
À la recherche du temps perdu

Keshav Pingali
University of Texas at Austin

Background
• Paper:

– “Algorithms for Computing the Static Single Assignment Form”,
Gianfranco Bilardi and Keshav Pingali, Journal of the ACM, 50(3),
May 2003.

• Results discussed in talk:
– Merge relation: useful relation for φ-placement algorithms
– Structure of Merge relation
– Three classes of φ-placement algorithms

• Two-phase (Cytron et al)
• Lock-step
• Lazy (Sreedhar & Gao)

– Optimal algorithms for single-variable φ-placement
• Lock-step and lazy algorithms

– Optimal algorithm for multiple-variable φ-placement
• For structured programs
• Two-phase algorithm

Dominators and CFG edges

• Dominance: relation on nodes (⊆ V× V)
– u dominates v if u occurs on all paths START →+ v

• Example: dominators of f are START, a, f
– dominance is transitive and transitive reduction is tree-structured
– dominator tree can be built in O(|E|+|V|) time (Buchsbaum et al)

• CFG edges (u → v) can be classified into
– dominator tree edges: if u dominates v (example: a → b)
– up-edges: idom(v) dominates u (examples: h → a, d → c)

Join relation

• CFG: G = (V,E)
• Set S: nodes that have assignments to

given variable
– {START} ⊆ S ⊆ V

• Where should the corresponding φ-functions
be placed?

• Join relation J gives answer [Cytron et al]
• J: P(V) → P(V)

– v ∈ J(S) if ∃ u,w ∈ S such that there are paths
• u →+ v
• w →+ v
• intersecting only at v

u
w

v2

v1

START S

J(S)

Optimal φ-placement algorithms

• Optimal algorithm for a single variable
– Computes J(S) for one set S in O(|V| + |E|)

• need at least this much time to read CFG

• Optimal algorithm for several variables
– May be desirable to preprocess CFG to obtain data

structure that facilitates computation of J(S) for any S
– Preprocessing time = O(|V|+|E|)

• need at least this much time to read CFG

– Query time(S) = O(|S|+|J(S)|)
• need at least this much time to read S and output J(S)

Merge relation
• Computing J efficiently

– J: P(V) → P(V)
– Might be easier to compute function V → P(V)

• Merge relation M: ⊆ V × V
– v ∈ M(w) if v ∈ J({START,w})

• variable assigned only at START and w
• φ-node needed at v

• Properties of M relation
1. J(S) = ∪ w ∈ S M(w) (superposition)
2. (M-paths)

• M-path: P = w →+ v that does not contain idom(v)
• v ∈ M(w) iff ∃ path P = w →+ v that does not contain idom(v)

3. size of M relation can be Ω(|V|2) even for graphs for which |E|= O(|V|)
4. M is a transitive relation

• M-paths are closed under concatenation

START

w

v1

v2

x

Example

• J({START,d,a}) = M(d) U M(a) = {b,a,c,f} U {a} = {b,a,c,f}
• J({START,d,h}) = M(d) U M(h) = {b,a,c,f} U {a} = {b,a,c,f}

Structure of M relation

• M graph has non-trivial cycle iff
CFG is irreducible

• ω–ordering of CFG nodes
– Reducible programs

• M graph is acyclic (ignoring self-loops)
• Topological sort of the nodes of the M

graph can be found in O(|V|+|E|) time
(without building the M graph!)

– Irreducible programs
• Strongly-connected components and

topological sort of acylic condensate
can be found in O(|V|+|E|) time

• Example: d,e,bc,f,g,h,a

Transitive reductions of M

• Can we exploit fact that M is transitive?
– Goal:

• Compute Mred = transitive reduction of M
• J(S) = set of nodes reachable from nodes in S by non-empty paths in graph

of Mred

• Unfortunately,
– M is a cyclic relation in general, so transitive reduction is not unique
– Not easy to compute a transitive reduction

• Partial transitive reduction: dominance frontier (Cytron et al)
– v ∈ DF(w) if ∃ path P = w →* u → v such that

• w dominates all nodes on prefix w →* u
• w does not strictly dominate v

– DF-paths are the prime paths corresponding to M-paths
• Computing J from DF

– same strategy as above

Example

• In general, DF is neither transitively closed nor transitively reduced
• J({START,d,h}) = M(d) U M(h)

= set of nodes reachable from d and h in DF graph
= {c,b,f,a} U {a} = {c,b,f,a}

Three strategies for computing J(S)

1. Two-phase algorithms: (Cytron et al)
• Compute entire DF graph
• Perform reachability computation in DF graph
• There are graphs for which |E| = O(|V|) but DF = O(|V|2), so two-phase algorithms cannot be

asymptotically optimal for general graphs
2. Lock-step algorithms:

• Interleave computations of DF graph and reachability to avoid building the entire DF graph
• Computes a sub-graph DF’ that has same nodes as DF but may not have all the edges

3. Lazy algorithms: (Sreedhar and Gao, Bilardi and Pingali)
• Compute portions of the DF graph on demand as needed for reachability computation
• Computes a sub-graph DF’ that may have fewer nodes and edges than DF graph

Lock-step algorithm

• Intuitive idea:
– avoid building entire DF graph
– DF graph is used for reachability

computation from nodes in S
– Once a node N is known to be

reachable from nodes in S (so N is in
J(S)), further DF edges to node N do
not add any information, so do not
generate them

• Solution:
– mark nodes in S
– propagate marks down the dominator

tree
– when examining node v, if you find up-

edge (u → v) and u is marked, add v to
J(S)

– mark v and propagate marks down
dominator tree

• Question: can we order nodes so we
never have to examine nodes more
than once?

– yes, use ω-ordering

N

Algorithm

Optimal algorithm for multiple variables

• Theorem:
– If the transitive reduction

of the merge relation for a
CFG is forest-structured, J
sets can be found in
optimal time O(|S|+|J(S)|).

• Theorem:
– The transitive reduction of

the merge relation for a
structured program is
forest-structured, and can
be found in O(|E|+|V|) time

Summary

• Merge relation:
– Useful relation for φ-placement algorithms
– Close connection to program structure

• Structured programs: tree-structured relation
• Reducible programs: DAG (may have self-loops)
• Irreducible programs: non-trivial cycles

– Can be used to derive φ-placement algorithms
• Optimal algorithms for single variable problem
• Optimal algorithm for multiple variables problem for

structured programs

