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What is a Mathematician? 

• A machine that converts coffee into theorems
• Beer-related variations exist as well
• More specifically

– Defines something
– Derives properties thereof via theorems and proofs
– With luck, a useful application is found eventually
– With a lot of luck, the application is found before said mathematician dies



Disclaimers
• Some of this talk has not been peer reviewed or published

• Conjectures abound



I Assume…
• You know what is SSA Form, and that you care

• This talk is not about SSA-based register allocation…
– Except for the fact that, somehow, it is…

• “SSA Form” implies “Pruned SSA Form”
– See above
– DCE converts minimal or semi-pruned to pruned 

• “SSA Form” implies Strict SSA
– See the next slide…



Strict vs. Non-strict SSA Form

X ← …

… ← XX2 ← ϕ(X1, NULL)
… ← X2

X1 ← …

• Each definition dominates each 
use

• Arguably, we can eliminate this 
φ-function

• Fewer φ-functions

• Lose properties involving 
dominance, chordal
interference graphs, etc.



Key Points of SSA Form

• Each definition dominates each use…
– And each point where each variable is live

• Each variable live range is a subtree of the dominator tree

• A chordal graph is the intersection graph of a set of subtrees of a tree
– O(|V| + |E|)-time algorithms for

• coloring, clique, independent set, clique partition

• Should we do register allocation in SSA Form?



SSA Form is Plural

• You are probably familiar with φ-functions…
– And Cytron et al.’s SSA construction method…
– And maybe a few other equivalent construction methods too…

• φ-functions are just a way to split variable live ranges at convergence 
points in the control flow graph
– With very specific parallel copy semantics

• Why stop there?



Other Ways to Split

X3 ← ϕ(X1, X2)

X1 ← … X2 ← … X2, X3 ← σ(X1)

… ← X2 … ← X3

Instr-1

(Y1, …, Yn) ← Parallel Copy(X1, …, Xn)

Instr-2



Elementary Form

• Split each variable at every place where it is live
– φ-functions for all variables live at a merge point
– σ-functions for all variables live at split points
– Parallel copies for each variable live between two instructions

• Elementary graphs
– Each connected component is the interference graph of one 

instruction
• Technically, a clique substitution of P3

– A subclass of chordal graphs
• Stronger theoretical properties than chordal graphs

– Details will be provided in Jens Palsberg’s talk on puzzle solving



The Interference Graph for One 
Instruction

• Two intersecting cliques
The variables whose lifetimes die 

at the instruction

The variables defined by the current 
instruction that become live

Variables live across 
the instruction



Conjecture Time…
• Let CHO be the class of chordal graphs
• Let ELEM be the class of elementary graphs
• Obviously, ELEM      CHO⊂



Problem 1
• Let X be a class of graphs such that 

– ELEM       X       CHO

• I want an SSA-based representation whose interference graph belongs to 
class X, because X has some favorable property

• Answer: Build Elementary Form
– You get the property you want, and more…
– If you care about the number of  φ-functions, σ-functions, and parallel copies, 

reformulate the problem

⊆⊆



Problem 2
• Let X, Y be classes of graphs such that 

– ELEM       X       Y       CHO

• I want an SSA-based representation whose interference graph belongs to 
class Y, because Y has some favorable property

• I do not want to build an SSA-based representation whose interference 
graph belongs to class X, because doing so will introduce more φ-
function, σ-functions, and parallel copies than I want to deal with

• Conjecture(s):
– An “efficient” algorithm exists to do this
– The algorithm is sufficiently general for any pair of classes X and Y as defined 

above.

⊂⊆ ⊆



Problem 3
• Let X be a class of graphs such that 

– ELEM       X       CHO

• I want an SSA-based representation whose interference graph belongs to 
class X, because X has some favorable property

• I want to ensure this algorithm inserts the minimal number of φ-functions, 
σ-functions, and parallel copies

– i.e., I won’t settle for Elementary Form

• Conjecture:
– An “efficient” algorithm exists to do this

⊆⊆



More Rambling…
• Elementary graphs appear to be a hard lower bound

– Given the instruction sets of today’s processors

• No rule says that the upper bound in the preceding problem statements 
must be chordal graphs

– Weakly chordal graphs
– Perfect graphs
– Any graph? 

• Going beyond chordal graphs may require us to relax the notion of 
“efficient algorithm”

– Last I heard, perfect graph recognition takes O(|V|9) time.



Limitations
• There are some classes of graphs that cannot be characterized as the 

interference graph of a program in any realistic SSA-based 
representation that we know of.

• Example: Split graphs

– A chordal graph whose vertices can be partitioned 
into an independent set and a clique

– Or, equivalently, the class of chordal graphs 
whose complements are chordal

– Easy to find interference graphs for one instruction 
that are not Split graphs



Spilling Does Not Preserve the 
Cytron et al. SSA Form You Know

X1 ← …

… ← X1
M ← str[X1]

X2 ← ld[M]
… ← X2

… ← X?

X1 ← …

… ← X1

… ← X1

… ← X1

X1 ← …

… ← X1
M ← str[X1]

X2 ← ld[M]
… ← X2

X3 ← ϕ(X1, X2)
… ← X3



Key Points of SSA-based Spilling

• For simplicity, I ignore the finer details of spill code placement

• The issue of rebuilding SSA Form does not arrive under a spill-
everywhere model
– So, assume we don’t spill everywhere
– Good idea, as this reduces the amount of spill code

• Every use of a variable in SSA Form is the placeholder for a potential 
new definition, after spilling
– The load placed before the use is the new definition



Cytron et al.’s SSA Construction 
Algorithm

• Dv – the set of basic blocks containing definitions of v

• IDF(…) – the iterated dominance frontier of a set of basic blocks

• Place φ-functions for v at the entry of every basic block in IDF(Dv)
– Yields minimal form
– Filtering yields semi-pruned form

• See [Briggs et al., SPE 1998]
– Dead code elimination converts to pruned form

• Folklore, but easy to prove



SSRO: Yet-another SSA Variant
(Acronym to be Explained Later)

• Dv – the set of basic block containing definitions of v
• DUv – the set of basic blocks containing definitions or uses of v

• IDF(…) – the iterated dominance frontier of a set of basic blocks

• Place φ-functions for v at the entry of every basic block in IDF(DUv)
– In contrast, IDF(Dv) for SSA Form
– Minimal, semi-pruned, pruned variants exist



SSA on the Left / SSRO on the Right 

X1 ← …

… ← X1

… ← X1

X3 ← φ(X1, X2)
… ← X3

… ← X1

X2 ← φ(X1, X2)
… ← X2

X ← …

… ← X

… ← X… ← X

… ← X… ← X



SSA on the Left / SSRO on the Right 

X ← …

… ← X

… ← X

… ← X

X1 ← …

… ← X1

X2 ← φ(X1, X1)
… ← X2

… ← X1



Definitions 

• Occurrence – a definition or use of a variable

• An occurrence O1 of variable v reaches a second occurrence O2 of v 
if there is a path in the CFG from O1 to O2 that does not pass through 
any other occurrence of v.

• ReachOccv[Oi] – the set of reaching occurrences of v that reach Oi



Reaching Definitions 
X ← …

… ← X

… ← X… ← X

… ← X… ← X

A

B

C

D E

F

ReachOccx[B] = {A}
ReachOccx[C] = {B}
ReachOccx[D] = {A}
ReachOccx[E] = {A, E}
ReachOccx[F] = {D, E}

ReachOccx1[B] = {A}
ReachOccx1[C] = {B}
ReachOccx1[D] = {A}
ReachOccx1[E] = {D}
ReachOccx1[F] = {A}

ReachOccx2[H] = {G}
ReachOccx2[I] = {H}
ReachOccx2[J] = {H}
ReachOccx3[L] = {K}

X1 ← …

… ← X1

… ← X1

X3 ← φ(X1, X2)
… ← X3

… ← X1

X2 ← φ(X1, X2)
… ← X2

A
B

C

D

K E J

G F I

L

H



The Def-Use Tree 
• In SSA Form, the definition of each variable dominates all of its uses

• Organize definitions and uses as a tree
– idom Oi – immediate dominating occurrence of use Oi

– i.e., the parent of Oi in the DU-tree



Leaves and Death Points 
X ← …

… ← X

… ← X… ← X

… ← X… ← X

A

B

C

D E

F

ReachOccx[B] = {A}
ReachOccx[C] = {B}
ReachOccx[D] = {A}
ReachOccx[E] = {A, E}
ReachOccx[F] = {D, E}

m n

A

B

C

D E F

End of 
block m

End of 
block n



Leaves and Death Points 

ReachOccx1[B] = {A}
ReachOccx1[C] = {B}
ReachOccx1[D] = {A}
ReachOccx1[E] = {D}
ReachOccx1[F] = {A}

ReachOccx2[H] = {G}
ReachOccx2[I] = {H}
ReachOccx2[J] = {H}
ReachOccx3[L] = {K}

X1 ← …

… ← X1

… ← X1

X3 ← φ(X1, X2)
… ← X3

… ← X1

X2 ← φ(X1, X2)
… ← X2

A
B

C

D

K E J

G F I

L

H

A

B

C

D F

E

G

J

H

I

K

L



The Static Single Reaching 
Occurrence (SSRO) Property

• Theorem: In SSRO Form, the set of reaching occurrences for each 
use is a singleton
– Specifically, ReachOccx[Oi] = {idom Oi}

• Theorem: In SSRO Form, the death point of each variable 
corresponds to a leaf in the def-use tree
– If not, there is a path from Oi to itself, so |ReachOccx[Oi]| > 1
– Contradicts the theorem above



Spilling Under SSRO Form 

Dv

Oj Oi

Dv

Oj

Oi

M ← store[v]

…

v’ ← load[M]

Rename uses
of v to v’



Spilling Under SSRO Form 
• Theorem: There is no need to insert any additional φ-functions if 

spilling is applied under SSRO Form.
– For each use of v, ReachOccv[Oi] = {idom Oi}
– Any path from occurrence Oj to use Oi must pass through idom Oi

• Practical Issues
– Simplifies process of SSA-based register allocation
– Additional φ-functions suggest…

• Live range splitting on a finer granularity than SSA Form
• Probably better for spilling, but worse for coalescing



Summary: 
Key Properties of SSRO Form 

• The set of reaching occurrences of each use is a singleton

• Each death point of a variable corresponds to a use
– Organize the definition and uses of each variable into a tree
– Each death point is a leaf, and vice-versa

• No additional φ-functions must be inserted after spilling
– i.e., a procedure in SSRO Form remains in SSRO Form after spilling

• Like SSA Form, the interference graph is chordal
– i.e., given a chordal graph, I can construct an SSRO Form procedure 

whose interference graph is the same as the given graph.



Going Interprocedural
• It is possible to build a whole program representation such that the 

interprocedural interference graph is chordal
– Only works if I can resolve all function pointers in advance
– Paper published at ICCAD 2007

• Extensions are necessary to extend the result to Elementary Form
– I have worked them out in my head
– Call it a conjecture for now



Recursive Calls

• How to handle variables live across calls in a recursive chain?
– Pushed onto stack
– Cannot use registers

• Call graph becomes a DAG
– Strongly connected components – O(|V| + |E|)
– Collapse each SCC into a single node



Local and Global Interference 
• Local Interferences

– Variables in the same 
procedure

– Overlapping lifetimes

X ← …

Y ← …

… ← X

Z ← …

… ← Y

… ← Z

Y

X

Z

• Global Interferences
– Variables live across 

procedure calls
– Interferences are transitive

Main:

V ← …

Call P

… ← V

P:

…

Call Q

…

Main P Q

V



Launch and Landing Pads 
• When Pi is called 

– The maximum stack size is m = δi
• Taken among all paths in the call graph leading to Pi

– Global registers T1…Tm store variables live across calls in the chain

• Pi calls Pj at call point ck

– L(ck) – set of variables live across the call
– Let n = |L(ck)| be the number of variables

• Launch and Landing Pads
– Parallel copy (Tm+1...Tm+n) ← ψ(L(ck)) inserted before the call
– Parallel copy L(ck) ← ψ-1(Tm+1…Tm+n) inserted after the call



The Interprocedural Interference 
Graph is Chordal

T1 T2 T3 T4 T5 T6

CLIQUE N = 6

G1

δ1 = 0

G2

δ2 = 2

G3

δ3 = 3

G4

δ4 = 2

G5

δ5 = 6

G6

δ6 = 5

Tj interferes with each local variable in Gi

Gi is chordal



Conclusions

• If you think in terms of classes of interference graphs, 
there are a wide variety of SSA-based representations 
that have yet to be explored
– Not clear if they are useful for register allocation
– Not clear if they provide superior facilities for dataflow analysis

• SSRO Form is somehow orthogonal to the above
– I invented it when thinking about spilling under SSA
– Eliminates the need to insert additional φ-functions after spilling

• Interprocedural extensions 
– Only if we can resolve function pointers


