A la recherche du temps perdu

Keshav Pingali
University of Texas at Austin



Background

Paper:

— “Algorithms for Computing the Static Single Assignment Form”,
Gianfranco Bilardi and Keshav Pingali, Journal of the ACM, 50(3),
May 2003.

Results discussed in talk:
— Merge relation: useful relation for ¢-placement algorithms
— Structure of Merge relation
— Three classes of ¢-placement algorithms
* Two-phase (Cytron et al)
* Lock-step
» Lazy (Sreedhar & Gao)
— Optimal algorithms for single-variable ¢-placement
» Lock-step and lazy algorithms
— Optimal algorithm for multiple-variable ¢-placement
» For structured programs
» Two-phase algorithm



Dominators and CFG edges

START

START

END
(a) Control Flow Graph (b) Dommator Tree

 Dominance: relation on nodes (C Vx V)
— u dominates v if u occurs on all paths START —+ v
» Example: dominators of f are START, a, f
— dominance is transitive and transitive reduction is tree-structured

— dominator tree can be built in O(|E[+|V|) time (Buchsbaum et al)
« CFG edges (u — v) can be classified into

— dominator tree edges: if u dominates v (example: a — b)

— up-edges: idom(v) dominates u (examples: h — a, d — ¢)



Join relation

CFG: G=(V,E)

Set S: nodes that have assignments to
given variable

— {START}CSCV
Where should the corresponding ¢-functions
be placed?

Join relation J gives answer [Cytron et al]

J: (V) — 2(V)

— v e J(S) if du,w € S such that there are paths

e U—+V

° W —+V
 intersecting only at v




Optimal ¢-placement algorithms

* Optimal algorithm for a single variable
— Computes J(S) for one set S in O(|V| + |E|)
* need at least this much time to read CFG
e Optimal algorithm for several variables

— May be desirable to preprocess CFG to obtain data
structure that facilitates computation of J(S) for any S
— Preprocessing time = O(|V|+|E|)
* need at least this much time to read CFG
— Query time(S) = O(|S|+]|I(S)|)

* need at least this much time to read S and output J(S)



Merge relation

START

Computing J efficiently 7
- J2V) — 2V)
— Might be easier to compute function V — 2(V)
Merge relation M: CV x V
— veMw)ifve J{START,w})
« variable assigned only at START and w
 ¢-node needed at v
Properties of M relation
1. J(S)=U,g5M(w) (superposition)
2. (M-paths)
e M-path: P =w —+ v that does not contain idom(v)
« Vve M(w)iff 4path P=w —+ v that does not contain idom(v)

3. size of M relation can be Q(|V|?) even for graphs for which |E|= O(|V|)

4. M is a transitive relation
 M-paths are closed under concatenation




(a) Control Flow Graph (c) M graph

. J{START,d,a}) = M(d) U M(a) = {b,a,c,’} U {a} = {b,a,c,f}
. J{START,d,h}) = M(d) U M(h) = {b,a,c,’} U {a} = {b,a,c,f}



Structure of M relation

M graph has non-trivial cycle iff
CFG is irreducible

o w—ordering of CFG nodes

— Reducible programs
* M graph is acyclic (ignoring self-loops)
» Topological sort of the nodes of the M
graph can be found in O(|V|+|E|) time
(without building the M graph!)
— lrreducible programs

» Strongly-connected components and
topological sort of acylic condensate
can be found in O(|V|+|E|) time

« Example: d,e,bc,f,g,h,a

(c) M graph



Transitive reductions of M

Can we exploit fact that M is transitive?

— Goal:
« Compute M,4 = transitive reduction of M

» J(S) = set of nodes reachable from nodes in S by non-empty paths in graph
of M, 4

Unfortunately,

— M s a cyclic relation in general, so transitive reduction is not unique
— Not easy to compute a transitive reduction

Partial transitive reduction: dominance frontier (Cytron et al)

— v € DF(w) if 4 path P =w —* u — v such that
 w dominates all nodes on prefix w —* u
» w does not strictly dominate v

— DF-paths are the prime paths corresponding to M-paths
Computing J from DF
— Ssame strategy as above



END

(a) Control Flow Graph (¢) M graph (e) DF Graph

* In general, DF is neither transitively closed nor transitively reduced
« J{START,d,h}) = M(d) U M(h)
= set of nodes reachable from d and h in DF graph
={c,b,f,a} U {a} = {c,b,f,a}



1.

2.

3.

Three strategies for computing J(S)

CfG CTG CTG
:DF C‘Gmputaticn] DF Computation :Df Computati Dﬂ]
5 —

——’L Reachability i
DF Gragh \ 1 c l i
5(s)

5 —‘[ Reachability ] S a{ | Reachability J

'L XS) | XS)

(1] Two-phase alporithms (2] Lock-step algorithms (4 Lazy algorithms

Two-phase algorithms: (Cytron et al)
. Compute entire DF graph
. Perform reachability computation in DF graph

. There are graphs for which |[E| = O(|V]) but DF = O(|V|?), so two-phase algorithms cannot be
asymptotically optimal for general graphs

Lock-step algorithms:

. Interleave computations of DF graph and reachability to avoid building the entire DF graph

. Computes a sub-graph DF’ that has same nodes as DF but may not have all the edges
Lazy algorithms: (Sreedhar and Gao, Bilardi and Pingali)

. Compute portions of the DF graph on demand as needed for reachability computation

. Computes a sub-graph DF’ that may have fewer nodes and edges than DF graph



Lock-step algorithm

Intuitive idea:
— avoid building entire DF graph
— DF graph is used for reachability
computation from nodes in S

— Once a node N is known to be
reachable from nodes in S (so N is in
J(S)), further DF edges to node N do
not add any information, so do not
generate them

Solution:

— marknodesinS

— propagate marks down the dominator
tree

— when examining node v, if you find up-
edge (u — v) and u is marked, add v to

J(S)
— mark v and propagate marks down
dominator tree
Question: can we order nodes so we
never have to examine nodes more
than once?
— yes, use w-ordering




Algorithm

Procedure Pulling(D.S): //D s dominator treeS s set of assignment nodes

{
I: Initialize DFT(S) to {};

2: [nitialize all nodes in dominator tree as off;
& for each node v in w-ordering do

4 if ve S then TurnOn{Dov) endifl

5 for each up-edge v — v do

fi: if w15 on then

T: Add v to DFT(S):

L il v s off then TurnOn(Doe) endifl
B; break //exit mmner loop

10: endif

11:  od

!

Procedure TurnOn|{ D, x):

{

1: Switch = on;
2; for cach ¢ & children(z) in D do
3: il o5 off then TurnOn{D )

——



Optimal algorithm for multiple variables

e Theorem:

— |If the transitive reduction
of the merge relation for a
CFG is forest-structured, J
sets can be found In
optimal time O(|S|+|J(S)]).

e Theorem:

— The transitive reduction of
the merge relation for a
structured program is
forest-structured, and can
be found in O(|E|+|V|) time

(c) Merge Relation




Summary

 Merge relation:
— Useful relation for ¢-placement algorithms

— Close connection to program structure
o Structured programs: tree-structured relation
* Reducible programs: DAG (may have self-loops)
e Irreducible programs: non-trivial cycles

— Can be used to derive ¢-placement algorithms

e Optimal algorithms for single variable problem

e Optimal algorithm for multiple variables problem for
structured programs



