
À la recherche du temps perdu

Keshav Pingali
University of Texas at Austin



Background
• Paper:

– “Algorithms for Computing the Static Single Assignment Form”, 
Gianfranco Bilardi and Keshav Pingali, Journal of the ACM, 50(3), 
May 2003.

• Results discussed in talk:
– Merge relation: useful relation for φ-placement algorithms
– Structure of Merge relation
– Three classes of φ-placement algorithms

• Two-phase (Cytron et al)
• Lock-step
• Lazy (Sreedhar & Gao)

– Optimal algorithms for single-variable φ-placement
• Lock-step and lazy algorithms

– Optimal algorithm for multiple-variable φ-placement 
• For structured programs
• Two-phase algorithm



Dominators and CFG edges

• Dominance: relation on nodes (⊆ V× V)
– u dominates v if u occurs on all paths START →+ v

• Example: dominators of f are START, a, f
– dominance is transitive and transitive reduction is tree-structured
– dominator tree can be built in O(|E|+|V|) time (Buchsbaum et al)

• CFG edges (u → v) can be classified into
– dominator tree edges: if u dominates v (example: a → b)
– up-edges: idom(v) dominates u (examples: h → a, d → c)



Join relation

• CFG:  G = (V,E)
• Set S: nodes that have assignments to 

given variable 
– {START} ⊆ S ⊆ V

• Where should the corresponding φ-functions 
be placed?

• Join relation J gives answer [Cytron et al]
• J: P(V) → P(V) 

– v ∈ J(S) if  ∃ u,w ∈ S such that there are paths 
• u →+ v 
• w →+ v 
• intersecting only at v
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Optimal φ-placement algorithms

• Optimal algorithm for a single variable
– Computes J(S) for one set S in O(|V| + |E|)

• need at least this much time to read CFG

• Optimal algorithm for several variables
– May be desirable to preprocess CFG to obtain data 

structure that facilitates computation of J(S) for any S
– Preprocessing time = O(|V|+|E|)

• need at least this much time to read CFG

– Query time(S) = O(|S|+|J(S)|) 
• need at least this much time to read S and output J(S)



Merge relation
• Computing J efficiently

– J: P(V) → P(V) 
– Might be easier to compute function V → P(V) 

• Merge relation M: ⊆ V × V 
– v ∈ M(w) if v ∈ J({START,w})

• variable assigned only at START and w
• φ-node needed at v

• Properties of M relation
1. J(S) = ∪ w ∈ S M(w)  (superposition)
2. (M-paths) 

• M-path:  P = w →+ v that does not contain idom(v)
• v ∈ M(w) iff ∃ path P = w →+ v that does not contain idom(v)

3. size of M relation can be Ω(|V|2) even for graphs for which |E|= O(|V|)
4. M is a transitive relation

• M-paths are closed under concatenation
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Example

• J({START,d,a}) = M(d) U M(a) = {b,a,c,f} U {a} = {b,a,c,f}
• J({START,d,h}) = M(d) U M(h) = {b,a,c,f} U {a} = {b,a,c,f}



Structure of M relation

• M graph has non-trivial cycle iff
CFG is irreducible

• ω–ordering of CFG nodes
– Reducible programs

• M graph is acyclic (ignoring self-loops)
• Topological sort of the nodes of the M 

graph can be found in O(|V|+|E|) time 
(without building the M graph!)

– Irreducible programs
• Strongly-connected components and 

topological sort of acylic condensate 
can be found in O(|V|+|E|) time

• Example: d,e,bc,f,g,h,a



Transitive reductions of M

• Can we exploit fact that M is transitive?
– Goal:

• Compute Mred = transitive reduction of M
• J(S) = set of nodes reachable from nodes in S by non-empty paths in graph 

of Mred

• Unfortunately,
– M is a cyclic relation in general, so transitive reduction is not unique
– Not easy to compute a transitive reduction

• Partial transitive reduction: dominance frontier (Cytron et al)
– v ∈ DF(w) if ∃ path P = w →* u → v such that

• w dominates all nodes on prefix w →* u
• w does not strictly dominate v

– DF-paths are the prime paths corresponding to M-paths
• Computing J from DF

– same strategy as above



Example

• In general, DF is neither transitively closed nor transitively reduced
• J({START,d,h}) = M(d) U M(h) 

= set of nodes reachable from d and h in DF graph
= {c,b,f,a} U {a} = {c,b,f,a}



Three strategies for computing J(S)

1. Two-phase algorithms: (Cytron et al)
• Compute entire DF graph
• Perform reachability computation in DF graph
• There are graphs for which |E| = O(|V|) but DF = O(|V|2), so two-phase algorithms cannot be 

asymptotically optimal for general graphs
2. Lock-step algorithms:

• Interleave computations of DF graph and reachability to avoid building the entire DF graph
• Computes a sub-graph DF’ that has same nodes as DF but may not have all the edges

3. Lazy algorithms: (Sreedhar and Gao, Bilardi and Pingali)
• Compute portions of the DF graph on demand as needed for reachability computation
• Computes a sub-graph DF’ that may have fewer nodes and edges than DF graph



Lock-step algorithm

• Intuitive idea: 
– avoid building entire DF graph
– DF graph is used for reachability

computation from nodes in S
– Once a node N is known to be 

reachable from nodes in S (so N is in 
J(S)), further DF edges to node N do 
not add any information, so do not 
generate them

• Solution:
– mark nodes in S
– propagate marks down the dominator 

tree
– when examining node v, if you find up-

edge (u → v) and u is marked, add v to 
J(S)

– mark v and propagate marks down 
dominator tree

• Question: can we order nodes so we 
never have to examine nodes more 
than once?

– yes, use ω-ordering

N



Algorithm



Optimal algorithm for multiple variables

• Theorem: 
– If the transitive reduction 

of the merge relation for a 
CFG is forest-structured, J 
sets can be found in 
optimal time O(|S|+|J(S)|).

• Theorem: 
– The transitive reduction of 

the merge relation for a 
structured program is 
forest-structured, and can 
be found in O(|E|+|V|) time



Summary

• Merge relation:
– Useful relation for φ-placement algorithms
– Close connection to program structure

• Structured programs: tree-structured relation
• Reducible programs: DAG (may have self-loops)
• Irreducible programs: non-trivial cycles

– Can be used to derive φ-placement algorithms
• Optimal algorithms for single variable problem
• Optimal algorithm for multiple variables problem for 

structured programs


