% % George R. Brown
School of Engineering
@ Computer Science

& Array SSA Form and its use in Program Analysis and
Fisor of Pogmming Langoaes yera [ransformation

— Vivek Sarkar

el Rice University
| — “—1——1 vsarkar@rice.edu

T Work done jointly with
/ K. Knobe & S. Fink

E(100) , (2,101) >

i x [A|B |C|D X, |4 |1 |LE
- 3D %

J <(2,101)>) \ B
» ., J_// X, = dB(X,X,) A|B |C

eall

Array SSA Form and Related Work

Control| Array [Renaming + Static
Flow [Subscripts|Single Assignments

Classical Data Flow X

Scalar SSA X X

Array Dependence X

Array Data Flow |Limited X

Array SSA X X X

Y RICE :)

Advantages of Array SSA Form

Renaming + Element-level use-def information

* |ncreases analysis and reordering potential for programs
with array, structure and pointer variables

= Value analysis, parallelism, code motion
= Enables speculative execution

= Executing more than specified, and selecting the right value

= Enables element-level optimizations

= Executing less than specified using element-level liveness
)

Y RICE ;)

References

* |mplementation of Array SSA Form in Jikes RVM

= Unified Analysis of Array and Object References in Strongly
Typed Languages. S.Fink, K.Knobe, V.Sarkar. Proceedings of
the 2000 Static Analysis Symposium (SAS '00), October 2000.

» Enhanced Parallelization via Analyses and Transformations on

Array SSA Form. K.Knobe, V.Sarkar. Workshop on Compilers
for Parallel Computers (CPC), Jan 2000.

= Enabling Sparse Constant Propagation of Array Elements via
Array SSA Form. V.Sarkar and K.Knobe. Proceedings of the
1998 Static Analysis Symposium (SAS '98), October 1998.

= Array SSA form and its use in Parallelization. Kathleen Knobe
and Vivek Sarkar. Proceedings of the 25th ACM SIGPLAN
-SIGACT Symposium on Principles of Programming Languages,

. San Diego, California, January 1998.
' RICE .

Outline
= Array SSA form vs. Traditional SSA form

= Conditional Constant Propagation using Array
SSA form

= | oop Parallelization using Array SSA form

= | oad elimination of object fields and array
accesses using Array SSA form

= Conclusions and Future Work

' RICE -

Example Program
(Control Flow Graph)

Traditional Scalar SSA Form

=N\ X, = D(X,Xy)

®(x4,X5) Is not a pure function. |t
has implicit parameters.

7 b

Making ® functions executable in Scalar SSA Form
through @ variables (vector timestamps)

Original program

(for-loop example):

for i :=1 to m do
S :

if .) then

nn ~ |
I

end if

end for

Array SSA form:
@S, := (); @S, := ()
for i :=1 to m do
S; = ..
@s; := (i)
if (. . .) then
S, = ..
@s, := (1)

s, = if (@S, >= @S,)

then S,
else S;
end if

S RICE

end if
end for
\83 := d(S,,@S,,S,,s,)
@S; := max(@S,,@S,;)

® function was optimized in this example via copy propagation

Scalar SSA form does not work for Arrays

A= ...

=N\ A,=D(AA)?

Scalar SSA does not support Scalar SSA ® functions do not
preserving definitions support element-level merge

B[R
)

Array SSA Form --- Definition ¢

Definition ® = data merge of array element modified in current def
with array elements of previous def

Original Program Array SSA Form
X[1:n]=... X[1:n]=...
X[k] =... X,[k]=...
- = X[j] X; = dd(X,,X,)
o = X5[j]
X |[A|B |C|D X |4 |1 |1 |E

Ty ,

X, = dd(X,,X,) A B |C |E

10

@ variables for Arrays

Original program:
for 1 := ... do
X[1l:n] := .
X[k] := .
= X[]]
end for

X3[3] = 1f (@X,[3] >= @X,[3])

then X,[]]
else X;[]]
end if

% RICE

11

Array SSA form:

X, [*] = ()

X, [*] = ()

for 1 := ... do
X;[1:n] = ...
@X;[1:n] (1)
X, [k] = ...
@X,[k] := (i)

end for

X, := P(X,,0X,,X,,0X,)

@X; := max(@X,,@X,)

i= Xy[3]

Outline
= Array SSA form vs. Traditional SSA form

= Conditional Constant Propagation using Array
SSA form

= | oop Parallelization using Array SSA form

= | oad elimination of object fields and array
accesses using Array SSA form

= Conclusions and Future Work

' RICE “

Lattice Values in Constant Propagation using Scalar SSA

form
///;5g9) = 99 SET(T)={}
, SET(99) = {99 \
' T

P
end if L (k,)

173 = ¢ (k,y, k)

l

L(k
(k) SET(_L)= Universal set of

L(k3) = L(kl)
= 99
%RICE = 99

constants
13

S
TN

.
)

Extending the Lattice for Array Values

Lattice value for array variable T
= finite list of constant index-value pairs /

<(1,100), (2,101)>
Lattice element represents a set of index-
value pairs as shown below

. <(1,100)> <(2,101)>

J_///////////
‘C(A) = <(i1381)> .

SET(L(A)= {(i1, 1), (iz, €2),...} U UL, — {ir,in,...}) x UA,,,

14 ﬁh

It is always safe to approximate a lattice
element by a lower value

=>» Lattice height can be bounded as a
compiler parameter

Use Partial Array SSA Form (w/o @ variables) for Analysis

Original code:

X := ..

if (..) then
X[k] := ..
endif

Partial Array SSA form:
Xy:= ..

if (..) then

X, [k] := .

X, := d¢(X;,X,)

endif

X; := mdp(X,,X,)

Definition ¢
X,[31 =
if (j == k) then

X, [37]
else

Xo[3J]
endif

Merge ¢

X;[3]1 = X,[3] or X,[]]

15 &‘

Conditional Constant Propagation using Array SSA form
(Example)

i:=5 L(i) =5
if (i = 5) then L (i=5) = TRUE
k := 3 L(k) = 3
X,[k] := 99 L(X,) = <(3,99)>
X, := d¢(X;,X,) L(X,) = <(3,99)>
endif
X, := m(X,,X,) L(X,) = <(3,99)>
X,[i] := 101 L(X,) = <(5,101)>
X = d(X,,X;) L(X:) = <(3,99), (5,101)>
y := X:[k] L(X:[k]) = 99

’ §

Summary of Constant Propagation using Array SSA form

= Algorithm performs constant propagation through array
elements.

= Execution time of algorithm is linear in size of Array SSA
form.

= Algorithm propagates constants for arrays only when array
element has constant index and constant value. (SAS 2000
paper shows how to propagate constants through symbolic
indices, by determining equality & inequality of index
expressions.)

% RICE 17]

Constants Propagation with Symbolic Index Values
(Sneak Preview)

Let V., V;, V, be value numbers for i, j, k

and assume V; =V, and V. # V

2(X)=<...(V,,43)(V, ,12)...>

X,[j]:=100
X, = o(X, Xp)
=X] £ (X,) =INSERT(£(X,), (V;,100))
=<...(V;,100)(V, ,12)...>
ZRICE y 6

Outline
= Array SSA form vs. Traditional SSA form

= Conditional Constant Propagation using Array
SSA form

= Loop Parallelization using Array SSA form

= | oad elimination of object fields and array
accesses using Array SSA form

= Conclusions and Future Work

' RICE 19

Compile-time vs. Run-time usage of Array SSA form

Compile-time usage Run-time usage

= Use Partial Array SSA = Use Full Array SSA form
form with merge ¢ and with merge ¢'s, definition
definition ¢ functions ¢'s and @ variables

= Compile-time space is = Qverhead depends on
linearly proportional to which @ variables and ¢
scalar SSA space functions are made

= No overhead incurred at manifest at run-time
run-time

' RICE 20

Loop Parallelization using Array SSA form

= |nput
= |oop with no loop-carried true dependence (no
recurrence)

= Can have arbitrary loop-carried anti and output
dependences (storage-related dependences)

= Qutput
= Parallelized execution and finalization loops based on
Array SSA form
o' RICE 21

Example Loop in Array SSA Form

Xy 1= 0 (Xy, X,)
if (...) then
X, [£(1)] == rhs(l)
X3 1= Q(Xy, X
end 1if
Xg = 0 (X3, %)
end do
Xg 1= O (X4, Xp)

Initial Array SSA form

22

XO[*] =
do 1 := .
it (.) then
X,[£(1)]:= rhs(i)
end 1f
end do
X 1= 0(X,,X,)
Simplified

(Assumes no read
of X in original loop)

Simplified Version with @ variables inserted

@X, [*] := ()

Xo[*] := ..
X, [*] := (1)
do i := ..
if (. . .) then
X,[£(1i)] := rhs(i)
@X,[£(i)] := (1,1)

endif /X4[J] = :;fl (@);2:%]::: >= @X,[31]1)
en X,[]
enddo else X.[5]

X, := ®(X,,0X,,X,,0X,) oo if

% 'RICE .

Parallelization using Array SSA Form

Step 1: Array SSA form naturally partitions a loop into
execution and finalization phases:

do 1 := ..
if (. . .) then
X, [£(i)] := rhs(i) Execution Phase
X, [£(i)] := ...
endif
enddo
X, := ®(X,,0X,,X,,0X,) Finalization Phase

% RICE 24 ‘5

lteration Parallelism

Step 2: Use array expansion to parallelize both loops (degree of

expansion can be contracted to degree of parallelism exploited)

Execution [iteration space] FInalization [data space]

X [*,*] := -1
doall i := .. doall j =1, m
if (. . .) then imax := max(@X,[j,1:n])
X,[£(1) ,i] := rhs(i) if (imax !'= -1) then
@X,[£(1) ,1] = 1 X,[3]1 := X,[],imax]
endif else
enddo Xa[31 = X031
endif
enddo

' RICE =

Rasterization Example
(Array SSA Renaming performed on display buffer)

Processor 1 Processor 2 Processor 3 Processor 4
(N/4 polygons) (N/4 polygons) (N/4 polygons) (N/4 polygons)
B
@k, @ array @B, @ array @B, @ array @B, @ array
Local Local Local Local
display display display display
B1 B Bs B4
buffer 2 buffer ? buffer
Global
display
buffer

26

B5 = F(B1s@B1a BZs@BZa B3!@B3’ B4s@B4)

Rasterization Example

Time in Seconds

No. of Serial Parallel | Parallel

Polygons P=1 p=4 | Speedup
10,000 3.6 3.8 1.4 2.6
50,000 17.1 17.4 4.8 3.6
100,000 34.5 34.0 9.1 3.8

Execution times measured on a Digital AlphaServer 4100 SMP with 400 MHz Alpha 21164 processors

' RICE

27

Region Parallelism

28

Region Parallelism

do 1 = ..
x1(..) =
@x1(..) = 1
enddo
do i = ..
1f ... then
X2 (1) = t + ..
t = x2(1)
@x2 (i)
endif
enddo

i

x3 = ¢(x2,0@x2,x1,0@x1,x0)

x3(J)

29

if (@x2(3) <> 1) then
x2(7J)

elseif (@x1(j) <> 1) then

x1(J)
else

x0(J)
endif

Many Possible Factorings

x]1 X2

X3
x4
xb

X0

x1 X2 X3 x4

X5

¢ computation is associative

30

X0

Outline
= Array SSA form vs. Traditional SSA form

= Conditional Constant Propagation using Array
SSA form

= | oop Parallelization using Array SSA form

= | oad elimination of object fields and array
accesses using Array SSA form

= Conclusions and Future Work

' RICE 31

Heap Arrays for analysis of Java programs

Model acceses to field x as accesses to a 1-D Heap Array
GETFIELD p.x -> read of x[p]
PUTFIELD q.x -> write of x[q]
Model accesses to 1-D Java array as accesses to a 2-D Heap Array for array type
e.g., consider arrays of type double][]
ALOAD of a[i] -> read of double [a, i]
ASTORE of ai] -> write of double [a, i]
Leverages type system for disambiguation
Distinct heap arrays for distinct fields and distinct array types

Use single heap array for weakly typed languages

p q r
Heap Array x
Lol Tax] o [l ALy
. e X T
o' RICE 32

Extended Array SSA example

introduce "Heap" array x for each field x

class Z { int x; };

Z a = new Z()
if (...){

ax =1
} else {

axX:z2

class Z { int x; };

ag = new Z()
x1lag] = O
if (...){

xz [ag)= 1

x3 = do (x1,x2)
} else {

x4 [ag)= 2

x5 = do (x1,X4)
}
Xe = ¢ (x3,x5)
y = X5 [ad]

Definitely Same / Definitely Different Relations among
Value Numbers

Assign each scalar s a value number V(s)
Global Value Numbering
Definitely Same (DS)

if V(x) = V(y), x and y have the same value wherever both are
defined

Definitely Different (DD): construct "equivalence classes" of value
numbers that must be distinct

pointers from different allocation sites
"pre-existing" objects
"uniformly-generated"” index values

Equivalence class approach to computing DS and DD is more efficient
than points-to graphs

RICE 34 §

Intraprocedural Load Elimination --- Example

Original Program Transformed Program
p :=hew/Z p :=hew/Z
q :=nhew/”Z q ‘= nhewZ
ri=p ri=p
p.X = .. # T1:= .
q.X := ... p.x :=T1

. .= rX q.x =

.. = T1
%RICE 35

=Index Propagation Example

L(H)

Extended Array SSA representation

available

Dataflow Solution

Fraction of Dynamic Memory Operations eliminated

30%

20%

10%

0%
compress jess db mpegaudio jack javac symantec

EIU—-VIOd

(memory op = getfield, putfield, getstatic, putstatic, aload, or astore)

RICE . 6

Reduction in running time on 166MHz PowerPC,
AlX 4.3, 1GB

30%
20%
10%
0
D
2
= 0%
5 compress jess db mpegaudio jack javac symantec

§§ RICE 38

Outline
= Array SSA form vs. Traditional SSA form

= Conditional Constant Propagation using Array
SSA form

= | oop Parallelization using Array SSA form

= | oad elimination of object fields and array
accesses using Array SSA form

= Conclusions and Future Work

' RICE .

Other Topics Discussed in Papers

= Data flow equations for array constant propagation
= Optimization of ® functions and @ variables

= Parallelization with Speculative Execution

= Parallelism across Regions

» Modeling Structures as Arrays

' RICE 4

Other SSA-related work that I've been involved in

= ABCD: Eliminating Array Bounds Checks on Demand. R.Bodik,
R.Gupta, V.Sarkar. ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation (PLDI), June 2000.

* |ncremental Computation of Static Single Assignment Form. Jong-Deok
Choi, Vivek Sarkar, and Edith Schonberg. Proceedings of the 1996
International Conference on Compiler Construction, Linkoping,
Sweden, April 1996.

= ASTI optimizer, 1991 — 1993. IBM’s first optimizer to use SSA form in a
product (XL Fortran 4.1, shipped in 1996).

= Compact Representations for Control Dependence. Ron Cytron,
Jeanne Ferrante, and Vivek Sarkar. Proceedings of the ACM
SIGPLAN 90 Conference on Programming Language Design and
Implementation, White Plains, New York, pages 337-351, June 1990.

' RICE #

Conclusions

Array SSA form is an intermediate form that integrates
= Control flow analysis

= |[ndex analysis

= Renaming

= |ncreases reordering potential
= Enables speculative execution

= Enables element-level optimizations
o' RICE 2

Future Work

= Study of legal ¢ and @ transformations
= Extend scope of other optimizations to array elements
= Program slicing w.r.t. array elements

= Extend framework to perform deeper analysis of pointer
structures

= Extend constant propagation algorithm to type propagation
in strongly-typed OO languages

= Use in analysis and transformation of parallel X10 and
Habanero-Java programs (Habanero project)

= Use in optimization of array accesses in C and Fortran
programs (PACE project)

S RICE “

Habanero Project Overview (habanero.rice.edu)

Parallel Applications

(Seismic analysis, Medical imaging, Finite Element Methods, ...)

1) Habanero
Programming

Challenge: .Develop new . Languages Two-level programming model

programming technologies and

pedagogical foundations for 2) Habanero Implicitly Parallel Coordination

portable parallelism on future Static Compiler & Language for Joe,

multicore hardware Parallel CnC (Intel Concurrent Collections)
Intermediate +

Representation Explicitly Parallel Programming

Languages for Stephanie,

3) Habanero

Foreign Code Foreign Runtime & Habanero-Java (from X10 v1.5)
(Matlab, Java, C, C++, «— Functon ., S' nl me. and Habanero-C
Fortran, CUDA) Interface yna : IC
Compiler

Multicore Platforms
(Cell, Clearspeed, Cyclops, GeFori:ﬁ, Niagara, Opteron, Power, Xeon, ...)

Habanero Static Parallelizing & Optimizing Compiler

Foreign

(" May-Happen-In-)
| Parallel Analysis |

J] Sequential C,

— » Front End . , Function—__,
Languages i Interface Fortran, Java,

— P -
AST———»| HPIR Generation
Interproceflural . e | oo
Analysis [T | Gpimzatons
: \J

Optimization

PIR B
Analysis & |

Classfile

: l¢
Transformations

'_P E’r_ta_b'_e_'\ﬂelnf‘g‘idﬁ“_r‘ﬂrﬂ‘i' & high—end computing) /

Low Level PIR: code
generation for
ifferent runtime systems

Y
HPIR to MPIR Middle Level PIR
Generation and
\d Optimizations

Load Elimination

______________ :ntation (PIR)

[Internal Object)
Translator (e.g.
phaser, region, dist)

Work-sharing RT

TTT T T T T T T T T T T TS T T TN

v

Java bytecode
generation

[}

[}

|

I

[}

|

I

y l

Help-first Work-) Work-first Work- | ™

stealing RT) stealing RT :
[}

|

I

[}

[}

|

I

ran Partitioned

------------------------------- S

.class files > feglons COde
| tor targeting accelerators

i =N
(3,
E
Q
=
(@)
-5
3
(D
N ®)
D
O.
—h
(@)
()]
r—r
Q
—
(@)
(@)
o
S
=3
D
o
-

Habanero Team Pictures

Platform Aware Compilation Environment project (PACE),
April 2009 — October 2013

04/08/2009
DARPA awards $16 million to Rice University to improve compilers

The Defense Advanced Research Projects Agency (DARPA), as part of its Architecture
Aware Compiler Environment Program, has awarded Rice University $16 million to develop
a new set of tools that can improve the performance of virtually any application running on
any microprocessor. ...

From left to right:

Vivek Sarkar, Keith Cooper,
John Mellor-Crummey
Krishna Palem and Linda
Torczon.

Subcontractors include
OSU (Sadayappan), Tl
(Tatge), Stanford (Lele), ETI

PACE System — the Big Picture

Learning
Engine
Slice & Dice \\\\
Refactori
uBenchmarks e a(;torlng R
\ / : Source
II ! \l 1 \\\ ll COde
System i ; Satiorm A 't -
P ol N TN atform Aware ¢ | N
Characterization + "~y “77=-- > . B Vo
. A Optimizer (Rose) : VY
' : 4 1 : (U Application
: % IR : VT L
AN i ', Characterization
o0 Target Aware / ! s
: P Optimizer (LLVM) & :
* III ll : ;
. COTP','ert, oo R HPCToolkit
aracterization !
Vendor Vendo ' A

Send email to Vivek Sarkar (vsarkar@rice.edu) if you are interested
in a postdoc, research scientist, or programmer position
in the Habanero or PACE projects!

8

7
.

gl L P e—m—"

~
e~

l

