocation

• Graph coloring
– George & Appel TOPLAS ‘96, iterated register coalescing
– Smith, Ramsey & Holloway, PLDI ‘04, aliased registers

• Linear scan
– Poletto & Sarkar TOPLAS ‘99, excellent for JIT compilers

• Integer linear programming
– Appel & George PLDI ‘01, optimal spilling

• Partitioned Boolean quadratic programming
– Scholz & Eckstein SCOPES ‘02, optimal spilling

• Multi-commodity network flow
– Koes & Goldstein PLDI ‘06, iterative within a time budget

Complications

• Spill: If there are not enough registers, then
represent the remaining variables in memory

• Coalesce: For an assignment x=y, try to map x,y
to the same register

• Live-range splitting: Enable a variable to some
times be in a register and some times in memory

• Pre-coloring: some instructions require it

• Register aliasing and pairing: found on
x86, ARM, SPARC V8+V9, etc

• Rematerialization: don’t store, recompute!

SSA to the rescue

• Theorem: a program in strict SSA form has a
chordal interference graph

• Enables two-phase register allocation:
1. Spilling
2. Coloring and coalescing
Goal of spilling: make

need-for-registers ≤ # registers

• If all the registers have the same size, then
need-for-registers = size(largest clique)

Comparison

Code
Quality

Complexity
of Register
Allocator

Iterated
Register

Coalescing

Linear
Scan

SSA
based

Simple and Good!

Our goal

• Our goal: implement two-phase register
allocation for x86 and handle pre-coloring,
and register aliasing and pairing

• Problem 1: with pre-coloring,
computing need-for-registers is
NP-complete for unit interval graphs
[Marx, 2006]

• Problem 2: with register aliasing and
pairing, computing need-for-registers is
NP-complete for interval graphs
[Lee, Palsberg, Pereira, ICALP 2007]

Puzzles: a new approach to register allocation

Original
Program Elementary

Program
Assembly
Code

• Register allocation for elementary programs is
equivalent to solving puzzles

• Puzzles can be solved in polynomial time
• The elementary program requires at most as

many registers as the original program

Puzzles!

a = •

B = •

c = •

d = B

E = c

• = a, d, E

a

c

d

B

E

Program Live Ranges Registers
XL YL ZLXH YH ZH

Example

XH = •

Y = •

XL = •

YH = Y

Z = XL

• = XH,YH,Z

a

c

d

B

E

Program Live Ranges Registers
XL YL ZLXH YH ZH

An optimal solution

a1 = •

B2 = •

c3 = •

d4 = B4

E5 = c5

• = a6,d6,E6

a

c

d

B

E

Elementary
Program Live Ranges Registers

XL YL ZLXH YH ZH

(a2)=(a1)

(a3,B3)=(a2,B2)

(a4,B4,c4)=(a3,B3,c3)

(a5,c5,d5)=(a4,c4,d4)

(a6,c6,E6)=(a5,c5,E5)

A new representation might help

XH = •

Y = •

XL = •

YH = Y

X = XL

• = YL,YH,X

Registers
XL YL ZLXH YH ZH

YL = XH

a

c

d

B

E

Live Ranges

And it does, indeed!

Assembly
Program

a

c

d

B

E

XL YL ZLXH YH ZH

Puzzle pieces Puzzle board

a1 = •

B2 = •

c3 = •

d4 = B4

E5 = c5

• = a6,d6,E6

(a2)=(a1)

(a3,B3)=(a2,B2)

(a4,B4,c4)=(a3,B3,c3)

(a5,c5,d5)=(a4,c4,d4)

(a6,c6,E6)=(a5,c5,E5)

Old problem, new abstraction

Puzzle solving is the dual of graph coloring

• Graph coloring places the registers on the variables
– The variables form a graph
– The registers are colors for the graph

• Puzzle solving places the variables on the registers
– The registers form a board
– The variables are pieces for the board

Y
X

Z

Y
X

Z
Y

X

Z

Board Pieces

Ty
pe

-0
Ty

pe
-1

• • •

• • •

0 K-1

Two types of puzzles

PowerPC: 32 general purpose integer registers:

ARM: 16 double precision floating-point registers:

R0 R1 R2 R31

S0 S1 S2 S3 S4 S5 S30 S31
D0 D1 D2 D16

• • •

• • •

The register file determines the puzzle board

EAX EBX ECX EDX

AX BX CX DX

AH AL BH BL CH CL DH DL

32 bits

16 bits

8 bits

EBP ESI EDI ESP

BP SI DI SP

32 bits

16 bits

Hybrid puzzle: type-0 and type-1.

X86-32 register board

Elementary programs

Split live ranges everywhere!
[Appel & George, PLDI 2001]

Basic block
ϕ

…

Statement1

Parallel copy

Statement2

…

π

From a program to an elementary program

A = •
p1:
jump L2, L3

c = •
p3:
jump L4

AL =
p6:
c = AL
p7:
jump L4

joint L2, L3
p9:
• = c, A
p10:
jump Lend

p2: p5:

p4: p8:

A01 = •
p1:(A1)=(A01)
[(A2):L2,(A5):L3]=pi(A1)

c23 = •
p3:(A3,c3)=(A2,c23)
[(A4,c4):L4]=pi(A3,c3)

AL56 =
p6:(A6,AL6)=(A5,AL56)
c67 = AL6
p7:(A7,c7)=(A6,c67)
[(A8,c8):L4]=pi(A7,c7)

p9:(A9,c9)= phi[(A4,c4):L2,(A8,c8):L3]
• = c9, A9
p10:
[():Lend]= pi()

p2:
p5:

p4: p8:

From variables to puzzle pieces

px: (C, d, E, f) = (C’, d’, E’, f’)

 A, b = C, d, E

px+1: (A”, b”, E”, f”) = (A, b, E, f)

A b C d E f
px

px+1

E
C

A
f

d

b

variables

live ranges

puzzle pieces

From an elementary program to puzzles

A01 = •
p1:(A1)=(A01)
[(A2):L2,(A5):L3]=pi(A1)

c23 = •
p3:(A3,c3)=(A2,c23)
[(A4,c4):L4]=pi(A3,c3)

AL56 =
p6:(A6,AL6)=(A5,AL56)
c67 = AL6
p7:(A7,c7)=(A6,c67)
[(A8,c8):L4]=pi(A7,c7)

p9:(A9,c9)= phi[(A4,c4):L2,(A8,c8):L3]
• = c9, A9
p10:
[():Lend]= pi()

p2: p5:

p4: p8:

A

A c

A c

A

A c

A c

A c

p0
p1

p2
p3

p5
p6

p6
p7

p3
p4

p7
p8

p9
p10

AH AL BH BL
AX BX

Register bank

A linear algorithm for solving type-1 puzzles

Y

X X X

X

Z Z
X

Z Z

X X
Z Z Z

Y X
Z Y X

Z

X
Z Y X X X

Z
X

Z YX X X
Z

Z
X YZ

X
ZZ Z

X Y Z
X

ZZ

Y Y Y X
Z

X
Z

X
ZZ

X X
Z

X X
ZZ

(): ():
(): ():
(): : (): :
(): : (): :
(): : : : : :

1 2 43 65

87

109

1211

1413

15

Example

YX X
Z

X

X
Z

1 2 43 65 …
YX X

Z
X

Z

8

7

109 11

… …
YXX

Z
X

X :()

X
Z: :()XXYX …

Y XX
Z

X

…

Puzzle
at step 0

Puzzle after
applying
statement 6

Puzzle after
applying
statement 7

Puzzle after
applying
statement 11

XX

Foundations

• Theorem: spill-free register allocation with
pre-coloring for an elementary program is
equivalent to solving a collection of puzzles

• Theorem: a puzzle is solvable if and only if
our program succeeds on the puzzle

• Theorem: Our puzzle solving program runs in
O(#regs) time

Two-phase register allocation for x86

1. Spilling:
• The puzzle solver determines MaxLive
• Remove pieces until

need-for-registers = #registers
• We use Belady’s algorithm (also used in

linear scan) for spilling

2. Coloring and coalescing:
• Use a puzzle solver that is guided by the

solution to the previous puzzle
• If puzzle contain no pre-coloring, we can

guarantee a minimal number of copies.

From puzzles to assembly code

A

A c

A c

A

Ac

Ac

Ac

p0
p1

p2
p3

p5
p6

p6
p7

p3
p4

p7
p8

p9
p10

AX = •
p1:
jump L2, L3

BL = •
p3:
xchg BX,AX
jump L4

BX = AX
AL =
p6:
AL = AL
p7:
jump L4

joint L2, L3
p9:
• = BL, AX
p10:
jump Lend

p2:
p5:

p4: p8:

AH AL BH BL
AX BX

Register bank

1

2

3

4

5

6

7

Experimental results comparing four allocators

• Puzzle solving
• Extended version of linear scan (default in LLVM)
• Iterated register coalescing by George & Appel,

POPL 1996, with extensions by Smith, Ramsey &
Holloway, PLDI 2004

• Partitioned boolean quadratic programs (PBQP):
Scholz & Eckstein, LCTES/SCOPES 2002

• All four implemented in LLVM 1.9, running on an
32-bit X86

Benchmarks: SPEC 2000, etc; total: 1.3 M LOC

1,573,42321,197crafty

7,010,80985,814perlbmk

37,339,663611,028Total
……(nine more)

3,820,63359,394mesa
2,714,58867,262vortex
4,256,31771,461gap

12,868,208224,099gcc
Asm/bytesLoCBenchmarkThis talk:

SPEC CPU
2000

Puzzles and the number of times we solved them

…………(nine more)
94.6%

89.7%
89.7%
97.8%
96.6%
95.4%
96.0%

once

10

4
9
4
4
4
4

max

1.0659,504crafty

1.03265,905perlbmk

1.051,401,793Total

1.08139,537mesa
1.02116,496vortex
1.05158,757gap

1.03476,649gcc
avg#puzzlesBenchmark

A variety of puzzles

Short/Long
no precol

Long
precolShort/Long

precol

Long
no precol

Empty

Number of moves inserted per puzzle

Shorter is better

Compilation time: extended linear scan vs. puzzles
Data normalized to puzzle solver

Shorter is better

Execution time, normalized to GCC -O3

Shorter is better

Conclusion

• Register allocation by puzzle solving

• SSA-based register allocation for x86

• Handles pre-coloring, and register aliasing
and pairing

• Split live ranges everywhere!

• Fast compilation time

• Competitive code quality

Three types of puzzles

Elementary programs → elementary graphs
A01 = •
p1:(A1)=(A01)
[(A2):L2,(A5):L3]=pi(A1)

c23 = •
p3:(A3,c3)=(A2,c23)
[(A4,c4):L4]=pi(A3,c3)

AL56 =
p6:(A6,AL6)=(A5,AL56)
c67 = AL6
p7:(A7,c7)=(A6,c67)
[(A8,c8):L4]=pi(A7,c7)

p9:(A9,c9)= phi[(A4,c4):L2,(A8,c8):L3]
• = c9, A9
p10:
[():Lend]= pi()

p2: p5:

p4: p8:

A2

c23

A3

c3

A4

c4

A5

c67

A6

AL6

A7

c7

A8

c8

A9

c9AL56

An elementary program
has an elementary
interference graph

X Y Z

Six classes of graphs

Unit interval graphs

Interval graphs

RDV-graphs

Chordal
graphs

Elementary
Programs

SSI-form
Programs

SSA-form
Programs⊂ ⊂

Clique substitutions of P3

Elementary
graphs

Complexity results for four graph problems

Linear timeLinear
time

Linear
time

NP-
complete

Coloring

Linear time
[this paper]

NP-
complete

NP-
complete

NP-
complete

Coloring extension

Linear time
[this paper]

NP-
complete

NP-
complete

NP-
complete

Aligned 1-2-coloring

Linear time
[this paper]

NP-
complete

NP-
complete

NP-
complete

Aligned 1-2-coloring
extension

ElementaryIntervalChordalGeneralProblem

