

Processor Architecture Laboratory Laboratoire d'Architecture des Processeurs

School of Computer and Communication Sciences



### Exploring the Landscape of SSAbased Program Representations

#### Philip Brisk École Polytechnique Fédérale de Lausanne (EPFL)

SSA Seminar, Autrans, France April 27, 2009

# What is a Mathematician?

- A machine that converts coffee into theorems
- Beer-related variations exist as well
- More specifically
  - Defines something
  - Derives properties thereof via theorems and proofs
  - With luck, a useful application is found eventually
  - With a lot of luck, the application is found before said mathematician dies

### Disclaimers

- Some of this talk has not been peer reviewed or published
- Conjectures abound

### I Assume...

- You know what is SSA Form, and that you care
- This talk is not about SSA-based register allocation...
  - Except for the fact that, somehow, it is...
- "SSA Form" implies "Pruned SSA Form"
  - See above
  - DCE converts minimal or semi-pruned to pruned
- "SSA Form" implies Strict SSA
  - See the next slide...

# Strict vs. Non-strict SSA Form





- Each definition dominates each use
- Arguably, we can eliminate this φ-function

- Fewer φ-functions
- Lose properties involving dominance, chordal interference graphs, etc.

# Key Points of SSA Form

- Each definition dominates each use...
  - And each point where each variable is live
- Each variable live range is a subtree of the dominator tree
- A chordal graph is the intersection graph of a set of subtrees of a tree
   O(|V| + |E|)-time algorithms for
  - coloring, clique, independent set, clique partition
- Should we do register allocation in SSA Form?

# SSA Form is Plural

- You are probably familiar with φ-functions...
  - And Cytron et al.'s SSA construction method...
  - And maybe a few other equivalent construction methods too...
- φ-functions are just a way to split variable live ranges at convergence points in the control flow graph
  - With very specific parallel copy semantics
- Why stop there?

### Other Ways to Split





# **Elementary Form**

- Split each variable at every place where it is live
  - $\phi$ -functions for all variables live at a merge point
  - $-\sigma$ -functions for all variables live at split points
  - Parallel copies for each variable live between two instructions
- Elementary graphs
  - Each connected component is the interference graph of one instruction
    - Technically, a clique substitution of P<sub>3</sub>
  - A subclass of chordal graphs
    - Stronger theoretical properties than chordal graphs
  - Details will be provided in Jens Palsberg's talk on puzzle solving

### The Interference Graph for One Instruction



# Conjecture Time...

- Let CHO be the class of chordal graphs
- Let ELEM be the class of elementary graphs
- Obviously,  $ELEM \subset CHO$

# Problem 1

- Let X be a class of graphs such that
  - ELEM  $\subseteq$  X  $\subseteq$  CHO
- I want an SSA-based representation whose interference graph belongs to class X, because X has some favorable property
- **Answer**: Build Elementary Form
  - You get the property you want, and more...
  - If you care about the number of  $\phi$ -functions,  $\sigma$ -functions, and parallel copies, reformulate the problem

# Problem 2

- Let X, Y be classes of graphs such that
  - ELEM  $\subseteq$  X  $\subset$  Y  $\subseteq$  CHO
- I want an SSA-based representation whose interference graph belongs to class Y, because Y has some favorable property
- I do not want to build an SSA-based representation whose interference graph belongs to class X, because doing so will introduce more φfunction, σ-functions, and parallel copies than I want to deal with

#### • Conjecture(s):

- An "efficient" algorithm exists to do this
- The algorithm is sufficiently general for any pair of classes X and Y as defined above.

### Problem 3

- Let X be a class of graphs such that
  - ELEM  $\subseteq$  X  $\subseteq$  CHO
- I want an SSA-based representation whose interference graph belongs to class X, because X has some favorable property
- I want to ensure this algorithm inserts the minimal number of  $\varphi$ -functions,  $\sigma$ -functions, and parallel copies
  - i.e., I won't settle for Elementary Form
- Conjecture:
  - An "efficient" algorithm exists to do this

# More Rambling...

- Elementary graphs appear to be a hard lower bound
  - Given the instruction sets of today's processors
- No rule says that the upper bound in the preceding problem statements must be chordal graphs
  - Weakly chordal graphs
  - Perfect graphs
  - Any graph?
- Going beyond chordal graphs may require us to relax the notion of "efficient algorithm"
  - Last I heard, perfect graph recognition takes  $O(|V|^9)$  time.

# Limitations

- There are some classes of graphs that cannot be characterized as the interference graph of a program in any realistic SSA-based representation that we know of.
- Example: Split graphs
  - A chordal graph whose vertices can be partitioned into an independent set and a clique
  - Or, equivalently, the class of chordal graphs whose complements are chordal
  - Easy to find interference graphs for one instruction that are not Split graphs



# Spilling Does Not Preserve the Cytron et al. SSA Form You Know



# Key Points of SSA-based Spilling

- For simplicity, I ignore the finer details of spill code placement
- The issue of rebuilding SSA Form does not arrive under a spilleverywhere model
  - So, assume we don't spill everywhere
  - Good idea, as this reduces the amount of spill code
- Every use of a variable in SSA Form is the placeholder for a potential new definition, after spilling
  - The load placed before the use is the new definition

### Cytron et al.'s SSA Construction Algorithm

- $D_v$  the set of basic blocks containing definitions of v
- IDF(...) the iterated dominance frontier of a set of basic blocks
- Place  $\varphi$ -functions for v at the entry of every basic block in IDF(D<sub>v</sub>)
  - Yields minimal form
  - Filtering yields semi-pruned form
    - See [Briggs et al., SPE 1998]
  - Dead code elimination converts to pruned form
    - Folklore, but easy to prove

# SSRO: Yet-another SSA Variant (Acronym to be Explained Later)

- $D_v$  the set of basic block containing definitions of v
- $DU_v$  the set of basic blocks containing <u>definitions or uses</u> of v
- IDF(...) the iterated dominance frontier of a set of basic blocks
- Place  $\varphi$ -functions for v at the entry of every basic block in IDF(DU<sub>v</sub>)
  - In contrast,  $IDF(D_v)$  for SSA Form
  - Minimal, semi-pruned, pruned variants exist

### SSA on the Left / SSRO on the Right





### SSA on the Left / SSRO on the Right



### Definitions

- **Occurrence** a definition or use of a variable
- An occurrence O<sub>1</sub> of variable v reaches a second occurrence O<sub>2</sub> of v if there is a path in the CFG from O<sub>1</sub> to O<sub>2</sub> that does not pass through any other occurrence of v.
- ReachOcc<sub>v</sub> $[O_i]$  the set of reaching occurrences of v that reach  $O_i$

# **Reaching Definitions**





 $\begin{aligned} & \text{ReachOcc}_x[\text{B}] = \{\text{A}\} \\ & \text{ReachOcc}_x[\text{C}] = \{\text{B}\} \\ & \text{ReachOcc}_x[\text{D}] = \{\text{A}\} \\ & \text{ReachOcc}_x[\text{E}] = \{\text{A}, \text{E}\} \\ & \text{ReachOcc}_x[\text{F}] = \{\text{D}, \text{E}\} \end{aligned}$ 

ReachOcc<sub>x1</sub>[B] = {A} ReachOcc<sub>x1</sub>[C] = {B} ReachOcc<sub>x1</sub>[D] = {A} ReachOcc<sub>x1</sub>[E] = {D} ReachOcc<sub>x1</sub>[F] = {A}

 $\begin{aligned} & \text{ReachOcc}_{x2}[\text{H}] = \{\text{G}\} \\ & \text{ReachOcc}_{x2}[\text{I}] = \{\text{H}\} \\ & \text{ReachOcc}_{x2}[\text{J}] = \{\text{H}\} \\ & \text{ReachOcc}_{x3}[\text{L}] = \{\text{K}\} \end{aligned}$ 

### The Def-Use Tree

- In SSA Form, the definition of each variable dominates all of its uses
- Organize definitions and uses as a tree
  - idom  $O_i$  immediate dominating occurrence of use  $O_i$
  - i.e., the parent of O<sub>i</sub> in the DU-tree

### Leaves and Death Points





 $\begin{aligned} \text{ReachOcc}_{x}[\text{B}] &= \{\text{A}\}\\ \text{ReachOcc}_{x}[\text{C}] &= \{\text{B}\}\\ \text{ReachOcc}_{x}[\text{D}] &= \{\text{A}\}\\ \text{ReachOcc}_{x}[\text{E}] &= \{\text{A}, \text{E}\}\\ \text{ReachOcc}_{x}[\text{F}] &= \{\text{D}, \text{E}\}\end{aligned}$ 

### Leaves and Death Points



 $X_1 \leftarrow \dots$ Α Β  $\dots \leftarrow X_1$ G F D  $\dots \leftarrow X_1$  $X_2 \leftarrow \phi(X_1, X_2)$  $\dots \leftarrow X_2$ н С ΈJ **γ**Κ  $\dots \leftarrow X_1$  $\begin{array}{c} X_3 \leftarrow \phi(X_1, X_2) \\ \dots \leftarrow X_3 \end{array}$ 

ReachOcc<sub>x1</sub>[B] = {A} ReachOcc<sub>x1</sub>[C] = {B} ReachOcc<sub>x1</sub>[D] = {A} ReachOcc<sub>x1</sub>[E] = {D} ReachOcc<sub>x1</sub>[F] = {A}

 $\begin{aligned} & \text{ReachOcc}_{x2}[\text{H}] = \{\text{G}\} \\ & \text{ReachOcc}_{x2}[\text{I}] = \{\text{H}\} \\ & \text{ReachOcc}_{x2}[\text{J}] = \{\text{H}\} \\ & \text{ReachOcc}_{x3}[\text{L}] = \{\text{K}\} \end{aligned}$ 

## The Static Single Reaching Occurrence (SSRO) Property

- **Theorem**: In SSRO Form, the set of reaching occurrences for each use is a singleton
  - Specifically, ReachOcc<sub>x</sub> $[O_i] = \{idom O_i\}$
- Theorem: In SSRO Form, the death point of each variable corresponds to a leaf in the def-use tree
  - If not, there is a path from  $O_i$  to itself, so  $|ReachOcc_x[O_i]| > 1$
  - Contradicts the theorem above

### Spilling Under SSRO Form





# Spilling Under SSRO Form

- **Theorem**: There is no need to insert any additional φ-functions if spilling is applied under SSRO Form.
  - For each use of v, ReachOcc<sub>v</sub>[O<sub>i</sub>] = {idom O<sub>i</sub>}
  - Any path from occurrence  $O_i$  to use  $O_i$  must pass through idom  $O_i$
- Practical Issues
  - Simplifies process of SSA-based register allocation
  - Additional φ-functions suggest...
    - Live range splitting on a finer granularity than SSA Form
    - Probably better for spilling, but worse for coalescing

### Summary: Key Properties of SSRO Form

- The set of reaching occurrences of each use is a singleton
- Each death point of a variable corresponds to a use
  - Organize the definition and uses of each variable into a tree
  - Each death point is a leaf, and vice-versa
- No additional φ-functions must be inserted after spilling
  i.e., a procedure in SSRO Form remains in SSRO Form after spilling
- Like SSA Form, the interference graph is chordal
  - i.e., given a chordal graph, I can construct an SSRO Form procedure whose interference graph is the same as the given graph.

# **Going Interprocedural**

- It is possible to build a whole program representation such that the interprocedural interference graph is chordal
  - Only works if I can resolve all function pointers in advance
  - Paper published at ICCAD 2007
- Extensions are necessary to extend the result to Elementary Form
  - I have worked them out in my head
  - Call it a conjecture for now

### **Recursive Calls**

- How to handle variables live across calls in a recursive chain?
  - Pushed onto stack
  - Cannot use registers
- Call graph becomes a DAG
  - Strongly connected components O(|V| + |E|)
  - Collapse each SCC into a single node

# Local and Global Interference

- Local Interferences
  - Variables in the same procedure
  - Overlapping lifetimes



- Global Interferences
  - Variables live across procedure calls
  - Interferences are transitive



# Launch and Landing Pads

- When  $P_i$  is called
  - The maximum stack size is m =  $\delta_i$ 
    - Taken among all paths in the call graph leading to P<sub>i</sub>
  - Global registers  $T_1...T_m$  store variables live across calls in the chain
- $P_i$  calls  $P_i$  at call point  $c_k$ 
  - L(c<sub>k</sub>) set of variables live across the call
  - Let  $n = |L(c_k)|$  be the number of variables
- Launch and Landing Pads
  - Parallel copy  $(T_{m+1}...T_{m+n}) \leftarrow \psi(L(c_k))$  inserted before the call
  - Parallel copy  $L(c_k) \leftarrow \psi^{-1}(T_{m+1}...T_{m+n})$  inserted after the call

### The Interprocedural Interference Graph is Chordal



### Conclusions

- If you think in terms of classes of interference graphs, there are a wide variety of SSA-based representations that have yet to be explored
  - Not clear if they are useful for register allocation
  - Not clear if they provide superior facilities for dataflow analysis
- SSRO Form is somehow orthogonal to the above
  - I invented it when thinking about spilling under SSA
  - Eliminates the need to insert additional  $\varphi$ -functions after spilling
- Interprocedural extensions
  - Only if we can resolve function pointers