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Complete Graphs and Cycles

Complete Graph K 5 Cycle C 5
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Induced Subgraphs

Graph with a C 4

subgraph
Graph with a C 4

induced subgraph

Note

Induced complete graphs are called cliques
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Clique number and Chromatic number

Definition

ω(G ) Size of the largest clique in G

χ(G ) Number of colors in a minimum coloring of G

Corollary

ω(G ) ≤ χ(G ) holds for each graph G

ω(G ) 3 2 2 3
χ(G ) 3 2 3 3
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Perfect Graphs

Definition

G is perfect ⇐⇒ χ(H) = ω(H) for each induced subgraph H of G

perfect?

X X
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Chordal Graphs

Definition

G is chordal ⇐⇒ G contains no induced cycles longer than 3

chordal?

X X

Theorem

Chordal graphs are perfect

Theorem

Chordal graphs can be colored optimally in O(|V | · ω(G ))
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Dominance

Definition

Every use of a variable is dominated by its definition

start

v ← · · ·

· · · ← v

You cannot reach the use without
passing by the definition

Else, you could use uninitialized
variables

Dominance induces a tree on the
control flow graph

Sometimes called strict SSA
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What do φ-functions mean?

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

z1 ← x1
z2 ← x2
z3 ← x3

z1 ← y1
z2 ← y2
z3 ← y3

Frequent misconception

Put a sequence of copies in the predecessors
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What do φ-functions mean?
Lost Copies

B

z1 ← φ(·, y1)
z2 ← φ(·, y2)
z3 ← φ(·, y3)

A C

z1 ← y1
z2 ← y2
z3 ← y3

B

A C

Cannot simply push copies in predecessor

Copies are also executed if we jump from B to C

Need to remove critical edges (edge from B to A)
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What do φ-functions mean?
φ-swap

z1 ← φ(·, z2)
z2 ← φ(·, z1)

z1 ← z2
z2 ← z1

z1 overwritten before used
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What do φ-functions mean?

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

The Reality

φ-functions correspond to parallel copies on the incoming edges
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φ-functions and uses

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

Does not fulfill dominance
property

φs do not use their operands in
the φ-block

Uses happen in the predecessors

φr (x1, x2, x3) φr (y1, y2, y3)

(z1, z2, z3)← φw

Split φ-functions in two parts:

Split critical edges

Read part (φr ) in the
predecessors

Write part (φw ) in the block

Correct modelling of liveness
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Non-SSA Interference Graphs
An inconvenient property

Program

a← 1

b← a + a
c ← a + 1
e ← b + 1
← c

d ← 1
e ← a + 1
← d

Interference Graph

a

b

c

e

d

The number of live variables at each instruction (register pressure) is 2

However, we need 3 registers for a correct register allocation

In theory, this gap can be arbitrarily large (Mycielski Graphs)
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Graph-Coloring Register Allocation
[Chaitin ’80, Briggs ’92, Appel & George ’96, Park & Moon ’04]

Build IG Coalesce Color

Spill

coloring heuristic failed

program changed

Every undirected graph can occur as an interference graph
=⇒ Finding a k-coloring is NP-complete

Color using heuristic
=⇒ Iteration necessary

Might introduce spills although IG is k-colorable

Rebuilding the IG each iteration is costly
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Graph-Coloring Register Allocation
[Chaitin ’80, Briggs ’92, Appel & George ’96, Park & Moon ’04]

Build IG Coalesce Color

Spill

coloring heuristic failed

program changed

Spill-code insertion is crucial for the program’s performance

Hence, it should be very sensitive to the structure of the program
I Place load and stores carefully

I Avoid spilling in loops!

Here, it is merely a fail-safe for coloring
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Coloring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

But. . .

this graph is 3-colorable. We obviously picked a wrong order.
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Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique
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Coloring
PEOs

Graphs with holes larger than 3 have no PEO, e.g.

G has a PEO ⇐⇒ G is chordal

Core Theorem of SSA Register Allocation

The dominance relation in SSA programs induces a PEO in the IG

Thus, SSA IGs are chordal

21
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Liveness and Dominance

Each instruction ` where a variable v is live, is dominated by v

start

v ← · · ·

` : · · ·

· · · ← v

Why?

Assume ` is not dominated by v

Then there’s a path from start to
some usage of v not containing the
definition of v

This cannot be since each value
must have been defined before it is
used

23
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Interference and Dominance

Assume v ,w interfere, i.e. they are live at some instruction `

Then, v � ` and w � `

Since dominance is a tree, either v � w or w � v

{�,�}v w

Consequences

Each edge in the IG is directed by dominance

The interference graph is an “excerpt” of the dominance relation

24
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Interference and Dominance

Assume
�v w

Then, v is live at w

do
m

in
an

ce
su

bt
re

e
of

v

v ← · · ·

w ← · · ·

Why?

If v and w interfere then
there is a place where both
are live

w dominates all places where
w is live

Hence, v is live inside w ’s
dominance tree

Thus, v is live at w
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do
m
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← v ← w

Why?
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there is a place where both
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Thus, v is live at w
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Interference and Dominance

Consider three nodes u, v ,w in the IG:

� �

???

� or �

v

w

u

u is live at w

v is live at w

Thus, they interfere

Conclusion

All variables that . . .

interfere with w

dominate w

. . . are mutually connected in the IG
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Dominance and PEOs

Before a value v is added to a PEO,
add all values whose definitions are dominated by v

A post order walk of the dominance tree defines a PEO

A pre order walk of the dominance tree yields a coloring sequence

IGs of SSA-form programs can be colored optimally in O(ω(G ) · |V |)

Without constructing the interference graph itself

27



Spilling

Theorem

For each clique in the IG there is a program point where all nodes in the
clique are live.

� �

�

�
�

�

a

b c

d

Dominance induces a total order inside the clique
⇒ There is a “smallest” value d

All others are live at the definition of d

28
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Spilling
Consequences

The chromatic number of the IG is exactly determined
by the number of live variables at the labels

Lowering the number of values live at each label to k makes
the IG k-colorable

We know in advance where values must be spilled
=⇒ All labels where the pressure is larger than k

Spilling can be done before coloring and

coloring will always succeed afterwards

Conclusion

No iteration as in Chaitin/Briggs-allocators

No interference graph necessary

29
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Getting out of SSA

We now have a k-coloring of the SSA interference graph

Can we turn that program into a non-SSA program
and maintain the coloring?

Central question

What to do about φ-functions?

30
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Φ-Functions

Consider following example

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

Φ-functions are parallel copies on control flow edges

Considering assigned registers . . .

. . . Φs represent register permutations

31
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. . . Φs represent register permutations
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Permutations

A permutation can be implemented with copies if one auxiliary
register is available

←
←
←
←

Permutations can be implemented by a series of transpositions
(i.e. swaps)

= ◦

A transposition can be implemented by three xors
without a third register
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Intuition: Why do SSA IGs do not have cycles?
Why are SSA IGs chordal?

Program Live Ranges

aa← · · ·

bb ← · · ·
cc ← · · ·

dd ← a + b

ee ← c + 1

aa← · · ·

Interference Graph

a

b

c

d

e

How can we create a 4-cycle {a, c , d , e}?

Redefine a =⇒ SSA violated!
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Intuition: φ-functions break cycles in the IG

Program and live ranges

a← · · ·

d ← · · ·
e ← a + · · ·
← d

b← · · ·
c ← a + · · ·
e ← b
← c

Interference Graph

d
a

b
c

e
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Intuition: φ-functions break cycles in the IG

Program and live ranges

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b← · · ·
c ← a + · · ·
e2 ← b
← c

e3 ← φ(e1, e2)

Interference Graph

d
a

b
c

e1

e3

e2
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Intuition: Why destroying SSA before RA is bad

Parallel copies Sequential copies

(a′, b′, c ′, d ′)← (a, b, c , d)

d ′ ← d
c ′ ← c
b′ ← b
a′ ← a

a

a′

b

b′

c

c ′

d

d ′

a

a′

b

b′

c

c ′

d

d ′
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Summary

IGs of SSA-form programs are chordal

The dominance relation induces a PEO

No further spills after pressure is lowered

Register assignment optimal in linear time

Do not need to construct interference graph

Allocator without iteration

Spill Color

Coalesce

Φ-Impl.
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