SSA-Form Register Allocation

Foundations

Sebastian Hack

Compiler Construction Course
Winter Term 2009/2010

SAARLAND
UNIVERSITY U
I —

COMPUTER SCIENCE

Overview

Graph Theory
m Perfect Graphs
m Chordal Graphs

SSA Form
m Dominance
m ¢-functions

Interference Graphs
m Non-SSA Interference Graphs

m Perfect Elimination Orders
m Chordal Graphs

Interference Graphs of SSA-form Programs
m Dominance and Liveness
m Dominance and Interference
m Spilling
m Implementing ¢-functions

Intuition

Overview

Graph Theory
m Perfect Graphs
m Chordal Graphs

SSA Form
m Dominance
m ¢-functions

Interference Graphs
m Non-SSA Interference Graphs
m Perfect Elimination Orders
m Chordal Graphs

Interference Graphs of SSA-form Programs
m Dominance and Liveness
m Dominance and Interference
m Spilling
m Implementing ¢-functions

Intuition

Complete Graphs and Cycles

Complete Graph K° Cycle C°

Induced Subgraphs

Graph with a C* Graph with a C*
subgraph induced subgraph

Induced Subgraphs

Graph with a C* Graph with a C*
subgraph induced subgraph

Note

Induced complete graphs are called cliques

Clique number and Chromatic number
Definition
w(G) Size of the largest clique in G

X(G) Number of colors in a minimum coloring of G

Clique number and Chromatic number
Definition
w(G) Size of the largest clique in G

X(G) Number of colors in a minimum coloring of G

Corollary
w(G) < x(G) holds for each graph G

Clique number and Chromatic number
Definition
w(G) Size of the largest clique in G

X(G) Number of colors in a minimum coloring of G

Corollary
w(G) < x(G) holds for each graph G

S0

x(G) 3 2 3 3

6

Perfect Graphs

Definition
G is perfect <= x(H) = w(H) for each induced subgraph H of G

Perfect Graphs

Definition
G is perfect <= x(H) = w(H) for each induced subgraph H of G

>0 O

perfect?

~

Perfect Graphs

Definition
G is perfect <= x(H) = w(H) for each induced subgraph H of G

QO

perfect?

~

Chordal Graphs

Definition

G is chordal <= G contains no induced cycles longer than 3

Chordal Graphs

Definition

G is chordal <= G contains no induced cycles longer than 3

O<OPp

chordal?

Chordal Graphs

Definition

G is chordal <= G contains no induced cycles longer than 3

O<OPP

Chordal graphs are perfect

chordal?

Theorem

Chordal Graphs

Definition

G is chordal <= G contains no induced cycles longer than 3

O<OPp

Chordal graphs are perfect

chordal?

Theorem

Theorem

Chordal graphs can be colored optimally in O(|V| - w(G))

Overview

SSA Form
m Dominance
m ¢-functions

Dominance

Definition

Every use of a variable is dominated by its definition

start

),

V & ---

N
>,

v

10

Dominance

Definition

Every use of a variable is dominated by its definition

start

),

V & ---

N

>,

v

m You cannot reach the use without
passing by the definition

m Else, you could use uninitialized
variables

m Dominance induces a tree on the
control flow graph

m Sometimes called strict SSA

10

What do ¢-functions mean?

\ /

71 < ¢(x1,¥1)
23 < ¢(x2,¥2)
73 < P(x3,¥3)

Z] < X1
Zy < X2
73 < X3

Z1 <Y1
Z2 Y2
Z3 < Y3

N/

Put a sequence of copies in the predecessors

11

What do ¢-functions mean?

N/

71 < ¢(x1, y1)
23 < ¢(x2,y2)
23 < ¢(x3,3)

Frequent misconception

Put a sequence of copies in the predecessors

11

What do ¢-functions mean?

Lost Copies
B B
10
224 Y2
235)3
A / \c A / \c

Z1 < ¢(ay1)

Z < ¢(ay2)

z3 <_¢)(ay3)

m Cannot simply push copies in predecessor
m Copies are also executed if we jump from B to C

m Need to remove critical edges (edge from B to A)

What do ¢-functions mean?
Lost Copies

m Cannot simply push copies in predecessor
m Copies are also executed if we jump from B to C

m Need to remove critical edges (edge from B to A)

12

What do ¢-functions mean?
¢-swap

\/\ N

Z1 < 2o
Zy < 71

/N

721+ ¢(, 2
7+ ¢(-, Z1

m z; overwritten before used

13

What do ¢-functions mean?
¢-swap

Z1 ¢(',22)
2+ ¢(-, 21)

m z; overwritten before used

13

What do ¢-functions mean?

\ /

(21,22,23) + (x1,%0,%3) (21,22, 23) < (Y1, 2, 3)

_/

71 = P(x1, y1)
23 < ¢(x2,y2)
23 < ¢(x3,3)

The Reality

¢-functions correspond to parallel copies on the incoming edges

14

¢-functions and uses

N/

71 < ¢(x1, y1)
2 < ¢(x2, ¥2)
73 < ¢(x3,¥3)

m Does not fulfill dominance
property

B ¢s do not use their operands in
the ¢-block

m Uses happen in the predecessors

15

¢-functions and uses

@' (x1, %2, X3) ’¢5 Y1,¥2,¥3 ‘

N/ N/

71 < ¢(x1, y1)
25 < P(x2, ¥2) (21,22,23) &
73 < ¢(x3,¥3)

. . it o- i i ts:
m Does not fulfill dominance Split ¢-functions in two parts

m Split critical edges

property
B ¢s do not use their operands in m Read part (¢) in the
the ¢-block predecessors

m Uses happen in the predecessors ~ ® Write part (¢") in the block
m Correct modelling of liveness

15

Overview

Interference Graphs
m Non-SSA Interference Graphs

m Perfect Elimination Orders
m Chordal Graphs

16

Non-SSA Interference Graphs

An inconvenient property

Program Interference Graph
a+1 b
c
de1 b+—a+a R
c+—a+1
e+a+l1 e bl
«d —c ¢
d

m The number of live variables at each instruction (register pressure) is 2
m However, we need 3 registers for a correct register allocation
m In theory, this gap can be arbitrarily large (Mycielski Graphs)

17

Graph-Coloring Register Allocation
[Chaitin '80, Briggs '92, Appel & George '96, Park & Moon '04]

program changed
Spill

T coloring heuristic failed

——(Build IG }>{ Coalesce || Color |——

Every undirected graph can occur as an interference graph
—> Finding a k-coloring is NP-complete

m Color using heuristic
—> lteration necessary

Might introduce spills although |G is k-colorable

Rebuilding the 1G each iteration is costly

18

Graph-Coloring Register Allocation
[Chaitin '80, Briggs '92, Appel & George '96, Park & Moon '04]

program changed
Spill

T coloring heuristic failed

——(Build IG }>{ Coalesce || Color |——

m Spill-code insertion is crucial for the program's performance

m Hence, it should be very sensitive to the structure of the program
» Place load and stores carefully

» Avoid spilling in loops!

m Here, it is merely a fail-safe for coloring

18

Coloring

m Subsequently remove the nodes from the graph

M elimination order

19

Coloring

m Subsequently remove the nodes from the graph

i' ’E elimination order
d1

19

Coloring

m Subsequently remove the nodes from the graph

elimination order

d, e,

19

Coloring

m Subsequently remove the nodes from the graph

elimination order

d, e, c,

19

Coloring

m Subsequently remove the nodes from the graph

elimination order

d, e ¢ a,

19

Coloring

m Subsequently remove the nodes from the graph

elimination order

d,ec a b

19

Coloring

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color

elimination order
d, e c a b

19

Coloring

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color

d e
elimination order

d, e, ¢, a,

19

Coloring

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color

elimination order

d, e, c,

19

Coloring

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color

elimination order

d, e,

19

Coloring

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color

i‘ E elimination order
d1

19

Coloring

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color

i f i‘ E elimination order

19

Coloring

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color
i f i‘ E elimination order
But. ..

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color
M elimination order
But. ..

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

M elimination order

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order
a!

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order
a! Cl

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order
a, ¢ d,

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e
elimination order
a, ¢ d e

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order
a,c,d, e b

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e
elimination order
a, ¢ d e

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

/

elimination order

a, ¢ d,

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order
al Cl

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order
al

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

M elimination order

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

M elimination order

From Graph Theory [Berge '60, Fulkerson/Gross '65, Gavril '72]

m A PEO allows for an optimal coloring in k x |V/|

m The number of colors is bound by the size of the largest clique

20

Coloring
PEOs

m Graphs with holes larger than 3 have no PEO, e.g.

<>

m G hasa PEO <= G is chordal

21

Coloring
PEOs

m Graphs with holes larger than 3 have no PEO, e.g.

<>

m G hasa PEO <= G is chordal

Core Theorem of SSA Register Allocation

m The dominance relation in SSA programs induces a PEO in the IG
m Thus, SSA IGs are chordal

21

Overview

Interference Graphs of SSA-form Programs
m Dominance and Liveness
m Dominance and Interference
m Spilling
m Implementing ¢-functions

22

Liveness and Dominance

m Each instruction ¢ where a variable v is live, is dominated by v

start

s

V & .-

AN

...

T

Liveness and Dominance

m Each instruction ¢ where a variable v is live, is dominated by v

start

s

V & .-

AN

...

T

Why?
m Assume £ is not dominated by v

m Then there's a path from start to
some usage of v not containing the
definition of v

m This cannot be since each value
must have been defined before it is
used

Liveness and Dominance

m Each instruction ¢ where a variable v is live, is dominated by v

start

s

V & .-

AN

...

T

Why?
m Assume £ is not dominated by v

m Then there's a path from start to
some usage of v not containing the
definition of v

m This cannot be since each value
must have been defined before it is
used

Interference and Dominance

m Assume v, w interfere, i.e. they are live at some instruction ¢
m Then,v>=/¢and w = /¢

m Since dominance is a tree, either v = wor w = v

24

Interference and Dominance

m Assume v, w interfere, i.e. they are live at some instruction ¢
m Then,v>=/¢and w = /¢

m Since dominance is a tree, either v = wor w = v

Consequences

m Each edge in the |G is directed by dominance

m The interference graph is an “excerpt” of the dominance relation

Interference and Dominance

—
v = w
m Assume e——e

m Then, vis live at w

25

Interference and Dominance

m Assume w Why?
m Then, v is live at w m If v and w interfere then
Ve | there is a place where both
are live
Q g
Y m w dominates all places where
& w is live
& [w |
5 m Hence, v is live inside w's

[both live] dominance tree

m Thus, vis live at w

[V] [w]

Interference and Dominance

Consider three nodes u, v, w in the IG:

26

Interference and Dominance

Consider three nodes u, v, w in the IG:

m uis live at w

m vis live at w

26

Interference and Dominance
Consider three nodes u, v, w in the IG:

= or =

m uis live at w

m vis live at w

N
\\J

m Thus, they interfere

26

Interference and Dominance

Consider three nodes u, v, w in the IG:

~or=
u v m uis live at w
m vis live at w
N 7
m Thus, they interfere
w

Conclusion

All variables that ...
m interfere with w
m dominate w

. are mutually connected in the IG

Dominance and PEOs

m Before a value v is added to a PEO,
add all values whose definitions are dominated by v

A post order walk of the dominance tree defines a PEO

m A pre order walk of the dominance tree yields a coloring sequence
m IGs of SSA-form programs can be colored optimally in O(w(G) - |V])

m Without constructing the interference graph itself

27

Spilling

Theorem

For each clique in the IG there is a program point where all nodes in the

clique are live.

Spilling

Theorem

For each clique in the IG there is a program point where all nodes in the
clique are live.

VAL

d

m Dominance induces a total order inside the clique
= There is a “smallest” value d

m All others are live at the definition of d

Spilling
Consequences

m The chromatic number of the IG is exactly determined
by the number of live variables at the labels

m Lowering the number of values live at each label to k makes
the IG k-colorable

m We know in advance where values must be spilled
= All labels where the pressure is larger than k

m Spilling can be done before coloring and

m coloring will always succeed afterwards

Spilling
Consequences

m The chromatic number of the IG is exactly determined
by the number of live variables at the labels

m Lowering the number of values live at each label to k makes
the IG k-colorable

m We know in advance where values must be spilled
= All labels where the pressure is larger than k

m Spilling can be done before coloring and
m coloring will always succeed afterwards
Conclusion

m No iteration as in Chaitin/Briggs-allocators

m No interference graph necessary

Getting out of SSA

m We now have a k-coloring of the SSA interference graph

m Can we turn that program into a non-SSA program
and maintain the coloring?

30

Getting out of SSA

m We now have a k-coloring of the SSA interference graph

m Can we turn that program into a non-SSA program
and maintain the coloring?

Central question

What to do about ¢-functions?

30

®-Functions

m Consider following example

z1 < ¢(x1, y1)
73 < ¢(x2, y2)
73 < ¢(x3, y3)

31

®-Functions

m Consider following example

(21,22, 23) (x1, X2, X3) (21,22, z3) < (y1,¥2,¥3)

m ®-functions are parallel copies on control flow edges

31

®-Functions

m Consider following example

(21,22, 23) = (x1, X2, X3) (21,22, 23) < (y1,¥2,¥3)

m ®-functions are parallel copies on control flow edges

m Considering assigned registers . ..

31

®-Functions

m Consider following example

| HE HEH B
%& I
(0, 0)

— o0, 00)

— ()

m ®-functions are parallel copies on control flow edges
m Considering assigned registers . ..

m ... ®s represent register permutations

31

Permutations

m A permutation can be implemented with copies if one auxiliary
register M is available

EEEN
TTTT
EEEE

m Permutations can be implemented by a series of transpositions
(i.e. swaps)

D A

m A transposition can be implemented by three xors
without a third register

32

Intuition: Why do SSA 1Gs do not have cycles?

Why are SSA IGs chordal?

Program Live Ranges
a+ .- a
b+ --- b
C4 - c
d<a+b d
e<c+1 e

m How can we create a 4-cycle {a,c,d, e}?

Interference Graph

33

Intuition: Why do SSA 1Gs do not have cycles?
Why are SSA IGs chordal?

Program Live Ranges

as d Interference Graph

b+ --- b
C4 - c
d<a+b d
e+c+1 e

g .- a c

m How can we create a 4-cycle {a,c,d, e}?

m Redefine a = SSA violated!

Intuition: ¢-functions break cycles in the |G

Program and live ranges

Q& .-

e—a+--

c+a+---

e« b
—c

Interference Graph

d

34

Intuition: ¢-functions break cycles in the |G

Program and live ranges

Q& .-

/ N
| |||

c<a+---

e <+ b
—c

NS

L& < o(e1, e)

Interference Graph

d ee

€3

€2

34

Intuition: Why destroying SSA before RA is bad

Parallel copies

(a',b,c,d) « (a,b,c,d)

Sequential copies
d«+d
'+ c
b+ b
a+ a

35

Intuition: Why destroying SSA before RA is bad

Parallel copies Sequential copies
d«+d
(a',b,c,d) « (a,b,c,d) € e
y 0,0 s Uy € b «— b
a+ a

abcd abcd

ab'cd abcd

35

Intuition: Why destroying SSA before RA is bad

Parallel copies Sequential copies
d«+d
(a',b,c,d) « (a,b,c,d) € e
y 0,0 s Uy € b «— b
a + a

abcd abcd

ab'cd abcd

35

Summary

m |Gs of SSA-form programs are chordal

m The dominance relation induces a PEO

No further spills after pressure is lowered

Register assignment optimal in linear time

m Do not need to construct interference graph

Allocator without iteration

— - E-

——>| Coalesce

36

	Graph Theory
	Perfect Graphs
	Chordal Graphs

	SSA Form
	Dominance
	-functions

	Interference Graphs
	Non-SSA Interference Graphs
	Perfect Elimination Orders
	Chordal Graphs

	Interference Graphs of SSA-form Programs
	Dominance and Liveness
	Dominance and Interference
	Spilling
	Implementing -functions

	Intuition

