
The Development of SSA Form

The Development of Static
Single Assignment Form

Kenneth Zadeck
NaturalBridge, Inc.

zadeck@naturalbridge.com

The Development of SSA Form

In the Beginning ...

There was Dataflow Analysis

The first generation (Allen, Cocke and Schwartz)
thought it was good.

The second generation (Cheatham, Graham,
Kennedy, Ullman...) also thought it was good.

The third generation was not so sure.

The Development of SSA Form

What is Dataflow Analysis

• Determine set of facts that you would like to discover.

• Construct a set of functions that model how the facts
change as you move from one part of the program to
another.

• Solve the a series of simultaneous equations that
determine the possible truth of each fact at every point
in the program.

The Development of SSA Form

What is Wrong With Dataflow Analysis

• You almost never need to know the truth of
every fact at every location.

• After each pass, you generally throw away the
analysis done for that pass and start fresh.

• Asymptotic complexity is O(EαEV) (Tarjan).
• Most papers leave out the “V” term.
• Ultimately dataflow analysis turns out to be

very expensive.

The Development of SSA Form

Wegman's Graduate Education

• Wegman's mentors were Ullman and Graham.
• His choices for a topic were either parsing or

dataflow analysis.
• He developed a novel dataflow analysis

technique for his dissertation.
• He was unhappy.

The Development of SSA Form

My Graduate Education

• My mentor was Kennedy
• I was also pushed to find some dataflow

related topic. (parsing was not an option)
• I am very dyslexic and have a lot of problems

processing symbols, like equations.
• Kennedy was surprised with a graph theory

 approach to computing def-use chains.

The Development of SSA Form

Variable by Variable Analysis.

• Viewing the program variable by variable
exposes structure that is obscured by the
dataflow model:
– A kill allows the cfg to be clipped.
– The dataflow for a single variable can be solved

without iteration.

• O(EV)
– Note that this is faster than Tarjan's lower bound.

• This turns out to be a dead end, but it set the
stage for the development of SSA.

The Development of SSA Form

Constant Propagation – Time and Power

• Kildall and Wegbreit use a conventional
dataflow framework.

• The fact vector is very large – values not bits.
• Must use iteration.
• The time to run these is between O(ElogEV) and

O(E2 V) depending on the type of control flow
graph processing.

• Kildall ≈ Reif & Lewis No conditionals
• Wegbreit ≈ Wegman & Zadeck Conditionals

The Development of SSA Form

Constant Propagation

j = 0

k = 1

if (j > 0)

 then k = 4

k ?

The Development of SSA Form

Constant Propagation - Kildall

j = 0

k = 1

if (j > 0)

 then k = 4

k ?

j k

The Development of SSA Form

Constant Propagation - Kildall

j = 0

k = 1

if (j > 0)

 then k = 4

k ?

j k

0 T

The Development of SSA Form

Constant Propagation - Kildall

j = 0

k = 1

if (j > 0)

 then k = 4

k ?

j k

0 T

0 1

The Development of SSA Form

Constant Propagation - Kildall

j = 0

k = 1

if (j > 0)

 then k = 4

k ?

j k

0 T

0 1

0 1

The Development of SSA Form

Constant Propagation - Kildall

j = 0

k = 1

if (j > 0)

 then k = 4

k ?

j k

0 T

0 1

0 1

0 4

The Development of SSA Form

Constant Propagation - Kildall

j = 0

k = 1

if (j > 0)

 then k = 4

k ?

j k

0 T

0 1

0 1

0 4

0 ┴

The Development of SSA Form

Constant Propagation - Wegbreit

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

k ? 5

j k (3 4) (→ 3 5) (4 5)→ →

The Development of SSA Form

Constant Propagation - Wegbreit

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

k ? 5

j k (3 4) (→ 3 5) (4 5)→ →

0 ┬
0 1

0 1 X

The Development of SSA Form

Constant Propagation - Wegbreit

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

k ? 5

j k (3 4) (→ 3 5) (4 5)→ →

0 ┬
0 1

0 1 X

0 1

The Development of SSA Form

The First Attack

• Use def-use chains.
• Sometimes this helps

and sometimes it
does not.

• This requires NMV
def-use chains.

• Asymptoticly this
does not help!!!

switch (...) {

case 1: x=...; y=...; break;

...

case n: x=...; y=...; break;

}

switch (...) {

case 1: ...=x; ...=y; break;

...

case m: ...=x; ...=y; break;

}

The Development of SSA Form

The Second Attack – Lewis, Tarjan & Reif

• Add a “join birthpoint”
for x and y between
the two switches.

• Alg to compute join
birthpoints is invented
by Reif and Tarjan.

• Number of def-use
chains is now NV.

• Reif & Lewis improve
Kildall's algorithm to
NV time and space.

switch (...) {

case 1: x=...; y=...; break;

...

case n: x=...; y=...; break;

}

birthpoint x, y;

switch (...) {

case 1: ...=x; ...=y; break;

...

case m: ...=x; ...=y; break;

}

The Development of SSA Form

The Second Attack – Lewis, Tarjan & Reif

j = 0

k = 1

if (j > 0)

 then k = 4

k = k

k ?

• Add Reif and Tarjan
birthpoints.

• These are just places
where you add a
nexis to control the
number of def use
chains.

The Development of SSA Form

The Third Attack – Wegman and Zadeck

• Join birthpoints is only a sparse rep for def-uses.
– It is “use once and throw away”.
– There is no semantics.

• To do something equivalent to Wegbreit, we
needed Φ-functions (or something like them).

• What we did was add a lot of identity assignments:
– One at each join birthpoint.
– One in each predecessor block of each join birthpoint.

The Development of SSA Form

The Third Attack - Wegman & Zadeck

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

 else k = k 5

k = k 6

k ? 7

• We needed to gate
the def use chains
along that pass along
edges that have not
been marked as
executable.

The Development of SSA Form

The Third Attack - Wegman & Zadeck

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

 else k = k 5

k = k 6

k ? 7

• We needed to gate
the def use chains
along that pass along
edges that have not
been marked as
executable.

• Propagate values
along def-use edges
iff statement is
executable.

The Development of SSA Form

The Third Attack – Wegman & Zadeck

j = 0 1*

k = 1 2

if (j > 0) 3

 then k = 4 4

 else k = k 5

k = k 6

k ? 7

k1 k2 k4 k5 k6
0

The Development of SSA Form

Constant Propagation – Wegman & Zadeck

j = 0 1*

k = 1 2*

if (j > 0) 3

 then k = 4 4

 else k = k 5

k = k 6

k ? 7

k1 k2 k4 k5 k6
0

 1

The Development of SSA Form

Constant Propagation – Wegman & Zadeck

j = 0 1*

k = 1 2*

if (j > 0) 3*

 then k = 4 4

 else k = k 5

k = k 6

k ? 7

k1 k2 k4 k5 k6
0

 1

The Development of SSA Form

Constant Propagation – Wegman & Zadeck

j = 0 1*

k = 1 2*

if (j > 0) 3*

 then k = 4 4

 else k = k 5*

k = k 6

k ? 7

k1 k2 k4 k5 k6
0

 1

 1

The Development of SSA Form

Constant Propagation – Wegman & Zadeck

j = 0 1*

k = 1 2*

if (j > 0) 3*

 then k = 4 4

 else k = k 5*

k = k 6*

k ? 7

k1 k2 k4 k5 k6
0

 1

 1

 1

The Development of SSA Form

Constant Propagation – Time and Power

• Kildall and Wegbreit use a conventional
dataflow framework.

• The time to run these is between O(ElogEV)
and O(E2 V) depending on the type of control
flow graph processing.

• Reif & Lewis and Wegman & Zadeck are O(N)
for the propagation + NV to compute the
birthpoints.

• Kildall ≈ Reif & Lewis
• Wegbreit ≈ Wegman & Zadeck

The Development of SSA Form

SSA
Looking Forwards at Wegman & Zadeck

• We had no “vision” of SSA form.
• Wegman & Zadeck is yet another fast

technique to perform some transformation that
uses a one off data structure.

The Development of SSA Form

SSA
Looking Backwards at Wegman & Zadeck

• This is the first SSA optimization algorithm.
– The extra identity assignments change the

birthpoints into something equivalent to Φ-functions.
– The algorithm preserves its form while being

transformed.

The Development of SSA Form

Removal of Invariant Code from Loops

• Ron Cytron
• Andy Lowry
• Kenneth Zadeck

POPL13 - 1986

The Development of SSA Form

Removal of Invariant Code from Loops

j = 0

while (...)

j = j + 1

x = y + 3

z = x + 1

... = z + j

• Both of these
statements can be
removed from the
loop.

• The second can be
removed only after
the first one is out.

The Development of SSA Form

Removal of Invariant Code from Loops

j = 0

j = j

while (...)

birthpoint j

j = j + 1

x = y + 3

z = x + 1

... = z + j

j = j

• Add birthpoints and
identity assignments.

The Development of SSA Form

Removal of Invariant Code from Loops

j
1
= 0

j
2
= j

1

while (...)

birthpoint j
2

j
3
= j

2
+ 1

x
1
= y

1
+ 3

z
1
= x

1
+ 1

... = z
1
+ j

3

j
2
= j

3

• Add birthpoints and
identity assignments.

• Rename variables.

The Development of SSA Form

Removal of Invariant Code from Loops

j
1
= 0

j
2
= j

1

x
1
= y

1
+ 3

while (...)

birthpoint j
2

j
3
= j

2
+ 1

z
1
= x

1
+ 1

... = z
1
+ j

3

j
2
= j

3

Any insn can be moved
outside the loop if:
– the birthpoints of the

rhs are outside the
loop.

– the statement is not
control dependent on
a test inside the loop.

The Development of SSA Form

Removal of Invariant Code from Loops

j
1
= 0

j
2
= j

1

x
1
= y

1
+ 3

z
1
= x

1
+ 1

while (...)

birthpoint j
2

j
3
= j

2
+ 1

... = z
1
+ j

3

j
2
= j

3

Any insn can be moved
outside the loop if:
– the birthpoints of the

rhs are outside the
loop.

– the statement is not
control dependent on
a test inside the loop.

The Development of SSA Form

What is in a Name? or The Value of Renaming
for Parallelism and Storage Allocation

• Ron Cytron
• Jeanne Ferrante

ICPP87

Proves that the renaming done in the previous
paper removes all false dependencies for
scalars.

The Development of SSA Form

The Origin of Ф-Functions and the Name

• Barry Rosen did not like the identity
assignments.
– He decided to replace them with “phony functions”

that were able to see which control flow reached
them.

– A Ф-function was a more publishable name.

• The name Static Single Assignment Form
came from the fact that Single Assignment
languages were popular then.

The Development of SSA Form

Global Value Numbers and Redundant
Computations

• Barry Rosen
• Mark Wegman
• Kenneth Zadeck

POPL15 - 1988

The Development of SSA Form

Global Value Numbers and Redundant
Computations

• Classical value numbering algorithms are
restricted to programs with no joins.

• With Φ-functions, it is possible to extend value
numbering to acyclic regions.

The Development of SSA Form

Global Value Numbers and Redundant
Computations

 x
3
=Φ(x

1
,x

2
)

 ...=x
3
+y

1

The Development of SSA Form

Global Value Numbers and Redundant
Computations

 ...=x
1
+y

1
 ...=x

2
+y

1

 x
3
=Φ(x

1
,x

2
)

 ...=x
3
+y

1

The Development of SSA Form

Detecting Equality of Values in Programs

• Bowen Alpern
• Mark Wegman
• Kenneth Zadeck

POPL15 - 1988

The Development of SSA Form

Detecting Equality of Values in Programs

• Convert the program to SSA form.

The Development of SSA Form

Detecting Equality of Values in Programs

• Convert the program to SSA form.
• Use Hopcroft's finite state minimization

algorithm to partition the program.
– The dataflow edges are the edges in the graph.

– Label each Φ-function at join point n to Φ
n
.

– The operators are labels on the nodes. Place all
the operations with a given label in the same
partition to start.

The Development of SSA Form

Detecting Equality of Values in Programs

• Convert the program to SSA form.
• Use Hopcroft's finite state minimization

algorithm to partition the program.
– The dataflow edges are the edges in the graph.

– Label each Φ-function at join point n to Φ
n
.

– The operators are labels on the nodes. Place all
the operations with a given label in the same
partition to start.

• After partitioning, any operations in the same
partition compute the same value.

The Development of SSA Form

Detecting Equality of Values in Programs

• All of us thought this was a very neat trick.
• It is not useful because many people add other

tricks to their value numbering.
• We tried for two years to extend this along the

lines of those tricks and we failed.

The Development of SSA Form

An Efficient Method of Computing
Static Single Assignment Form

• Ron Cytron
• Jeanne Ferrante
• Barry Rosen
• Mark Wegman
• Kenneth Zadeck

POPL16 - 1989

The Development of SSA Form

An Efficient Method of Computing
Static Single Assignment Form

• There were almost two papers in that POPL:
– An Efficient Method of Computing Static Single

Assignment Form by Rosen, Wegman and Zadeck
– An Efficient Method of Computing the Program

Dependence Graph by Cytron and Ferrante.

The Development of SSA Form

An Efficient Method of Computing
Static Single Assignment Form

• There were almost two papers in that POPL:
– An Efficient Method of Computing Static Single

Assignment Form by Wegman and Zadeck
– An Efficient Method of Computing the Program

Dependence Graph by Cytron and Ferrante.

• We figured out that the algorithms were the
same a couple of days before the submission
deadline.
– We barely had time to merge the abstracts.
– We missed fixing the title.

The Development of SSA Form

An Efficient Method of Computing
Static Single Assignment Form

• The algorithm presented here is generally
linear.
– It is a big improvement over Reif & Tarjan which is

generally quadratic.

• It has been bettered by:
– Sreedhar &Gao in POPL22.
– Bilardi & Pingali in JACM 2003.

The Development of SSA Form

An Efficient Method of Computing
Static Single Assignment Form

• The algorithm presented here is generally
linear.
– It is a big improvement over Reif & Tarjan which is

generally quadratic.

• It has been bettered by:
– Sreedhar &Gao in POPL22.
– Bilardi & Pingali in JACM 2003.

• The journal version has a dead code
elimination algorithm.

The Development of SSA Form

Analysis of Pointers and Structures

• David Chase
• Mark Wegman
• Kenneth Zadeck

Sigplan 90

The Development of SSA Form

Analysis of Pointers and Structures

• One of the first computationally efficient
techniques to analyze pointers.

• Makes on minimal use of SSA.
– Use of the ssa names gives a small amount of flow

sensitivity to a problem that otherwise must be
solved in a flow insensitive way.

– This trick is used in other new algorithms.

• Many new and much better techniques have
followed.

The Development of SSA Form

What Happened Next

• We stopped working on SSA.
– None of us actually worked on a compiler project.
– I was at Brown University.
– We were blocked from transfering SSA to the IBM

product compilers.

• People outside of IBM were picking it up.
– Apollo, DEC, HP, SGI, and SUN were all using it to

some extent.
– We had built a good foundation.
– It was easy to play the game.

The Development of SSA Form

Why Did SSA Win?

• All things being equal, SSA form only accounts
for a few percent code quality over the
comparable data flow techniques.
– SSA techniques run much faster.
– Scanning the program, building the transfer

functions, and solving the equations is slow.
– Incremental data flow never really worked.

• The high gain, parallel extraction techniques
need SSA to keep things clean.

• SSA is easier to understand than dataflow.
– I have no standing to say this.

	Link Time Optimization
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

