SSA-Based Mobile Code:
Construction and Empirical Evaluation

Wolfram Amme
Friedrich-Schiller-University Jena, Germany

Michael Franz
Universit of California, Irvine, USA

Jeffery von Ronne
Universtity of Texas, San Antonio, USA

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

General System for the Transport of Mobile Code

Source Program
'
Syntax/
Semantic
Analyzer

AST

y

Optimization/
Annotation

AST

IR

Transformer

Encoder

Producer

File 1

File n

-

Machine Code
Optimizing
Interpreter Code
Generator
A A
Verifier
IR

—| Decoder

Consumer

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Mobile Code Security

 most approaches are based on some type-safe
programming language

e program safety is usually defined as type safety

e objective: type safety, i.c. no

 invalid pointer accesses
e illegal field accesses
e operator application with illegal parameters

e calling routines imported from elsewhere with illegal
parameters

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

De facto Standard: Java's Bytecode

e Java's bytecode format is the de facto standard for
transporting mobile code

 however, it is far away from being an ideal mobile code
representation

 stack model of the JVM leads to a time-consuming
verification phase on the consumer side

 limitation of accessing the top elements of the stack
prevents the reuse of operands and code reordering

e optimizing JIT compilers often transform Java bytecode
internally into code for a register machine

 many bytecode operations include sub-operations (null-
checks, bounds checks)

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

SafeTSA: Facts

 transportation format consisting of
e a symbol table
e an abstract syntax tree
e SSA-style instructions within basic blocks

e SSA-based instruction format within basic blocks

e 1s reference-safe and type-safe with less verification effort
than Java bytecode

e allows to move CSE from code consumer to code producer

e can transport results of null and bounds check elimination in
a tamper-proof manner

e can directly used for JIT compilation

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

SafeTSA - Construction

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Program in SSA-Form

(6): add (1) #1
Example: (7): add (j) #1
. (8): cmp (6) (7)
i=i+1; (9): ble ()
j=j+ 1L
" (i<=j) /\
i=i+1; (10): add (6) #1 (11): sub (6) #1
else
i=i-1; \ 8
j=j+1i; (12): phi (10) (11)
(13): add (7) (12)

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Program in SSA-Form

(6): add (1) #1
Example: (7): add (j) #1
. (8): cmp (6) (7)
i=i+1; (9): ble ()
j=j+ 1L
" (i<=j) /\
i=i+1; (10): add (6) #1 (11): sub (6) #1
else
i=i-1; \ 8
j=j+1i; (12): phi (10) (11)
(13): add (8) (12)

Type error

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Program in SSA-Form

(6): add (1) #1
Example: (7): add (j) #1
o (8): cmp (6) (7)
i=1+ 1; (9) ble (8)
j=1+1;
" (i<=j) /\
i=i+1; (10): add (6) #1 (11): sub (6) #1
else
i=i-1; \ 8y
j=j+1i; (12): phi (10) (11)
(13): add (10) (12)

Reference error

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Extended Machine Model

2 Type table
1
0 types
0 (“register planes”) 0| integer
1 1| float
2 | boolean
l regﬁltﬁrr\t()\é?_l,ue) | imported types
, local types
an infinite register yp
plane for each type

tyBes
Constant pool
0 1 2 types

A

0 1 3.14 true
1 14

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Type Separation in SafeTSA

 in SafeTSA all operations are strongly typed

e for all operations the following holds:

- a specific operation implicitly selects the register plane(s) from which
the arguments are taken

- an operation merely specifies the register number(s) on that plane, but
not the plane(s) involved

- the result 1s deposited in the next available register on the plane
that corresponds to the result of the operation

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Type-Separated SSA

(int-6): int add (1) const-0
Example: (int-7): int add (j) const-0
(bool-0): int cmp (6) (7)
(void): bool ble (0)

1=1+ 1;

if (i<=))

1=1+ 1; (int-8): int add (6) const-0 || (int-9): int sub (6) const-0
else \

T 1; /
j=j+1 (int-10): int phi (8) (9)

(int-11): int add (7) (10)

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Reference Safety: Construction

o dominator tree of a program is used
for safe access to values

- in a dominator tree all predecessors of a node, that represents a basic block A,
stand for basic blocks which always will be executed before A

e in reference safe SSA Form an operand access is a pair
(steps,value), where

- steps: number of nodes, that starting with the actual basic block, have to be
traversed the dominator tree backwards (until the basic block is found which
defines the value)

- value: a relative instruction number in that basic block

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Reference-Safe SSA

Example:
=i+l _
j =j + 1; (6): add (1) #1
if (i<=)) (7): add (j) #1

i=i+1; I 1 (8): cmp (0-6) (0-7)
else (9): ble (0-8)

1=1-1;

2 | (0): add (1-6) #1 3 | (0): sub (1-6) #1
Dominator tree: 0): phi—(O—O—) (0-0)

4 | (1): add (1-7) (0-0)

offoRo

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

SafeTSA: Type-separated and Reference-safe SSA

Dominator tree:

(int-6): 1int add (1) const-0

(int-7): int add (j) const-0
6 ED 1 (bool-0): int cmp (0-6) (0-7)

(void): bool ble (0-0)

/\,

2 | (int-0): 1int add (1-6) const-0

3

(int-0): int sub (1-6) const-0

\/

4

(int-0): int phi (0-0) (0-0)
(int-1): int add (1-7) (0-0)

Each basic block 1s assigned its own set of register planes

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Instruction Set

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Instruction Set: Operators

prim <type> <primfun> <param>*
xprim <type> <primfun> <param>*

Example:
(int-3): prim int add (0-2) (0-1)

e difference between prim and xprim 1s whether or not the
operation may cause an exception

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Instruction Set: Cast Operators

xupcast <type> <type> <object>
downcast <type> <integer> <object>

Example:
class B extends A {};

(ref-B): xupcast ref-A ret-B (...)
(ref-A): downcastref-B 1 (...)

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Instruction Set: Other Kind of Instructions

Memory Access

getfield <type> <object> <symbol>
setfield <type> <object> <symbol> <value>
getelt <type> <object> <position>
setelt <type> <object> <position> <value>

Method Call

xdispatch <type> <object> <fun> <param>"
xcall <type> <object> <fun> <param>"

Phi Instruction

phi <type> <value>"

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Null and Bounds Check Elimination

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Construction of Memory Safety

 safe reference and safe index types

e for each reference type ref-T we introduce a safe reference type
safe-T guaranteed not to be null

e for each array object A we have a safe index type safe-index-A
guaranteeing that the array’s index value 1s within range (created
when array 1s allocated)

 null and range checking then become operations that take
values from an unsafe value-plane and copy them (to the
first available register) of the corresponding safe reference
type’s plane

« memory and array accesses take their operands always
from the corresponding safe value-plane

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Example: Memory Access and Nullcheck Elimination

class A{

int f;
}
A obyj;
(safe-A-1): xupcast ref-A safe-A (...)
obj.1; (int-1): getfield A (O, safe-A-1) T
obj.1; (safe-A-2): xupcast ref-A safe-A (...)

(int-2): getfield A (0, safe-A-2) f

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Example: Memory Access and Nullcheck Elimination

class A{

int f;
}
A obyj;
(safe-A-1): xupcast ref-A safe-A (...)
obj.1; (int-1): getfield A (O, safe-A-1) T
obj.1;

(int-2): getfield A (0, safe-A-1) T

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Implementation and Evaluation

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

SafeTSA: Implementation

e a compiler that transforms Java programs into SafeTSA
class files

e extension of Pizza’s Java compiler

e Optimizations: constant propagation, deadcode elimination, and
CSE

®* a JVM which is capable of executing heterogeneous of
bytecode and SafeTSA class files

e extension of IBM7s Jikes RVM

e Optimizations: method inlining, load and store elimination,
global code motion, etc.

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Results: Runtime Behavior

12
11 Usve Mspo SDP/é S:GDP/®
10
2 9
“5.:'. 8
27
4
o 6
3
2 5
Qo
& 4
C
S 3
5 |
o 2 |
: | 1 il I N
"]
1

Crypt Heap LUFact ~ SOR Sparse Euler ~ Moldyn Monte- Ray- Search
Sort Mat Carlo Tracer

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Results: Compilation Times

1.800
“yop- Ms.r Se s:pio Msoopip [s:GDP/g
1.600
1.400

1.200

1.000

Time (ms)

800
600

400

200 - 1 “ﬂ |

Crypt Heap LUFact SOR Sparse Euler Moldyn Monte- Ray- Search
Sort Mat Carlo Tracer

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

Results: Optimizing JIT Compilation

secs ‘IJ: PFullopt S: GDP/FullOpt secs TlU:PIRUIOpt | S: GDP/RullCpt ‘
10 55
9 r— 50
8 .45
. 40
6 % B Compilation
30 2 53A Construction
5] |
25
4 L
20 |
3 15 =
1 5 —
0 0 | |
Crypt Heapsort LUFact SOR Sparse Euler Moldyn Monte Ray Search

Carlo Tracer

Wolfram Amme, SSA-Based Mobile Code: Construction and Empirical Evaluation, Autrans, France, 2009.

	Phasen objektorientierter Softwareentwicklung
	Slide 2
	Slide 3
	Slide 4
	SafeTSA: Facts
	Slide 6
	Program in SSA Form
	Slide 8
	Slide 9
	Slide 10
	Type Separation in SafeTSA
	Type-Separated SSA
	Slide 13
	Slide 14
	Type-Separated Ref-Safe SSA
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Construction of Memory Safety
	Slide 22
	Slide 23
	Slide 24
	SafeTSA: Implementation
	Slide 26
	Slide 27
	Slide 28

