Processor Architecture Laboratory)
@ | Laboratoire d'Architecture des Processeurs
Schoal of Gomguler and Communicalion Sciencas ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

Exploring the Landscape of SSA-
based Program Representations

Philip Brisk
Ecole Polytechnique Fédérale de
Lausanne (EPFL)

SSA Seminar, Autrans, France
April 27, 2009

What is a Mathematician?

A machine that converts coffee into theorems
 Beer-related variations exist as well

* More specifically
— Defines something
— Derives properties thereof via theorems and proofs

— With luck, a useful application is found eventually
— With a lot of luck, the application is found before said mathematician dies

Disclaimers

« Some of this talk has not been peer reviewed or published

« Conjectures abound

| Assume...

You know what is SSA Form, and that you care

This talk is not about SSA-based register allocation...
— Except for the fact that, somehow, it is...

“SSA Form™ implies “Pruned SSA Form”
— See above
— DCE converts minimal or semi-pruned to pruned

“SSA Form” implies Strict SSA
— See the next slide...

Strict vs. Non-strict SSA Form

VAR VAR

Xy« ... X ...
X, < ¢(X,, NULL) X
s =X,
Each definition dominates each « Fewer @-functions

use

Lose properties involving
dominance, chordal
interference graphs, etc.

« Arguably, we can eliminate this
¢-function

Key Points of SSA Form

Each definition dominates each use...
— And each point where each variable is live

Each variable live range is a subtree of the dominator tree
A chordal graph is the intersection graph of a set of subtrees of a tree
— O(|V| + |E|)-time algorithms for

« coloring, clique, independent set, clique partition

Should we do register allocation in SSA Form?

SSA Form is Plural

You are probably familiar with @-functions...
— And Cytron et al.’s SSA construction method...
— And maybe a few other equivalent construction methods too...

¢-functions are just a way to split variable live ranges at convergence
points in the control flow graph

— With very specific parallel copy semantics

Why stop there?

Other Ways to Split

X

e\ /2&...

X5 < (X, X,)

Instr-1

Instr-2

(Yy, ..., Y,) < Parallel Copy(X,, ..., X.)

n

Elementary Form

« Split each variable at every place where it is live
— @-functions for all variables live at a merge point
— o-functions for all variables live at split points
— Parallel copies for each variable live between two instructions

* Elementary graphs

— Each connected component is the interference graph of one
instruction

 Technically, a clique substitution of P,
— A subclass of chordal graphs
» Stronger theoretical properties than chordal graphs
— Details will be provided in Jens Palsberg’s talk on puzzle solving

The Interference Graph for One
Instruction

« Two intersecting cliques
The variables whose lifetimes die

at the instruction

The variables defined by the current
instruction that become live

Variables live across
the instruction

Conjecture Time...

Let CHO be the class of chordal graphs
Let ELEM be the class of elementary graphs
Obviously, ELEM C CHO

Problem 1

Let X be a class of graphs such that
— ELEM © X © CHO

| want an SSA-based representation whose interference graph belongs to
class X, because X has some favorable property

Answer: Build Elementary Form
— You get the property you want, and more...

— If you care about the number of ¢@-functions, o-functions, and parallel copies,
reformulate the problem

Problem 2

Let X, Y be classes of graphs such that
— ELEM € X C Y C CHO

| want an SSA-based representation whose interference graph belongs to
class Y, because Y has some favorable property

| do not want to build an SSA-based representation whose interference
graph belongs to class X, because doing so will introduce more -
function, o-functions, and parallel copies than | want to deal with

Conjecture(s):
— An “efficient” algorithm exists to do this

— The algorithm is sufficiently general for any pair of classes X and Y as defined
above.

Problem 3

Let X be a class of graphs such that
- ELEM € X C CHO

| want an SSA-based representation whose interference graph belongs to
class X, because X has some favorable property

| want to ensure this algorithm inserts the minimal number of ¢@-functions,
o-functions, and parallel copies
— i.e., won't settle for Elementary Form

Conjecture:
— An “efficient” algorithm exists to do this

More Rambling...

Elementary graphs appear to be a hard lower bound
— Given the instruction sets of today’s processors

No rule says that the upper bound in the preceding problem statements
must be chordal graphs

— Weakly chordal graphs

— Perfect graphs

— Any graph?

Going beyond chordal graphs may require us to relax the notion of
“efficient algorithm”
— Last | heard, perfect graph recognition takes O(|V|°) time.

Limitations

There are some classes of graphs that cannot be characterized as the
interference graph of a program in any realistic SSA-based
representation that we know of.

Example: Split graphs

— A chordal graph whose vertices can be partitioned
into an independent set and a clique

— Or, equivalently, the class of chordal graphs
whose complements are chordal

— Easy to find interference graphs for one instruction
that are not Split graphs

Spilling Does Not Preserve the
Cytron et al. SSA Form You Know

X ...

X ...

e = X

= X

e = X
M « str[X,]

X, < Id[M]
=X,

X ...
e = X
M « str[X,]
X, « |d[M]
=X,
. 4 /
X3 < (X4, X;)

=Xy

Key Points of SSA-based Spilling

« For simplicity, | ignore the finer details of spill code placement

« The issue of rebuilding SSA Form does not arrive under a spill-
everywhere model

— So, assume we don'’t spill everywhere
— Good idea, as this reduces the amount of spill code

« Every use of a variable in SSA Form is the placeholder for a potential
new definition, after spilling
— The load placed before the use is the new definition

Cytron et al.’'s SSA Construction
Algorithm

* D, — the set of basic blocks containing definitions of v
« IDF(...) — the iterated dominance frontier of a set of basic blocks

« Place @-functions for v at the entry of every basic block in IDF(D,)
— Yields minimal form

— Filtering yields semi-pruned form
» See [Briggs et al., SPE 1998]

— Dead code elimination converts to pruned form
* Folklore, but easy to prove

SSRO: Yet-another SSA Variant
(Acronym to be Explained Later)

D, — the set of basic block containing definitions of v
DU, — the set of basic blocks containing definitions or uses of v

IDF(...) — the iterated dominance frontier of a set of basic blocks

Place @-functions for v at the entry of every basic block in IDF(DU,)
— In contrast, IDF(D,) for SSA Form
— Minimal, semi-pruned, pruned variants exist

SSA on the Left / SSRO on the Right

X« ... X, <«
L t L F._
.« X «~ X
Vo VA '
o X X o = Xy X, < (X4, X,)
\ Z \ o — X
\ 4 \ 4
«~ X . X «— X, A/

Xy < @(X,, X,)
e =Xy

SSA on the Left / SSRO on the Right

N

. X

X ...

L

= X

\

= X

N L

X, «— @(X,,

X4)

=X,

Definitions

Occurrence — a definition or use of a variable

An occurrence O, of variable v reaches a second occurrence O, of v
if there is a path in the CFG from O, to O, that does not pass through
any other occurrence of v.

ReachOcc [O] — the set of reaching occurrences of v that reach O,

Reaching Definitions

A Xi<—... |A

- 2 >

D le | 0. 6\ ol]

o X X o = Xy X, < (X4, X,)
o X
\ 4 C \ Z h 4 C \ . H
e X ..« X |E = X K A/E J
X3 < (X4, Xy)
L N X3
ReachOcc,[B] = {A} ReachOcc,,[B] = {A}
ReachOcc,[C] = {B} ReachOcc,[C] ={B} ReachOcc,,[H] = {G}
ReachOcc,[D] = {A} ReachOcc,,[D] = {A} ReachOcc,,[l] = {H}
ReachOcc,[E] = {A, E} ReachOcc.,[E] ={D} ReachOcc,,[J] = {H}

ReachOcc,[F] = {D, E} ReachOcc.,[F] ={A} = ReachOcc[L] = {K}

The Def-Use Tree

 |n SSA Form, the definition of each variable dominates all of its uses

« Organize definitions and uses as a tree
— idom O, — immediate dominating occurrence of use O,
— i.e., the parent of O, in the DU-tree

Leaves and Death Points

X« ... A A
e 7 7\
..o — X B D E =
m D n IE ,: ,:
..« X ..« X \/’)
))
v C \4 Z C Endof End of
L. X ..« X |E block m block n

ReachOcc,[B] = {A}
ReachOcc,[C] = {B}
ReachOcc,[D] = {A}
ReachOcc,[E] = {A, E}
ReachOcc,[F] = {D, E}

Leaves and Death Points

N
7

<+“— @

I

/N

m «+«—0O

+— AN

Xi<—... |A

B
Lo X

},

N

= X

X, «— @(X4, X,)

L

ReachOcc,,[B] = {A}
ReachOcc,,[C] = {B}
ReachOcc,,[D] = {A}
ReachOcc,,[E] = {D}
ReachOcc,,[F] = {A}

! C \ (—X2 H
= X K A/E J

Xy < @(X,, X,)
e =Xy

ReachOcc,,[H] = {G}
ReachOcc,,[l] = {H}

ReachOcc,,[J] = {H}
ReachOcc,,[L] = {K}

The Static Single Reaching
Occurrence (SSRO) Property

Theorem: In SSRO Form, the set of reaching occurrences for each
use is a singleton

— Specifically, ReachOcc,[O]] = {idom O}

Theorem: In SSRO Form, the death point of each variable
corresponds to a leaf in the def-use tree

— If not, there is a path from O, to itself, so |[ReachOcc,[O]| > 1
— Contradicts the theorem above

Spilling Under SSRO Form

DV

DV
l
M <« store[v]
O / \/2
o

V' < load[M]

Rename uses

of vio VvV

Spilling Under SSRO Form

 Theorem: There is no need to insert any additional @-functions if
spilling is applied under SSRO Form.

— For each use of v, ReachOcc [O] = {idom O}
— Any path from occurrence O, to use O, must pass through idom O,

* Practical Issues
— Simplifies process of SSA-based register allocation

— Additional ¢@-functions suggest...
 Live range splitting on a finer granularity than SSA Form
» Probably better for spilling, but worse for coalescing

Summary:
Key Properties of SSRO Form

The set of reaching occurrences of each use is a singleton

Each death point of a variable corresponds to a use
— Organize the definition and uses of each variable into a tree
— Each death point is a leaf, and vice-versa

No additional ¢@-functions must be inserted after spilling
— i.e., a procedure in SSRO Form remains in SSRO Form after spilling

Like SSA Form, the interference graph is chordal

— i.e., given a chordal graph, | can construct an SSRO Form procedure
whose interference graph is the same as the given graph.

Going Interprocedural

» It is possible to build a whole program representation such that the
interprocedural interference graph is chordal

— Only works if | can resolve all function pointers in advance
— Paper published at ICCAD 2007

« Extensions are necessary to extend the result to Elementary Form
— | have worked them out in my head
— Call it a conjecture for now

Recursive Calls

« How to handle variables live across calls in a recursive chain?
— Pushed onto stack
— Cannot use registers

« Call graph becomes a DAG
— Strongly connected components — O(|V| + |E|)
— Collapse each SCC into a single node

Local and Global Interference

Local Interferences * Global Interferences
— Variables in the same — Variables live across
procedure procedure calls
— Overlapping lifetimes — Interferences are transitive
X S Main: P:
Y V « ..
Ve s T Call P Call Q
L — X T — oV
L« ... £ V.

f; """""""""" -

Launch and Landing Pads

« When P, is called

— The maximum stack size is m = 0,
« Taken among all paths in the call graph leading to P,

— Global registers T,...T_, store variables live across calls in the chain

* P;calls P, at call point c,
— L(c,) — set of variables live across the call
— Letn =|L(c,)| be the number of variables

 Launch and Landing Pads
— Parallel copy (T,,,1---T,4n) < W(L(c,)) inserted before the call
— Parallel copy L(c,) < y (T, .4... T, inserted after the call

The Interprocedural Interference
Graph is Chordal

N=6

Tj interferes with each local variable in G,

G, is chordal

Conclusions

If you think in terms of classes of interference graphs,
there are a wide variety of SSA-based representations
that have yet to be explored

— Not clear if they are useful for register allocation

— Not clear if they provide superior facilities for dataflow analysis

SSRO Form is somehow orthogonal to the above
— |l invented it when thinking about spilling under SSA
— Eliminates the need to insert additional ¢-functions after spilling

Interprocedural extensions
— Only if we can resolve function pointers

