Register Allocation by
Puzzle Solving

Fernando M Q Pereira
Jens Palsberg

UCLA
University of California, Los Angeles

Presented at PLDI 2008

Call for papers and participation

 Jul 15, 2009: POPL submission deadline
— Principles of Programming Languages
— POPL will be in Madrid, Jan 20-22, 2010

* Aug 9-15, 2009 at UCLA:
— LICS, IEEE Logic in Computer Science
— SAS, Static Analysis Symposium
— Six workshops

Three messages

 SSA-based register allocation for x86

* Register allocation = solving puzzles

« Split live ranges everywhere!

A compiler

source language

1 parser

intermediate representation

1 code generator

machine code

A better compiler

source language

1 parser

intermediate representation

code generator with a
register allocator

machine code

What is register allocation?

A =10 Assume we have
B =20 two registers
C=A+30

PrintC+40+B

Reg. allocation = liveness analysis + graph coloring

A=10
Al
B =20 Interference graph:
B.A| A—B—C
C=A+30
B’Cl With colors:

Print C + 40 + B A—B—C

After register allocation

A=10

B =20
C=A+30
PrintC+40+B

R1=10

R2 =20

R1=R1+ 30
Print R1 + 40 + R2

A—B—C

Many models of register allocation

Graph coloring

— George & Appel TOPLAS ‘96, iterated register coalescing
— Smith, Ramsey & Holloway, PLDI ‘04, aliased registers
Linear scan

— Poletto & Sarkar TOPLAS ‘99, excellent for JIT compilers
Integer linear programming

— Appel & George PLDI ‘01, optimal spilling

Partitioned Boolean quadratic programming

—Scholz & Eckstein SCOPES ‘02, optimal spilling

Multi-commodity network flow
— Koes & Goldstein PLDI ‘06, iterative within a time budget

Complications

- Spill: If there are not enough registers, then
represent the remaining variables in memory

» Coalesce: For an assignment x=y, try to map x,y
to the same register

* Live-range splitting: Enable a variable to some
times be in a register and some times in memory

* Pre-coloring: some instructions require it

* Register aliasing and pairing: found on
x86, ARM, SPARC V8+V9, etc
- Rematerialization: don’t store, recompute!

SSA to the rescue

Theorem: a program in strict SSA form has a
chordal interference graph

Enables two-phase register allocation:

1. Spilling

2. Coloring and coalescing

Goal of spilling: make
need-for-registers < # registers

If all the registers have the same size, then
need-for-registers = size(largest clique)

Comparison

Simple and Good!

Code
Quality
A
SSA
based

lterated
Register
Coalescing

Complexity

» of Register
Allocator

Our goal

* Our goal: implement two-phase register
allocation for x86 and handle pre-coloring,
and register aliasing and pairing

* Problem 1: with pre-coloring,
computing need-for-registers is
NP-complete for unit interval graphs
[Marx, 2006]

* Problem 2: with register aliasing and
pairing, computing need-for-registers is
NP-complete for interval graphs
[Lee, Palsberg, Pereira, ICALP 2007]

Puzzles: a new approach to register allocation

Original
Program | —— || Elementary Assembly
Program > Code
Puzzles! \v

- Register allocation for elementary programs is
equivalent to solving puzzles

* Puzzles can be solved in polynomial time

* The elementary program requires at most as
many registers as the original program

Program
a = e
B = o
cC = o
d =B
E =c

a,

d, E

Example

Live Ranges

Registers

Xy X, Yy Y, 2y 2,

An optimal solution

Program Live Ranges Registers

a X, X, Y, Y. Z, Z
XH — o H L H L H L

B
Y = o
c
XL = o
d
Y, = Y
E

z = X,

e = X,,¥,,2

A new representation might help

Elementary
Program

(a,,By,c,)=(a;3,B;,c3)
d, = B,
(a5,c5,ds5)=(a,,c,,d,)
Es = ¢cg
(ag,cq,Eg)=(a5,c5,E;)

* = a.,d;, E,

Live Ranges

Registers

Xy X, Yy Y, 2y 2,

Assembly
Program
XH = o
Y = o
XL = e
Y, = Y
Y, = Xy
X = X,

Y, , Y., X

And it does, indeed!

Live Ranges

Registers

Xy X, Yy Y, 2y 2,

—

Old problem, new abstraction

a, = °

(a,)=(ay)

B, = -

(a5, Bzy=tazmnBy)
uzzle pieces

Cy = ®

(a,,B,rc,)=(

d, = By,

(ag,Cc5,dg) =(a

FEs = Cs

(agrCerEg)=(ag, Ccey Eg)

Xy Xy Ty Y

Puzzle board

\l\

Z

—0
—
o

Puzzle solving is the dual of graph coloring
\ 4

« Graph coloring places the registers on the variables
— The variables form a graph
— The registers are colors for the graph

 Puzzle solving places the variables on the registers
— The registers form a board
— The variables are pieces for the board

I-'—»[D[D[D

Two types of puzzles

Board

Pieces

Type-0

K-1

Type-1

The register file determines the puzzle board

PowerPC: 32 general purpose integer registers:

R, R, R, Rj;

ARM: 16 double precision floating-point registers:

SO S1 SZ SB S4 SS S30 S31
DO Dl D2 D16

X86-32 register board

Hybrid puzzle: type-0 and type-1.

32bits|___EAx | ®Bx [mex | EDX]
16 bits | Ax | [Bx | | ox | | px |

8 bits |an]aL| [BH| BL| | cH| cL | pH|pL |
32bits|___EBp | ®mst | ®mpr | msp]
16 bits | P | | st | | o1 | [sp |

Elementary programs

Split live ranges everywhere! \ /
[Appel & George, PLDI 2001] | ¢
Basic block
Statement,
Parallel copy
Statement,
JU

" N\

From a program to an elementary program

jump L,, L,

/\

Ps:

c = [)

P3:

jump L,
P4

AL =

A

P;: (A;)=(Ag;)

[(A,) :L, (&) :L,]=pi (&)

P2:

.

Co3

Ps: (A3,C3)=(A2,Cz3)
[(B, ,cy) :L,]=P1 (A3, C;)

jump L_ 4

Ps:

Ps:

~

AL56 =

Ps: (Ag,ALg) = (A5, ALgg)

C.; = AL,

P;: (A,;,cq)=(A4,C47)

[(Ag,cg) :L,]1=pP1(A,,c,)

Po: (Ag,C9)= pPhi[(A,,c,) :L,, (Ag, cg) : Lj]
Cqy
Pio-

[() :L_ 4]

Aq

= pi()

From variables to puzzle pieces

variahles

px: (C9 d’ E9 f) = (C,a d,a E,a f,)
A,b=C,d, E
pX+1: (A”a b”a E”a f”) = (A9 b’ E9 f)

live ranges

A b C d E f

RERE

puzzle pieces

From an elementary program to puzzles

AX BX
Ry = ¢ 0
p,: (A,)=(A,,) AH AL BH BL P, =
[(A;) :L, (A;) :L;]1=pi(A,) l | | 1 |
Register bank
Ps
P, Ps: Ps
P>
\ A X
P3 C
AL, =
Cyoy = Ps: (As IAL6) =(A5 IAL56) p
P3: (A3Ic3)=(A21c23) C67 = ALG 6
[(A4,C4) :L4]=Pi(A3,C3) P7: (A7,C7)=(A6,Cs7) p7
[(Ag,cq) :L,]1=pi(A,,c,) v
Ps
/ Py A ¢ v
Py Pg: Py
Ps

Py: (Ay,cq)= phi[(A,,c,) :L,, (Ag,cq) 1 L,]

= ¢y, A, Py A C

Pio* . Pio

A linear algorithm for solving type-1 puzzles

1

X

AN NS N N N

2

X

3

)
)

(
(

4

X 10
Z
o [X|X
Y .7
. X
Z o [Z]|Z
X
[
Y .YZ

X X
y4 y4
o
/Z | e y4
X
o
Y. 7
12 X X XX
14 %
) (y4 YZ ZZ)
o | X X X o [XI|X
° 4 4 o |Z|Z

5

6

Example

Puzzle

at step 0

Puzzle after

applying
statement 6

Puzzle after

applying
statement 7

Puzzle after

applying
statement 11

X| | X X
y4
6
X| ooe
Z
X X X
y4
7
ooo(X ‘X|X)ooo
X X X
y4
11
o0 (X X | XX)ooo
7] 7

Foundations

- Theorem: spill-free register allocation with
pre-coloring for an elementary program is
equivalent to solving a collection of puzzles

 Theorem: a puzzle is solvable if and only if
our program succeeds on the puzzle

* Theorem: Our puzzle solving program runs in
O(#regs) time

Two-phase register allocation for x86

1. Spilling:
e The puzzle solver determines MaxLive

e Remove pieces until
need-for-registers = #registers

e We use Belady’s algorithm (also used in
linear scan) for spilling

2. Coloring and coalescing:

« Use a puzzle solver that is guided by the
solution to the previous puzzle

e If puzzle contain no pre-coloring, we can
guarantee a minimal number of copies.

From puzzles to assembly code

D

po AX -
P, X AH AL BH BL P,
o o .1
Jjump L2 , L 3
Register bank
Ps .
Ps A 2 P2: Ps
6 / 4
- BX = AX
BL = A, =
Pe A3 Ps: P
Py c xchg BX,6AX AL = AL
g Jump L, I.>7 :
c Jump L,
b7 c A 4 Py .
Pg \ Ps:
P
5 joint L,, L,
Py C A Po:
Pio e = BL, AX
Pio:

AX BX

jump L_ 4

Experimental results comparing four allocators

Puzzle solving
Extended version of linear scan (default in LLVM)

Iterated register coalescing by George & Appel,
POPL 1996, with extensions by Smith, Ramsey &
Holloway, PLDI 2004

Partitioned boolean quadratic programs (PBQP):
Scholz & Eckstein, LCTES/SCOPES 2002

All four implemented in LLVM 1.9, running on an
32-bit X86

Benchmarks: SPEC 2000, etc; total: 1.3 M LOC

S{)‘Ezté“gb Benchmark | LoC | Asm/bytes
2000 |gcc 224,099 | 12,868,208
perlbmk 85,814| 7,010,809

gap 71,461 4,256,317

vortex 67,262 2,714,588

mesa 59,394 3,820,633

crafty 21,197| 1,573,423

(nine more)

Total 611,028 | 37,339,663

Puzzles and the number of times we solved them

Benchmark | #puzzles | avg | max | once

gcc 476,649 | 1.03 4 96.0%
perlbmk 265,905 1.03 4 95.4%
gap 158,757 | 1.05 4 96.6%
vortex 116,496 | 1.02 4 97.8%
mesa 139,537 | 1.08 9 89.7%
crafty 59,504 | 1.06 4 89.7%
(nine more)
Total 1,401,793 | 1.05| 10 94.6%

A variety of puzzles

Short/Long
no precol

Empty ~ Long
Short/Long precol
precol
Long

no precol

0.12

0.1

0.08

0.06

0.04

0.02

0

Number of moves inserted per puzzle

Shorter is better |
- Vv

iR Q

N
& ’°'z> @@

O
o ?’\Q/

W #(move/swaps) implementing (phi/pi)-nodes
B #Internal Moves

& P & o S Q& K
F & > $ @Q’ R Ol 0@@&&

Compilation time: extended linear scan vs. puzzles

Data normalized to puzzle solver

2.5
Shorter is better
2
1.5
1
0.5
0
O & O @M X = > L 0o “ o N + 0o v o
O T VW U o & 2 VO = a g X 2 o
>S5S EEEECELSE "8 EG
- S) S a o)
Q Q >
Q. <C

B Register Assignment Pass B Total comp

1.6
1.4
1.2

0.8

0.6 |
0.4 |
0.2 |

Execution time, normalized to GCC -0O3

Run time normalized to gcc -0O3

Shorter is better
S E R P F A RS RS @ S
S 806\ SIS R & & I & & Q}"’Q
& e R 2 S

O Puzzle solver BELS (LLVM's default) JEIRC COPBQP

Conclusion

Register allocation by puzzle solving
SSA-based register allocation for x86

Handles pre-coloring, and register aliasing
and pairing

Split live ranges everywhere!
Fast compilation time

Competitive code quality

Three types of puzzles

Kinds of Pieces

Board

K-1

v M=eEE

0-odA T,

1-odA T,

Z-odA T,

Elementary programs — elementary graphs

AO].:.

P,: (A)=(A
[(B,) :L, (Ag):L;1=pi(A,)

Py

Ps:

S

Co3

P3: (A3Ic3)=(A21c23)
[(A,,c,) :L,]1=pi(A,,c,)

Py:

AL;, =

Ps: (A6 IAL6)=(A5 IAL56)
Cgy = ALg

[(Ag,cq) :L,1=pi(A,,c,)

Pg:

N

Py: (Ay,cq)= phi[(A,,c,) :L,, (Ag,cq) 1 L,]

* = Cqs Ay

Pio:

[():L, 0= pi0)

AZ AB A4 A5
Co3 Cs Cyq ALsg

An elementary program
has an elementary
interference graph

X Y Z
A, A A, A,

Six classes of graphs

SSA-form
G © [usam| © [
f RDV-graphs \/ \ \

Chordal
graphs

/

Complexity results for four graph problems

Problem General |Chordal |Interval Elementary

Aligned 1-2-coloring | NP- NP- NP- Linear time

extension complete | complete | complete |[this paper]

Aligned 1-2-coloring | NP- NP- NP- Linear time
complete | complete | complete |[this paper]

Coloring extension NP- NP- NP- Linear time
complete | complete | complete | [this paper]

Coloring NP- Linear Linear Linear time
complete |time time

