À la recherche du temps perdu

Keshav Pingali University of Texas at Austin

- Paper:
 - "Algorithms for Computing the Static Single Assignment Form", Gianfranco Bilardi and Keshav Pingali, Journal of the ACM, 50(3), May 2003.
- Results discussed in talk:
 - Merge relation: useful relation for ϕ -placement algorithms
 - Structure of Merge relation
 - Three classes of ϕ -placement algorithms
 - Two-phase (Cytron et al)
 - Lock-step
 - Lazy (Sreedhar & Gao)
 - Optimal algorithms for single-variable ϕ -placement
 - Lock-step and lazy algorithms
 - Optimal algorithm for multiple-variable ϕ -placement
 - For structured programs
 - Two-phase algorithm

Dominators and CFG edges

- Dominance: relation on nodes ($\subseteq V \times V$)
 - u dominates v if u occurs on all paths START \rightarrow + v
 - Example: dominators of f are START, a, f
 - dominance is transitive and transitive reduction is tree-structured
 - dominator tree can be built in O(|E|+|V|) time (Buchsbaum et al)
- CFG edges $(u \rightarrow v)$ can be classified into
 - dominator tree edges: if u dominates v (example: $a \rightarrow b$)
 - up-edges: idom(v) dominates u (examples: $h \rightarrow a, d \rightarrow c$)

Join relation

- CFG: G = (V,E)
- Set S: nodes that have assignments to given variable
 - $\ \{START\} \subseteq S \subseteq V$
- Join relation J gives answer [Cytron et al]
- J: $\mathscr{G}(\vee) \to \mathscr{G}(\vee)$
 - $v\in J(S)$ if $\exists \ u,w\in S$ such that there are paths
 - $u \rightarrow + v$
 - w →+ v
 - intersecting only at v

Optimal ϕ **-placement algorithms**

- Optimal algorithm for a single variable
 - Computes J(S) for one set S in O(|V| + |E|)
 - need at least this much time to read CFG
- Optimal algorithm for several variables
 - May be desirable to preprocess CFG to obtain data structure that facilitates computation of J(S) for any S
 - Preprocessing time = O(|V|+|E|)
 - need at least this much time to read CFG
 - Query time(S) = O(|S|+|J(S)|)
 - need at least this much time to read S and output J(S)

Merge relation

START

 $\langle V_2 \rangle$

Х

- Computing J efficiently
 - $-\quad \mathsf{J} : \mathscr{F}(\mathsf{V}) \to \mathscr{F}(\mathsf{V})$
 - Might be easier to compute function $V \to \mathscr{P}(V)$
- Merge relation $M : \subseteq V \times V$
 - $\quad v \in \mathsf{M}(\mathsf{w}) \text{ if } \mathsf{v} \in \mathsf{J}(\{\mathsf{START},\mathsf{w}\})$
 - variable assigned only at START and w
 - ϕ -node needed at v
- Properties of M relation
 - 1. $J(S) = \bigcup_{w \in S} M(w)$ (superposition)
 - 2. (M-paths)
 - M-path: $P = w \rightarrow + v$ that does not contain idom(v)
 - $v \in M(w)$ iff \exists path $P = w \rightarrow + v$ that does not contain idom(v)
 - 3. size of M relation can be $\Omega(|V|^2)$ even for graphs for which |E| = O(|V|)
 - 4. M is a transitive relation
 - M-paths are closed under concatenation

Example

- $J({START,d,a}) = M(d) U M(a) = {b,a,c,f} U {a} = {b,a,c,f}$
- $J({START,d,h}) = M(d) U M(h) = {b,a,c,f} U {a} = {b,a,c,f}$

Structure of M relation

- M graph has non-trivial cycle iff CFG is irreducible
- ω -ordering of CFG nodes
 - Reducible programs
 - M graph is acyclic (ignoring self-loops)
 - Topological sort of the nodes of the M graph can be found in O(|V|+|E|) time (without building the M graph!)
 - Irreducible programs
 - Strongly-connected components and topological sort of acylic condensate can be found in O(|V|+|E|) time
 - Example: d,e,bc,f,g,h,a

(c) M graph

Transitive reductions of M

- Can we exploit fact that M is transitive?
 - Goal:
 - Compute M_{red} = transitive reduction of M
 - J(S) = set of nodes reachable from nodes in S by non-empty paths in graph of M_{red}
- Unfortunately,
 - M is a cyclic relation in general, so transitive reduction is not unique
 - Not easy to compute a transitive reduction
- Partial transitive reduction: dominance frontier (Cytron et al)
 - $v \in DF(w)$ if \exists path P = w $\rightarrow^* u \rightarrow v$ such that
 - w dominates all nodes on prefix w \rightarrow^* u
 - w does not strictly dominate v
 - DF-paths are the prime paths corresponding to M-paths
- Computing J from DF
 - same strategy as above

Example

- In general, DF is neither transitively closed nor transitively reduced
- $J({START,d,h}) = M(d) U M(h)$

= set of nodes reachable from d and h in DF graph

 $= \{c,b,f,a\} \cup \{a\} = \{c,b,f,a\}$

Three strategies for computing J(S)

1. Two-phase algorithms: (Cytron et al)

- Compute entire DF graph
- Perform reachability computation in DF graph
- There are graphs for which |E| = O(|V|) but $DF = O(|V|^2)$, so two-phase algorithms cannot be asymptotically optimal for general graphs
- 2. Lock-step algorithms:
 - Interleave computations of DF graph and reachability to avoid building the entire DF graph
 - Computes a sub-graph DF' that has same nodes as DF but may not have all the edges
- 3. Lazy algorithms: (Sreedhar and Gao, Bilardi and Pingali)
 - Compute portions of the DF graph on demand as needed for reachability computation
 - Computes a sub-graph DF' that may have fewer nodes and edges than DF graph

Lock-step algorithm

- Intuitive idea:
 - avoid building entire DF graph
 - DF graph is used for reachability computation from nodes in S
 - Once a node N is known to be reachable from nodes in S (so N is in J(S)), further DF edges to node N do not add any information, so do not generate them
- Solution:
 - mark nodes in S
 - propagate marks down the dominator tree
 - when examining node v, if you find upedge (u \rightarrow v) and u is marked, add v to J(S)
 - mark v and propagate marks down dominator tree
- Question: can we order nodes so we never have to examine nodes more than once?
 - yes, use ω -ordering

<u>Algorithm</u>

Procedure Pulling(D,S); //D is dominator tree,S is set of assignment nodes

```
Initialize DF^+(S) to \{\};
1:
\mathbf{2}:
       Initialize all nodes in dominator tree as off;
       for each node v in \omega-ordering do
3:
          if v \in S then TurnOn(D,v) endif;
4:
          for each up-edge u \rightarrow v do
5:
            if u is on then
6:
               Add v to DF^+(S);
7:
               if v is off then TurnOn(D,v) endif;
8:
               break //exit inner loop
9:
10:
            endif
11:
       ^{\rm od}
ProcedureTurnOn(D, x);
       Switch x on;
1:
2:
       for each c \in children(x) in D do
          if c is off then TurnOn(D,c)
3:
```


Optimal algorithm for multiple variables

• Theorem:

- If the transitive reduction of the merge relation for a CFG is forest-structured, J sets can be found in optimal time O(|S|+|J(S)|).
- Theorem:
 - The transitive reduction of the merge relation for a structured program is forest-structured, and can be found in O(|E|+|V|) time

<u>Summary</u>

- Merge relation:
 - Useful relation for ϕ -placement algorithms
 - Close connection to program structure
 - Structured programs: tree-structured relation
 - Reducible programs: DAG (may have self-loops)
 - Irreducible programs: non-trivial cycles
 - Can be used to derive ϕ -placement algorithms
 - Optimal algorithms for single variable problem
 - Optimal algorithm for multiple variables problem for structured programs