
3.4 Bottom-up Syntax Analysis 79

e l s e
e r r o r ("∗ expec ted ") ;

break ;
d e f a u l t :

i f (nextsym == " / ")
scan () ;

e l s e
e r r o r (" / expec ted ") ;

}

F () ;
}

}

vo id F () {
swi tch (nextsym) {

case " (" :
E () ;
i f (nextsym == ") ")

scan () ;
e l s e

e r r o r (") expec ted ") ;
d e f a u l t :

i f (nextsym == " i d ")
scan () ;

e l s e
e r r o r (" i d expec ted ") ;

}
}

vo id p a r s e r () {
scan () ;
S () ;
i f (nextsym == " # ")

a c c e p t () ;
e l s e

e r r o r (" # expec ted ") ;
}

Some inefficiencies result from the schematic generation ofthis parser program. A more sophisti-
cated generation scheme will avoid most of these inefficiencies.

3.4 Bottom-up Syntax Analysis

3.4.1 Introduction

Bottom-upparsers read their input liketop-downparsers from left to right. They are pushdown automata
that can essentially do two kinds of operations:

• Read the next input symbol (shift), and
• Reduce the right side of a productionX → α at the top of the stack by the left sideX of the

production (reduce).

Because of these operations they are calledshift-reduceparsers.Shift-reduceparsers are right parsers;
they output the application of a production when they do a reduction. The result of the successful

80 3 Syntactic Analysis

analysis of an input word is a rightmost derivation in reverse order becauseshift-reduceparsers always
reduce at the top of the stack.

A shift-reduceparser must never miss arequiredreduction, that is, cover it in the stack by a newly
read input symbol. A reduction isrequired, if no rightmost derivation to the start symbol is possible
without it. A right side covered by an input symbol will neverreappear at the top of the stack and
can therefore never be reduced. A right side at the top of the stack that must be reduced to obtain a
derivation is called ahandle.

Not all occurrences of right sides that appear at the top of the stack are handles. Some reductions
performed at the top of the stack lead into dead ends, that is,they can not continued to a reverse
rightmost derivation although the input is correct.

Example 3.4.1Let G0 be again the grammar for arithmetic expressions with the productions:

S → E

E → E + T | T

T → T ∗ F | F

F → (E) | Id

Table 3.5 shows a successfulbottom-upanalysis of the wordId ∗ Id of G0. The third column lists
actions that were also possible, but would lead into dead ends. In the third step, the parser would miss
a required reduction. In the other two steps, the alternative reductions would lead into dead ends, that
is, not to right sentential forms.⊓⊔

Stack input Erroneous alternative actions

Id ∗ Id

Id ∗ Id

F ∗ Id Reading of∗ misses a required reduction

T ∗ Id reduction ofT to E leads into a dead end

T ∗ Id

T ∗ Id

T ∗ F reduction ofF to T leads into a dead end

T

E

S

Table 3.5. A successful analysis of the wordId ∗ Id together with potential dead ends.

Bottom-upparsers construct the parse tree from thebottom up. They start with the leaf word of the
parse tree, the input word, and construct for ever larger parts of the read input subtrees of the parse tree
by attaching the subtrees for the right sideα of a productionX → α below a newly createdX node
upon a reduction by this production. The analysis is successful if a parse tree with root labelS, the start
symbol of the grammar, has been constructed for the whole input word.

Fig. 3.13 shows some snapshots during the construction of the parse tree according to the derivation
shown in Table 3.5. The tree on the left contains all nodes that can be created when the inputId has
been read. The sequence of three trees in the middle represents the state before the handleT ∗ F is
being reduced, while the tree on the right shows the completeparse tree.

3.4.2 LR(k) Parsers

This section presents the most powerful deterministic method that worksbottom-up, LR(k) analysis.
The letterL says that the parsers of this class read their input from left to right, TheR characterizes

3.4 Bottom-up Syntax Analysis 81

Id∗

Id

F

T ∗

Id

F

Id

F

T ∗

Id

F

E

S

Id

F

T

T

Fig. 3.13.Construction of the parse tree after reading the first symbol, Id, together with the remaining input, before
the reduction of the handleT ∗ F , and the complete parse tree.

them as Right parser;k is the length of the considered lookahead.
We start again with the item-pushdown automatonPG for a context-free grammarG and transform

it into a shift-reduceparser. Let us look back at what we did in the case oftop-downanalysis. Sets of
lookahead words were computed from the grammar, which were used to select the right alternative for
a nonterminal atexpansion transitionsof PG. So, theLL(k) parser decides about the alternative for
a nonterminal at the earliest possible time, when the nonterminal has to be expanded.LR(k) parsers
follow a different strategy; they pursueall possibilities to expand and to read inparallel.

A decision has to be taken when one of the possibilities to continue asks for a reduction. What is
there to decide? There could be several productions by whichto reduce, and a shift could be possible
in addition to a reduction. The parser uses the nextk symbols to take its decision.

In this section, first anLR(0) parser is developed, which does not yet consider any lookahead.
Section 3.4.3 presents thecanonicalLR(k) parser. In Section 3.4.3, less powerful variants ofLR(k)
are described, which are often powerful enough for practice. Finally, Section 3.4.4 describes a error
recovery method forLR(k). Note that all context-free grammars are assumed to be reduced of non-
productive and unreachable nonterminals and extended by a new start symbol.

The Characteristic Finite-state Machine to a Context-freeGrammar

We attempt to representPG by a non-deterministic finite-state machine, itscharacteristic finite-state
machine, ch(G). SincePG is a pushdown automaton, this cannot easily work. An additional specifica-
tion of actions on the stack is necessary. These are associated with some states and some transitions of
ch(G).

Our goal is to arrive at a pushdown automaton who pursues all potential expansion and read tran-
sitions of the item pushdown-automaton in parallel and onlyat reduction decides which production
is the one to select. We define thecharacteristicfinite-state machinech(G) to a reduced context-free
grammarG. The states of the characteristic finite-state machinech(G) are the items[A→ α.β] of the
grammarG, that is, the states of the item pushdown-automatonPG. The set of input symbols of the
characteristic finite-state machinech(G) is VT ∪ VN , its initial state is the start item[S′ → .S] of the
item pushdown-automatonPG. The final states of the characteristic finit-state machine are the complete
items [X → α.]. Such a final state signals that the word just read corresponds to a stack contents of
the item pushdown-automaton in which a reduction with the productionA→ α can be performed. The
transition relation∆ of the characteristic finite-state machine consists of the transitions:

([X → α.Y β], ε, [Y → .γ]) for X → αY β ∈ P, Y → γ ∈ P

([X → α.Y β], Y, [X → αY.β]) for X → αY β ∈ P, Y ∈ VN ∪ VT

Reading a terminal symbolsa in char(G) corresponds to ashift transition of the item pushdown-
automaton undera. ε transitions ofchar(G) correspond to the expansion transitions of the item

82 3 Syntactic Analysis

pushdown-automaton. Whenchar(G) reaches a final state[X → α.] PG undertakes the following
actions: it removes the item[X → α.] on top of its stack and makes a transition underX from the new
state that has appears on top of the stack. This is a reductionmove of the item pushdown-automaton
PG.

Example 3.4.2Let G0 again be the grammar for arithmetic expressions with the productions

S → E

E → E + T | T

T → T ∗ F | F

F → (E) | Id

Fig. 3.14 shows the characteristic finite-state machine to grammarG0. ⊓⊔

[F → .Id] [F → Id.]

[T → T ∗ F.][T → T ∗ .F][T → T. ∗ F]

[E → E + T.]

E

[T → F.]

T

F

(E

∗

+E

T

T

F

)
[F → .(E)] [F → (.E)] [F → (E.)] [F → (E).]

Id

[T → .F]

[E → .T]

[S → .E] [S → E.]

[E → T.]

[T → .T ∗ F]

[E → .E + T] [E → E. + T] [E → E + .T]

Fig. 3.14. The characteristic finite-state machinechar(G0) for the grammarG0.

The following theorem clarifies the exact relation between the characteristic finite-state machine and
the item pushdown automaton:

Theorem 3.4.1 Let G be a context-free grammar andγ ∈ (VT ∪VN)∗. The following three statements
are equivalent:

1. There exists a computation([S′ → .S], γ) ⊢
∗

char(G)
([A → α.β], ε) of the characteristic finite-state

machinechar(G).
2. There exists a computation(ρ [A→ α.β], w) ⊢

∗

PG

([S′ → S.], ε) of the item pushdown-automaton
PG such thatγ = hist(ρ) α holds.

3. There exists a rightmost derivationS′ ∗
=⇒
rm

γ′Aw =⇒
rm

γ′αβw with γ = γ′α. ⊓⊔

The equivalence of statements (1) and (2) means that words that lead to an item of the characteristic
finite-state machinechar(G) are exactly the histories of stack contents of the item pushdown-automaton
PG whose topmost symbol is this item and from whichPG can reach one of its final states assuming
appropriate inputw. The equivalence of statements (2) and (3) means that an accepting computation of

3.4 Bottom-up Syntax Analysis 83

the item pushdown-automaton for an input wordw that starts with a stack contentsρ corresponds to a
rightmost derivation that leads to a sentential formαw whereα is the history of the stack contentsρ.

We introduce some terminology before we prove Theorem 3.4.1. For a rightmost derivation
S′ ∗

=⇒
rm

γ′Av =⇒
rm

γαv and a productionA → α we callα thehandleof the right sentential formγαv.

Is the right sideα = α′β, the prefixγ = γ′α′ is called areliable prefixof G for the item[A → α′.β].
The item[A→ α.β] is valid for γ. Theorem 3.4.1, thus, means, that the set of words under which the
characteristic finite-state machine reaches an item[A→ α′.β] is exactly the set of reliable prefixes for
this item.

Example 3.4.3For the grammarG0 we have:

right sentential form handle reliable prefixess reason

E + F F E, E +, E + F S =⇒
rm

E =⇒
rm

E + T =⇒
rm

E + F

T ∗ Id Id T, T ∗, T ∗ Id S
3

=⇒
rm

T ∗ F =⇒
rm

T ∗ Id

⊓⊔

In a non-ambiguous grammar, the handle of a right sententialform is the uniquely determined word that
thebottom-upparser should replace by a nonterminal in the next reductionstep to arrive at a rightmost
derivation. A reliable prefix is a prefix of a right sententialform that does not properly extend beyond
the handle.

Example 3.4.4We give two reliable prefixes ofG0 and some items that are valid for them.

relaible prefix valid item reason

E + [E → E + .T] S =⇒
rm

E =⇒
rm

E + T

[T → .F] S
∗

=⇒
rm

E + T =⇒
rm

E + F

[F → .Id] S
∗

=⇒
rm

E + F =⇒
rm

E + Id

(E + ([F → (.E)] S
∗

=⇒
rm

(E + F) =⇒
rm

(E + (E))

[T → .F] S
∗

=⇒
rm

(E + (.T) =⇒
rm

(E + (F))

[F → .Id] S
∗

=⇒
rm

(E + (F) =⇒
rm

(E + (Id))

⊓⊔

Has, in the attempt to construct a rightmost derivation for aword, the prefixu of the word been reduced
to a reliable prefixγ, then each item[X → α.β], valid for γ, describes one possible interpretation of
the analysis situation. Thus, there is a rightmost derivation in whichγ is prefix of a right sentential form
andX → αβ is one of the possibly just processed productions. All such productions are candidates for
later reductions.

Consider the rightmost derivation

S′ ∗
=⇒
rm

γAw =⇒
rm

γαβw

It should be extended to a rightmost derivation of a terminalword. This requires that

1. β is derived to a terminal wordv, and after that,
2. α is derived to a terminal wordu.

Altogether,
S′ ∗

=⇒
rm

γAw =⇒
rm

γαβw
∗

=⇒
rm

γαvw
∗

=⇒
rm

γuvw
∗

=⇒
rm

xuvw

We now consider this rightmost derivation in the direction of reduction, that is, in the direction in which
a bottom-upparser constructs it. First,x is reduced toγ in a number of steps, thenu to α, thenv to
β. The valid item[A→ α.β] for the reliable prefixγα describes the analysis situation in which the
reduction ofu to α has already been done, while the reduction ofv to β has not yet started. A possible
long-range goal in this situation is the application of the productionX → αβ.

84 3 Syntactic Analysis

We come back to the question which language is accepted by thecharacteristic finite-state machine
of PG. Theorem 3.4.1 says thatchG goes under a reliable prefix into a state that is a valid item for this
prefix. Final states, i.e. complete items, are only valid forreliable prefixes where a reduction is possible
at their ends.

Proof of Theorem 3.4.1. We do a circular proof(1) ⇒ (2) ⇒ (3) ⇒ (1). Let us first assume
([S′ → .S], γ) ⊢

∗

char(G)
([A → α.β], ε). By induction over the numbern of ε transitions we construct a

rightmost derivationS′ rm
=⇒
∗

γAw
rm
=⇒ γαβw.

Ist n = 0, dann istγ = ε und [A → α.β] = [S′ → .S]. DaS′ rm
=⇒
∗

S′ gilt, ist the Behauptung in

diesem Fall erf"ullt. Istn > 0, betrachten wir den letztenε-"Ubergang. Dann l"asst sich the Berechnung
of the characteristic automaton zerlegen in:

([S′ → .S], γ) ⊢
∗

char(G)
([X → α′.Aβ′], ε) ⊢

char(G)
([A→ .αβ], α) ⊢

∗

char(G)
([A→ α.β], ε)

whereγ = γ′α. Nach Induktionsannahmegibt es eine rightmost derivationS′ rm
=⇒
∗

γ′′Xw′ rm
=⇒ γ′′α′Aβ′w′

mit γ′ = γ′′α′. Da the grammarG reduziert ist, gibt es ebenfalls eine rightmost derivationβ′ rm
=⇒
∗

v.

Deshalb haben wir:
S′ rm

=⇒
∗

γ′Avw′ rm
=⇒ γ′αβw

mit w = vw′. Damit ist the Richtung(1)⇒ (2) bewiesen.
Nehmen wir an, wir h"atten eine rightmost derivationS′ rm

=⇒
∗

γ′Aw
rm
=⇒ γ′αβw. Diese Ableitung

l"asst sich zerlegen in:

S′ rm
=⇒ α1X1β1

rm
=⇒
∗

α1X1v1
rm
=⇒
∗

. . .
rm
=⇒
∗

(α1 . . . αn)Xn(vn . . . v1)
rm
=⇒ (α1 . . . αn)αβ(vn . . . v1)

for Xn = A. Mit Induktion nachn folgt, dass(ρ, vw) ⊢
∗

KG

([S′ → S.], ε) gilt for

ρ = [S′ → α1.X1β1] . . . [Xn−1 → αn.Xnβn]

w = vvn . . . v1

sofernβ
∗

=⇒
rm

v, α1 = β1 = ε andX1 = S. Damit ergibt sich the Schluss(2)⇒ (3).

F"ur den letzten Schluss betrachten wir einen Kellerinhaltρ = ρ′ [A→ α.β] mit (ρ, w) ⊢
∗

KG

([S′ →

S.], ε). Zuerst "uberzeugen wir uns mit Induktion nach the Anzahl der "Uberg"ange in einer solchen
Berechnung, dassρ′ notwendigerweise von the Form:

ρ′ = [S′ → α1.X1β1] . . . [Xn−1 → αn.Xnβn]

ist for ein n ≥ 0 andXn = A. Mit Induktion nachn folgt aber, dass([S′ → .S], γ) ⊢
∗

char(G)
([A →

α.β], ε) gilt for γ = α1 . . . αnα. Daγ = hist(ρ), gilt auch the Behauptung (1). Damit ist the Beweis
vollst"andig. ⊓⊔

The CanonicalLR(0) Automaton

In Chapter 2, we presented an algorithm which takes a non-deterministic finite-state machine and con-
structs an equivalent deterministic finite-state machine.This deterministic finite-state machine pursues
all paths in parallel which the non-deterministic automaton could take for a given input. Its states
are sets of states of the non-deterministic automaton. Thissubset constructionis now applied to the
characteristic finite-state machinechar(G) of a context-free grammarG. The resulting deterministic
finite-state machine is called thecanonicalLR(0) automaton forG and denote it byLR0(G).

3.4 Bottom-up Syntax Analysis 85

Example 3.4.5The canonicalLR(0) automaton for the context-free grammarG0 of Example 3.2.2
on page 39 is obtained by the application of the subset construction to the characteristic finite-state
machinechar(G0) of Fig. 3.14 on page 82. It is shown in Fig. 3.15 on page 85. It states are:

S0 = { [S → .E],

[E → .E + T],

[E → .T],

[T → .T ∗ F],

[T → .F],

[F → .(E)],

[F → .Id] }

S1 = { [S → E.],

[E → E. + T] }

S2 = { [E → T.],

[T → T. ∗ F] }

S3 = { [T → F.] }

S4 = { [F → (.E)],

[E → .E + T],

[E → .T],

[T → .T ∗ F]

[T → .F]

[F → .(E)]

[F → .Id] }

S5 = { [F → Id.] }

S6 = { [E → E + .T],

[T → .T ∗ F],

[T → .F],

[F → .(E)],

[F → .Id] }

S7 = { [T → T ∗ .F],

[F → .(E)],

[F → .Id] }

S8 = { [F → (E.)],

[E → E. + T] }

S9 = { [E → E + T.],

[T → T. ∗ F] }

S10 = { [T → T ∗ F.]}

S11 = { [F → (E).] }

S12 = ∅

⊓⊔

S10S7S2

S4 S11S8

S9S6

S3

S5

S1

S0

T

F

Id

)

(

∗ F

∗

+ T

E
F

+
(IdId

T

(

F

E

Id

(

Fig. 3.15. The transition diagram of theLR(0) automaton for the grammarG0 obtained from the characteristic
finite-state machinechar(G0) in Fig. 3.14. The error stateS12 = ∅ and all transitions into it are left out.

The canonicalLR(0) automatonLR0(G) to a context-free grammarG has some interesting properties.
Let LR0(G) = (QG, VT ∪ VN , ∆G, qG,0, FG), and let∆∗

G : QG × (VT ∪ VN)∗ → QG be the lifting
of the transition function∆G from symbols to words. We then have:

1. ∆∗
G(qG,0, γ) is the set of all items inIG for whichγ is a reliable prefix.

2. L(LR0(G)) is the set of all reliable prefixes for complete items[A→ α.] ∈ IG.

Reliable prefixes are prefixes of right-sentential forms, asthey occur during the reduction of an input
word. When a reduction is possible that will again lead to a right sentential-form This can only hap-
pen at the right end of this sentential form. An item valid fora reliable prefix describes one possible
interpretation of the actual analysis situation.

86 3 Syntactic Analysis

Example 3.4.6E +F is a reliable prefix for the grammarG0. The state∆∗
G0

(S0, E +F) = S3 is also
reached by the following reliable prefixes:

F , (F , ((F , (((F , . . .

T ∗ (F , T ∗ ((F , T ∗ (((F , . . .

E + F , E + (F , E + ((F , . . .

The stateS6 in the canonicalLR(0) automaton toG0 contains all valid items for the reliable prefix
E+, namely the items

[E → E + .T], [T → .T ∗ F], [T → .F], [F → .Id], [F → .(E)].

For E+ is a prefix of the right sentential formE + T :

S =⇒
rm

E =⇒
rm

E + T =⇒
rm

E + F =⇒
rm

E + Id

↑ ↑ ↑

Valid are for instance [E → E + .T] [T → .F] [F → .Id]
⊓⊔

The canonicalLR(0) automatonLR0(G) to a context-free grammarG is a deterministic finite-state
machine that accepts the set of reliable prefixes to completeitems. In this way, it identifies positions
for reduction, and therefore offers itself for the construction of a right parser. Instead of items (as the
item-pushdown automaton) this parser stores on its stack states of the canonicalLR(0) automaton,
that is setsof items. The underlying pushdown automataP0 is defined as the tupleK0 = (QG ∪
{f}, VT , ∆0, qG,0, {f}). The set of states is the setQG of states of the canonicalLR(0) automaton
LR0(G), extended by a new statef , the final state. The initial state ofP0 is identical to the initial state
qG,0 of LR0(G); The transition relation∆0 consists of the following kinds of transitions:

Read: (q, a, q δG(q, a)) ∈ ∆0, if δG(q, a) 6= ∅. This transition reads the next input symbola and
pushes the successor stateq undera onto the stack. It can only be taken if at least one item of the
form [X → α.aβ] is contained inq.

Reduce:(qq1 . . . qn, ε, q δG(q, X)) ∈ ∆ if [X → α.] ∈ qn holds with |α| = n. The complete item
[X → α.] in the topmost stack entry signals a potential reduction. Asmany entries are removed
from the top of the stack as the length of the right side indicates. After that, theX successor of the
new topmost stack entry is pushed onto the stack.
Fig. 3.16 shows a part of the transition diagram of aLR(0) automatonLR0(G) that demonstrates
this situation. Theα path in the transition diagram corresponds to|α| entries on top of the stack.
These entries are removed at reduction. The new actual state, previously below these removed
entries, has a transition underX , which is now taken.

Finish: (qG,0 q, ε, f) if [S′ → S.] ∈ q. This transition is the reduction transition to the production
S′ → S. The property[S′ → S.] ∈ q signals that a word was successfully reduced to the start
symbol. This transition empties the stack and inserts the final statef .

The special case[X → .] merits special consideration. According to our description, |ε| = 0 topmost
stack entries need to be removed from the stack upon this reduction, and a transition from the new,
and old, actual stateq underX should be taken, and the state∆G(q, X) is pushed onto the stack.
This transition is possible since by construction it holds that with the item[· · · → · · · .X · · ·] also the
item [X → .α] is contained in stateq for each right sideα of nonterminalX . In the special case of a
ε production, the actual stateq contains together with the item[· · · → · · · .X · · ·] also the complete
item [X → .]. This latter reduction transitionextends the lengthof the stack.

The construction ofLR0(G) guarantees that for each non-initial and non-final stateq there exists
exactly one entry symbol under which the automaton can make atransition intoq. The stack contents
q0, . . . , qn mit q0 = qG,0 corresponds therefore to a uniquely determined wordα = X1 . . . Xn ∈
(VT ∪ VN)∗ for which ∆G(qi, Xi+1) = qi+1 holds. This wordα is a reliable prefix, andqn is the set
of all items valid forα.

3.4 Bottom-up Syntax Analysis 87

X

α

[X → α.]

· · ·

· · ·

[· · · → · · ·X. · · ·]

· · ·

[· · · → · · · .X · · ·]

[X → .α]

Fig. 3.16. Part of the transition diagram of a canonicalLR(0) automaton.

The pushdown automatonP0 just constructed is not necessarily deterministic. There are two kinds
of conflicts that cause non-determinism:

shift-reduce conflict:a stateq allows a read transition under a symbola ∈ VT as well as a reduce or
finish transition, and

reduce-reduce conflict:a stateq permits reduction transitions according to two different productions.

In the first case, the actual state contains at least one item[X → α.aβ] and at least one complete item
[Y → γ.]; in the second case,q contains two different complete items[Y → α.], [Z → β.]. A stateq

of theLR(0) automaton with one of these properties is calledLR(0) inadequate. Otherwise, we callq
LR(0) adequate. Es gilt:

Lemma 3.4.For anLR(0) adequatestateq there are three possibilities:

1. The stateq contains no complete item.
2. The stateq consists of exactly one complete item[A→ α.];
3. The stateq contains exactly one complete item[A→ .], and all non-complete items inq are of the

form [X → α.Y β], where all rightmost derivations forY that lead to a terminal word are of the
form:

Y
∗

=⇒
rm

Aw =⇒
rm

w

for aw ∈ V ∗
T . ⊓⊔

Inadequate states of the canonicalLR(0) automaton make the pushdown automataP0 non-deterministic.
We obtain deterministic parsers by permitting the parser tolook ahead into the remaining input to select
the correct action in inadequate states.

Example 3.4.7The statesS1, S2 andS9 of the canonicalLR(0) automaton in Fig. 3.15 areLR(0)
inadequate. In stateS1, the parser can reduce the right sideE to the left sideS (complete item[S → E.])
and it can read the terminal symbol+ in the input (item[E → E. + T]). In stateS2 the parser can
reduce the right sideT to E (complete item[E → T.]) and it can read the terminal symbol∗ (item
[T → T. ∗ F]). In stateS9 finally, the parser can reduce the right sideE + T to E (complete item
[E → E + T.]), and it can read the terminal symbol∗ (item [T → T. ∗ F]). ⊓⊔

Direct Construction of the CanonicalLR(0) Automaton

The canonicalLR(0) automatonLR0(G) to a context-free grammarG needs not be derived through
the construction of the characteristic finite-state machine char(G) and the subset construction. It can
be constructed directly fromG. The construction uses a function∆G,ε that adds to each setq of items
all items that are reachable byε transitions of the characteristic finite-state machine. The set∆G,ε(q)
is the least solution of the following equation

I = q ∪ {[A→ .γ] | ∃X → αAβ ∈ P : [X → α.Aβ] ∈ I}

Similar to the functionclosure() of the subset construction it can be computed by

88 3 Syntactic Analysis

set〈item〉 closure(set〈item〉 q) {

set〈item〉 result ← q;

list〈item〉 W ← list_of(q);

symbol X ; string〈symbol 〉 α;

while (W 6= []) {

item i← hd(W); W ← tl(W);

switch (i) {

case [_→ _ .X _] : forall (α : (X → α) ∈ P)

if ([X → .α] 6∈ result) {

result ← result ∪ {[X → .α]};

W ← [X → .α] :: W ;

}

default : break;

}

}

return result ;

}

whereV is the set of symbolsV = VT ∪ VN . The setQG of states and the transition relation∆G are
computed by first constructing the initial stateqG,0 = ∆G,ε({[S′ → .S]}) and then adding successor
states and transitions until all successor states are already in the set of constructed states. To implement
it we specialize the functionnextState() of the subset construction:

set〈item〉 nextState(set〈item〉 q, symbol X) {

set〈item〉 q′ ← ∅;

nonterminal A; string〈symbol 〉 α, β;

forall (A, α, β : ([A→ α.Xβ] ∈ q))

q′ ← q′ ∪ {[A→ αX.β]};

return closure(q′);

}

As in the subset construction, the set of statesstatesand the set of transitionstranscan be computed
iteratively:

3.4 Bottom-up Syntax Analysis 89

list〈set〈item〉〉 W ;

set〈item〉 q0 ← closure({[S′ → .S]});

states ← {q0}; W ← [q0];

trans ← ∅;

set〈item〉 q, q′;

while (W 6= []) {

q ← hd(W); W ← tl(W);

forall (symbol X) {

q′ ← nextState(q, X);

trans ← trans ∪ {(q, X, q′)};

if (q′ 6∈ states) {

states ← states ∪ {q′};

W ← q′ :: W ;

}

}

}

3.4.3 LR(k): Definition, Properties, and Examples

We call a context-free grammarG an LR(k)-grammar, if in each of its rightmost derivationsS′ =
α0 =⇒

rm
α1 =⇒

rm
α2 · · · =⇒

rm
αm = v and each right sentential formsαi occurring in the derivation

• the handle can be localized, and
• the production to be applied can be determined

by consideringαi from the left to at mostk symbols following the handle. In anLR(k)-grammar,
the decomposition ofαi into γβw and the determination ofX → β, such thatαi−1 = γXw holds is
uniquely determined byγβ andw|k. Formally, we callG anLR(k)-grammar if

S′ ∗
=⇒
rm

αXw =⇒
rm

αβw and

S′ ∗
=⇒
rm

γY x =⇒
rm

αβy and

w|k = y|k implies α = γ ∧X = Y ∧ x = y.

Example 3.4.8Let G be the grammar with the productions

S → A | B A→ aAb | 0 B → aBbb | 1

ThenL(G) = {an0bn | n ≥ 0} ∪ {an1b2n | n ≥ 0}. We know already thatG is for nok ≥ 1 an
LL(k)-grammar. GrammarG is anLR(0)-grammar, though.

The right sentential forms ofG have the form

S, A, B, anaAbbn, anaBbbb2n, ana0bbn, ana1bbb2n

for n ≥ 0. The handles are always underlined. Two different possibilities to reduce exist only in the
case of right sentential formsanaAbbn andanaBbbb2n One could reduceanaAbbn to anAbn and to
anaSbbn. The first choice belonged to the rightmost derivation

S
∗

=⇒
rm

anAbn =⇒
rm

anaAbbn

the second to no rightmost derivation. The prefixan of anAbn uniquely determines, whetherA is the
handle, namely in the casen = 0, or whetheraAb is the handle, namely in the casen > 0. The right
sentential formsanBb2n are handled analogously.⊓⊔

90 3 Syntactic Analysis

Example 3.4.9The grammarG1 with the productions

S → aAc A→ Abb | b

and the languageL(G1) = {ab2n+1c | n ≥ 0} is an LR(0)-grammar. In a right sentential form
aAbbb2nc only the reduction toaAb2nc is possible as part of a rightmost derivation. The prefixaAbb

uniquely determines this. For the right sentential formabb2nc, b is the handle, and the prefixab uniquely
determines this. ⊓⊔

Example 3.4.10The grammarG2 with the productions

S → aAc A→ bbA | b

and the languageL(G2) = L(G1) is anLR(1)-grammar. The critical right sentential forms have the
form abnw. If 1 : w = b, the handle lies inw; if 1 : w = c, the lastb in bn forms the handle. ⊓⊔

Example 3.4.11The grammarG3 with the productions

S → aAc A→ bAb | b

and the languageL(G3) = L(G1) is not anLR(k)-grammar for anyk ≥ 0. For, letk be arbitrary, but
fix. Consider the two rightmost derivations

S
∗

=⇒
rm

abnAbnc =⇒
rm

abnbbnc

S
∗

=⇒
rm

abn+1Abn+1c =⇒
rm

abn+1bbn+1c

with n ≥ k. With the names introduced in the definition ofLR(k)-grammar, we haveα = abn, β =
b, γ = abn+1, w = bnc, y = bn+2c. Herew|k = y|k = bk. α 6= γ implies thatG3 can be noLR(k)-
grammar. ⊓⊔

The following theorem clarifies the relation between the definition of LR(0)-grammar and the proper-
ties of the canonicLR(0) automaton.

Theorem 3.4.2 A context-free grammarG is anLR(0)-grammar if and only if the canonicalLR(0)
automaton forG has noLR(0)-inadequate states.

Proof: ” ⇒ ” Let G eineLR(0)-grammar, and nehmen wir an, der canonicalLR(0) automaton
LR0(G) habe einen einenLR(0)-inadequaten statep.

Fall 1: The statep hat einenreduce-reduce-conflict, d.h.p enth"alt zwei verschiedene items[X → β.], [Y → δ.].
Dem statep zugeordnet ist eine nichtleere Menge von reliable prefixesn. Let γ = γ′β ein solches reli-
able prefix. Weil beide items valid forγ sind, gibt es rightmost derivations

S′ ∗
=⇒
rm

γ′Xw =⇒
rm

γ′βw und

S′ ∗
=⇒
rm

νY y =⇒
rm

νδy mit νδ = γ′β = γ

Das ist aber ein Widerspruch zurLR(0)-Eigenschaft.

Fall 2: statep hat einenshift-reduce-conflict, d.h.p enth"alt items[X → β.] and[Y → δ.aα]. Let γ
ein reliable prefix for beide item Weil beide items valid forγ sind, gibt es rightmost derivations

S′ ∗
=⇒
rm

γ′Xw =⇒
rm

γ′βw und

S′ ∗
=⇒
rm

νY y =⇒
rm

νδaαy mit νδ = γ′β = γ

Ist β′ ∈ V ∗
T , erhalten wir sofort einen Widerspruch. Andernfalls gibt es eine rightmost derivation

α
∗

=⇒
rm

v1Xv3 =⇒
rm

v1v2v3

3.4 Bottom-up Syntax Analysis 91

Weil y 6= av1v2v3y gilt, ist theLR(0)-Eigenschaft verletzt.

” ⇐ ” Nehmen wir an, the canonicalLR(0) automatonLR0(G) habe keineLR(0)-inadequaten
states. Betrachten wir the zwei rightmost derivations:

S′ ∗
=⇒
rm

αXw =⇒
rm

αβw

S′ ∗
=⇒
rm

γY x =⇒
rm

αβy

Zu zeigen ist, dassα = γ, X = Y, x = y gelten. Letp the state of the canonicalLR(0) automaton
nach Lesen vonαβ. Dann enth"altp alle forαβ valid items . Nach Voraussetzung istp LR(0)-geeignet.
Wir unterscheiden zwei F"alle:

Fall 1: β 6= ε. Wegen Lemma 3.4 istp = {[X → β.]}, d.h. [X → β.] ist das einzige valid item for
αβ. Daraus folgt, dassα = γ, X = Y andx = y sein muss.

Fall 2: β = ε. Nehmen wir an, the zweite rightmost derivation widerspreche theLR(0)-Bedingung.
Dann gibt es ein weiteres item[X → δ.Y ′η] ∈ p, so dassα = α′δ ist. The letzte Anwendung einer
production in the unteren rightmost derivation ist the letzte Anwendung einer production in einer ter-
minalen rightmost derivation forY ′. Nach Lemma 3.4 folgt daraus, dass the untere Ableitung gegeben
ist durch:

S′ ∗
=⇒
rm

α′δY ′w
∗

=⇒
rm

α′δXvw =⇒
rm

α′δvw

wobeiy = vw ist. Damit giltα = α′δ = γ, Y = X andx = vw = y – im Widerspruch zu unserer
Annahme. ⊓⊔

Let us conclude. We have seen how to construct theLR(0) automatonLR0(G) from a given context-
free grammarG. This can be done either directly of through the characteristic finite-state machine
char(G). From the deterministic finite-state machineLR0(G) one can construct a pushdown automata
P0. This pushdown automatonP0 is deterministic ifLR0(G) does not containLR(0)-inadequate states.
Theorem 3.4.2 states this is exactly the case if the grammarG is anLR(0)-grammar. We have thereby
met a method to generate parsers forLR(0)-grammars.

In real life, LR(0)-grammars are rather rare. Often lookahead of lengthk > 0 needs to be used
to select between the different choices of a parsing situation. In anLR(0) parser, the actual state de-
termines what the next action is, independently of the next input symbols.LR(k) parsers fork > 0
have states consisting of sets of items. A different kind of items are used, though, so-calledLR(k)-
items.LR(k)-items are context-free items, extended by lookahead words. An LR(k)-item is of the
form i = [A → α.β, x] for a productionA → αβ of G and a wordx ∈ (V k

T ∪ V <k
T #). The context-

free item[A → α.β] is called thecore, the wordx the lookaheadof the LR(k)-itemsi. The set of
LR(k)-items of grammarG is written asIG,k. TheLR(k)-item [A → α.β, x] is valid for a reliable
prefixγ, if there exists a rightmost derivation

S′#
∗

=⇒
rm

γ′Xw# =⇒
rm

γ′αβw#

with x = (w#)|k. A context-free item[A→ α.β] can be understood as anLR(0)-item that is extended
by lookaheadε.

Example 3.4.12Consider again grammarG0. We have:

(1) [E → E + .T,)]

[E → E + .T, +] are validLR(1)-items for the prefix(E+

(2) [E → T., ∗] is not a validLR(1)-item for any reliable prefix.

To see observation (1), consider the two rightmost derivations:

S′ ∗
=⇒
rm

(E) =⇒
rm

(E + T)

S′ ∗
=⇒
rm

(E + Id) =⇒
rm

(E + T + Id)

Observation (2) follows since the subwordE∗ can occur in no right sentential form.⊓⊔

92 3 Syntactic Analysis

The folllowing theorem gives a characterization of theLR(k)-property based on validLR(k)-items.

Theorem 3.4.3 Let G be a context-free grammar. For a reliable prefixγ let It(γ) be the set ofLR(k)-
items ofG that are valid forγ.

The grammarG is anLR(k)-grammar if and only if for all reliable prefixesγ and allLR(k)-items
[A→ α., x] ∈ It(γ) holds:

1. if there is anotherLR(k)-item [X → δ., y] ∈ It(γ), thenx 6= y.
2. is there anotherLR(k)-item [X → δ.aβ, y] ∈ It(γ), thenx 6∈ firstk(aβ)⊙k {y}. ⊓⊔

Theorem 3.4.3 suggests to defineLR(k) adequate andLR(k)-inadequate sets of items also for
k > 0. Let I be a set ofLR(k)-items. I has areduce-reduce-conflict, if there areLR(k)-items
[X → α., x], [Y → β., y] ∈ I with x = y. I has ashift-reduce-conflict, if there areLR(k)-items
[X → α.aβ, x], [Y → γ., y] ∈ I with

y ∈ {a} ⊙k firstk(β)⊙k {x}

Fork = 1 this condition is simplified toy = a.
The setI is calledLR(k)-inadequate, if it has areduce-reduce- or a shift-reduce-conflict. Other-

wise, we call itLR(k) adequate.
TheLR(k)-property means that when reading a right sentential form, acandidate for a reduction

together with production to be applied can be uniquely determined by the help of the associated reliable
prefixes and thek next symbols of the input. However, if we were to tabulate allcombinations of
reliable prefixes with words of lengthk this would be infeasible since, in general, there are infinitely
many reliable prefixes. In analogy to our way of dealing withLR(0)-grammars one could construct a
canonicalLR(k)-automaton. The canonicalLR(k)-automatonLRk(G) is a deterministic finite-state
machine. Its states are sets ofLR(k)-items. For each reliable prefixγ the deterministic finite-state
machineLRk(G) determines the set ofLR(k)-items that are valid forγ. Theorem 3.4.3 helps us in
our derivation. It says that for anLR(k)-grammar, the set ofLR(k)-items valid forγ together with the
lookahead determines uniquely whether to reduce in the nextstep, and if so, by which production.

In much the same way as theLR(0) parser stores states of the canonicalLR(0) automaton on its
stack, theLR(k) parser stores states of the canonicalLR(k)-automaton on is stack. The selection of
the right of several possible actions of theLR(k) parser is controlled by theaction-table. This table
contains for each combination of state and lookahead one of the following entries:

shift: read the next input symbol;

reduce(X → α): reduce by productionX → α;

error: report error

accept: announce successful end of the parser run

A second table, thegoto-table, contains the representation of the transition function of the canonic
LR(k)-automatonLRk(G). It is consulted after ashift-action or areduce-action to determine the new
state on top of the stack. Upon ashift, it computes the transition under the read symbol out of the actual
state. Upon a reduction byX → α, it gives the transition underX out of the state underneath those
stack symbols that belong toα. These two tables fork = 1 are shown in Fig. 3.17.

TheLR(k) parser for a grammarG needs a program that interprets theaction- andgoto-table, the
driver. Again, we consider the casek = 1. This is, in principle, sufficient because for each language
that has anLR(k)-grammar and therefore also anLR(k) parser one can construct anLR(1)-grammar
and consequently also anLR(1) parser. Let us assume that the set of states of theLR(1) parser were
Q. One such driver program then is:

3.4 Bottom-up Syntax Analysis 93

action-table goto-table

VT ∪ {#} VN ∪ VT

Q

x

q
parser action

for (q, x)

Q

X

q δd(q, X)

Fig. 3.17. Schematic representation ofaction- andgoto-table of anLR(1) parser with set of statesQ.

list〈state〉 stack ← [q0];

terminal buffer ← scan();

state q; nonterminal X ; string〈symbol〉 α;

while (true) {

q ← hd(stack);

switch (action [q, buffer]) {

case shift : stack ← goto[q, buffer] :: stack ;

buffer ← scan();

break;

case reduce(X → α) : output(X → α);

stack ← tl(|α|, stack); q ← hd(stack);

stack ← goto[q, X] :: stack ;

break;

case accept : stack ← f :: tl(2, stack);

return accept ;

case error : output(′′. . .′′); goto err ;

}

The functionlist〈state〉 tl(int n, list〈state〉 s) returns in its second argument the lists with the
topmostn elements removed. As with the driver program forLL(1) parsers, in the case of an error, it
jumps to a labelerr at which the code for error handling is to be found.

We present three approaches to construct anLR(1) parser for a context-free grammarG. The most
general method is the canonicalLR(1)-method. For eachLR(1)-grammarG there exists a canonical
LR(1) parser. The number of states of this parser can be large. Therefore, other methods were proposed
that have state sets of the size of theLR(0) automaton. Of these we consider theSLR(1)- and the
LALR(1)-method.

The described driver program forLR(1) parsers works for all three parsing methods; the driver in-
terprets theaction- and agoto-table, but their contents are computed in different ways. In consequence,
the actions for some combinations of state and lookahead maybe different.

Construction of an LR(1) Parser

TheLR(1) parser is based on the canonicalLR(1)-automatonLR1(G). Its states therefore are sets of
LR(1)-items. We construct the canonicalLR(1)-automaton much in the same way as we constructed
the canonicalLR(0) automaton. The only difference is thatLR(1)-items are used instead ofLR(0)-
items. This means that the lookahead symbols need to be computed when the closure of a setq of

94 3 Syntactic Analysis

LR(1)-items underε-transitions is formed. This set is the least solution of thefollowing equation

I = q ∪ {[A→ .γ, y] | ∃X → αAβ ∈ P : [X → α.Aβ, x] ∈ I, y ∈ first1(β)⊙1 {x}}

It is computed by the following function

set〈item1〉 closure(set〈item1〉 q) {

set〈item1〉 result ← q;

list〈item1〉 W ← list_of(q);

nonterminal X ; string〈symbol〉 α, β; terminal x, y;

while (W 6= []) {

item1 i← hd(W); W ← tl(W);

switch (i) {

case [_→ _ .Xβ, x] :

forall (α : (X → α) ∈ P)

forall (y ∈ first1(β)⊙1 {x})

if ([X → .α, y] 6∈ result) {

result ← result ∪ {[X → .α, y]};

W ← [X → .α, y] :: W ;

}

default : break;

}

}

return result ;

}

whereV is the set of all symbols,V = VT ∪ VN . The initial stateq0 of LR1(G) is

q0 = closure({[S′ → .S, #]})

We need a functionnextState() that computes the successor state to a given setq of LR1-items and a
symbolX ∈ V = VN ∪ VT . The corresponding function for the construction ofLR0(G) needs to be
extended by the compute the lookahead symbols:

set〈item1〉 nextState(set〈item1〉 q, symbol X) {

set〈item1〉 q′ ← ∅;

nonterminal A; string〈symbol〉 α, β; terminal x;

forall (A, α, β, x : ([A→ α.Xβ, x] ∈ q))

q′ ← q′ ∪ {[A→ αX.β, x]};

return closure(q′);

}

The set of states and the transition relation of the canonical LR(1)-automaton is computed in analogy
to the canonicalLR(0)-automaton. The generator starts with the initial state andan empty set of tran-
sitions and adds successors states until all successor states are already contained in the set of computed
states. The transition function of the canonicalLR(1)-automaton gives thegoto-table of theLR(1)
parser.

Let us turn to the construction of theaction-table of theLR(1) parser. Noreduce-reduce-conflict
exists in a stateq of the canonicalLR(1)-automaton with completeLR(1)-items[X → α., x], [Y →
β., y] if x 6= y. If the LR(1) parser is in stateq it will decide to reduce with the production whose

3.4 Bottom-up Syntax Analysis 95

lookahead symbol is the next input symbol. If stateq contains at the same time a completeLR(1)-item
[X → α., x] and anLR(1)-item [Y → β.aγ, y], it still has noshift-reduce-conflict if a 6= x. In state
q the generated parser will reduce if the next next input symbol is x and shift if it isa. Therefore, the
action-table can be computed by the following iteration:

forall (state q) {

forall (terminal x) action [q, x]← error ;

forall ([X → α.β, x] ∈ q)

if (β = ε)

if (X = S′ ∧ α = S ∧ x = #) action [q, #]← accept ;

else action [q, x]← reduce(X → α);

else if (β = aβ′) action [q, a]← shift ;

}

Example 3.4.13We consider some states of the canonicalLR(1)-automaton for the context-free gram-
mar G0. The numbering of states is the same as in Fig. 3.15. To make the representation of setsS
of LR(1)-items more readable all lookahead symbols inLR(1)-items fromS with the same kernel
[A→ α.β] are collected in one lookahead set

L = {x | [A→ α.β, x] ∈ q}

We represent subsets{[A→ α.β, x] | x ∈ L} as[A→ α.β, L] and obtain

S′
0 = closure({[S → .E, {#}]})

= { [S → .E, {#}]

[E → .E + T, {#, +}],

[E → .T, {#, +}],

[T → .T ∗ F, {#, +, ∗}],

[T → .F, {#, +, ∗}],

[F → .(E), {#, +, ∗}],

[F → .Id, {#, +, ∗}] }

S′
1 = nextState(S′

0, E)

= { [S → E., {#}],

[E → E. + T, {#, +}] }

S′
2 = nextState(S′

1, T)

= { [E → T., {#, +}],

[T → T. ∗ F, {#, +, ∗}] }

S′
6 = nextState(S′

1, +)

= { [E → E + .T, {#, +}],

[T → .T ∗ F, {#, +, ∗}],

[T → .F, {#, +, ∗}],

[F → .(E), {#, +, ∗}],

[F → .Id, {#, +, ∗}] }

S′
9 = nextState(S′

6, T))

= { [E → E + T., {#, +}],

[T → T. ∗ F, {#, +, ∗}] }

After the extension by lookahead symbols, the statesS1, S2 andS9, which wereLR(0) inadequate,
have no longer conflicts. In stateS′

1 the next input symbol+ indicates to shift, the next input symbol
indicates to reduce. In stateS′

2 lookahead symbol∗ indicates to shift,# and+ to reduce; similarly
in stateS′

9.
The table 3.6 shows the rows of theaction-table of the canonicalLR(1) parser for the grammarG0,

which belong to the statesS′
0, S

′
1, S

′
2, S

′
6 andS′

9. ⊓⊔

SLR(1)- and LALR(1) parser

The set of states ofLR(1) parsers can become quite large. Therefore, oftenLR analysis methods are
employed that are not as powerful as canonical LR parsers, but have fewer states. Two suchLR analysis

96 3 Syntactic Analysis

Id () ∗ + #

S′

0 s s

S′

1 s acc

S′

2 s r(3) r(3)

S′

6 s s

S′

9 s r(2) r(2)

The used numbering of the productions:

1 : S → E

2 : E → E + T

3 : E → T

4 : T → T ∗ F

5 : T → F

6 : F → (E)

7 : F → Id

Table 3.6. Some rows of theaction-table of the canonicalLR(1) parser forG0. s stands forshift, r(i) for reduce
by productioni, acc for accept. All empty entries representerror.

methods are theSLR(1)- (simpleLR-) andLALR(1)- (lookaheadLR-)methods. IstSLR(1) parser
is a specialLALR(1) parser, and each grammar that has anLALR(1) parser is anLR(1)-grammar.

The starting point of the construction ofSLR(1)- andLALR(1) parsers is the canonicalLR(0)
automatonLR0(G). The setQ of states and thegoto-table for these parsers are the set of states and
thegoto-table of the correspondingLR(0) parser. Lookahead is used to resolve conflicts in the states
in Q. Let q ∈ Q be a state of the canonicalLR(0) automaton and[X → α.β] an item inq. We denote
by λ(q, [X → α.β]) the lookahead set that is added to the item[X → α.β] in q. TheSLR(1)-method
is different from theLALR(1)-method in the definition of the function

λ : Q× IG → 2VT ∪{#}

Relative to such a functionλ, the stateq of LR0(G) has areduce-reduce-conflict, if it has different
complete items[X → α.], [Y → β.] ∈ q with

λ(q, [X → α.]) ∩ λ(q, [Y → β.]) 6= ∅

Relative toλ , q has ashift-reduce-conflict if it has items[X → α.aβ], [Y → γ.] ∈ q with a ∈
λ(q, [Y → γ.]).

If no state of the canonicLR(0) automaton has a conflict, the lookahead setsλ(q, [X → α.]) suffice
to construct anaction-table zu.

In SLR(1) parsers, the lookahead sets for items are independent of thestates in which they occur;
the lookahead only depends on the left side of the productionin the item:

λS(q, [X → α.β]) = {a ∈ VT ∪ {#} | S
′#

∗
=⇒ γXaw} = follow1(X)

for alle statesq mit [X → α.] ∈ q. A stateq of the canonicalLR(0) automaton is calledSLR(1)-
inadequateif it contains conflicts with respect to the functionλS . G is anSLR(1)-grammarif there
are noSLR(1)-inadequate states.

Example 3.4.14We consider again grammarG0 of Example 3.4.1. Its canonicalLR(0) automaton
LR0(G0) has the inadequate statesS1, S2 andS9. We extend the complete items in the states by the
follow1-sets of their left sides to represent the functionλS in a readable way. Sincefollow1(S) = {#}
andfollow1(E) = {#, +,)} we obtain:

S′′
1 = { [S → E., {#}], conflict eliminated,

[E → E. + T]} da + 6∈ {#}

S′′
2 = { [E → T., {#, +,)}], conflict eliminated,

[T → T. ∗ F] } da ∗ 6∈ {#, +,)}

S′′
9 = { [E → E + T., {#, +,)}], conflict eliminated,

[T → T. ∗ F] } da ∗ 6∈ {#, +,)}

3.4 Bottom-up Syntax Analysis 97

So,G0 i anSLR(1)-grammar and it has anSLR(1) parser. ⊓⊔

The setfollow1(X) collects all symbols that can follow the nonterminalX in a sentential form of the
grammar. Only thefollow1-sets are used to resolve conflicts in the construction of anSLR(1) parser. In
many cases this is not sufficient. More conflicts can be resolved if the state is taken into consideration
in which the complete item[X → α.] occurs. Themost preciselookahead set that considers the state is
defined by:

λL(q, [X → α.β]) = {a ∈ VT ∪ {#} | S
′#

∗
=⇒
rm

γXaw ∧∆∗
G(q0, γα) = q}

Here,q0 is the initial state, and∆G is the transition function of the canonicLR(0) automatonLR0(G).
In λL(q, [X → α.]) only terminal symbols are contained that can followX in a right sentential form
βXaw such thatβα drives the canonicalLR(0) automaton into the stateq. We call stateq of the
canonicalLR(0) automatonLALR(1)-inadequateif it contains conflicts with respect to the function
λL. The grammarG is anLALR(1)-grammar if the canonicalLR(0) automaton has noLALR(1)-
inadequate states.

There always exists anLALR(1) parser to anLALR(1)-grammar. The definition of the function
λL however is not constructive since sets of right sentential forms appear in it that are in general
infinite. The setsλL(q, [A → α.β]) can be characterized as the least solution of the following system
of equations:

λL(q0, [S
′ → .S]) = {#}

λL(q, [A→ αX.β]) =
⋃
{λL(p, [A→ α.Xβ]) | ∆G(p, X) = q} , X ∈ (VT ∪ VN)

λL(q, [A→ .α]) =
⋃
{first1(β)⊙1 λL(q, [X → γ.Aβ]) | [X → γ.Aβ] ∈ q′}

The system of equations describes how sets of successor symbols of items in states originate. The first
equation says that only# can follow the start symbolS′. The second class of equations describes that
the follow symbols of an item[A→ αX.β] in a stateq result from the follow symbols after the dot in
an item[A→ α.Xβ] in statesp from which one can reachq by readingX . The third class of equations
formalizes that the follow symbols of an item[A → .α] in a stateq result from the follow symbols of
occurrencesof A in items inq after the dot, that is, from setsfirst1(β)⊙1 λL(q, [X → γ.Aβ]) for items
[X → γ.Aβ] in q.

The system of equations for the setsλL(q, [A→ α.β]) over the finite subset lattice2VT ∪{#} can be
solved by the iterative method for the computation of least solutions. Considering which nonterminal
may produceε allows us to replace the occurrences of1-concatenation by unions. We so obtain an
equivalent pure union problem that can be solved by the efficient method of Section 3.2.7.

LALR(1) parsers can be constructed in the following, albeit inefficient way: One constructs a
canonicalLR(1) parser. Consider twoLR(1) adequate statesp andq where the cores of the items inp
are the same as the cores in the items ofq, that is, where the difference of the two sets of items consists
only in the lookahead sets. Such statesp andq are merged to a new statep′. The lookahead sets in the
new statep′ are obtained as the union of the lookahead sets of items with the same core. The grammar
is anLALR(1)-grammar if the new states have no conflicts.

98 3 Syntactic Analysis

list〈set〈item〉〉 W ;

set〈item〉 q0 ← closure({[S′ → .S]});

states ← {q0}; W ← [q0];

trans ← ∅;

set〈item〉 q, q′;

while (W 6= []) {

q ← hd(W); W ← tl(W);

forall (symbol X) {

q′ ← nextState(q, X);

trans ← trans ∪ {(q, X, q′)};

if (q′ 6∈ states) {

states ← states ∪ {q′};

W ← q′ :: W ;

}

}

}

A further possibility consists in the modification of Algorithm LR(1)-GEN. The conditional state-
ment

if (q′ not in states) states← states ∪ {q′};

is replaced by

if (existsq′′ in states with samecores(q′, q′′)) merge(states, q′, q′′);

where

bool samecores(set of itemp, set of itemp′)
if (set of cores ofp = set of cores ofp′)

return true;
else

return false;

void merge(set of set of itemstates, set of itemp, set of itemp′)
states← states \ {p′} ∪ {[X → α.β, L1 ∪ L2] | [X → α.β, L1] ∈ p and[X → α.β, L2] ∈ p′};

Example 3.4.15The following grammar taken from [ASU86] describes a simplified version of the C
assignment statement:

S′ → S

S → L = R | R

L → ∗R | Id

R → L

This grammar is not anSLR(1)-grammar, but t is aLALR(1)-grammar. The states of the canonical
LR(0) automaton are given by:

3.4 Bottom-up Syntax Analysis 99

S0 = { [S′→ .S],

[S → .L = R],

[S → .R],

[L→ . ∗R],

[L→ .Id],

[R→ .L] }

S1 = { [S′→ S.] }

S2 = { [S → L. = R],

[R→ L.] }

S3 = { [S → R.] }

S4 = { [L→ ∗ .R],

[R→ .L],

[L→ . ∗R],

[L→ .Id] }

S5 = { [L→ Id.] }

S6 = { [S → L = .R],

[R→ .L],

[L→ . ∗R],

[L→ .Id] }

S7 = { [L→ ∗R.] }

S8 = { [R→ L.] }

S9 = { [S → L = R.] }

StateS2 is the onlyLR(0)-inadequate state. We havefollow1(R) = {#, =}. This lookahead set for
the item[R→ L.] is not sufficient to resolve theshift-reduce-conflict inS2 since the next input symbol
= is in the lookahead set. Therefore, the grammar is not anSLR(1)-grammar.

The grammar however is aLALR(1)-grammar. The transition diagram of itsLALR(1) parser
is shown in Fig. 3.18. To increase readability, the lookahead setsλL(q, [A → α.β]) were directly
associated with the item[A → α.β] of stateq. In stateS2, the item[R → L.] has now the lookahead
set{#}. The conflict is resolved since this set does not contain the next input symbol=. ⊓⊔

3.4.4 Error Handling in LR Parsers

LR parsers likeLL parsers have the viable-prefix property. This means that each prefix of the input that
could be analyzed by anLR parser without finding an error can be completed to a correct input word, a
word of the language. When anLR parser meets a configuration where the combination of stateq and
input symbola leads to an entryaction [q, a] = error this is the earliest situation in which an error can
be detected. We call this configuration anerror configurationandq theerror stateof this configuration.
There exist a number of error handling methods forLR parsers:

• Forward error recovery: Modifications are made in the remaining input, not in the parse stack.
• Backward error recovery: Modifications are also made in the parse stack.

Let us assume,q were the actual state anda the next symbol in the input. Potential corrections are the
following actions: A generalizedshift(βa) for an item[A→ α.βaγ] in q, areducefor incomplete items
in q, andskip.

• The correctionshift(βa) assumes that the subword forβ is missing. It therefore pushes the states
that the item-pushdown automaton would run through when reading the wordβ starting in stateq.
After that the symbola is read and the associatedshift-transition of the parser is performed.
• The correctionreduce(A → α.β) also assumes that the subword that belongs toβ is missing.

Therefore|α| many states are removed from the stack. Letp be the newly appeared state on top of
the stack. That state is pushed onto the stack that results fromp andA according to thegoto-table.
• The correctionskipcontinues with the next Symbola′ in the input.

A simple method for error recovery could look as follows: Letus assume there were no transition under
a. If the actual state contains an item[A → α.βaγ], the parser could try to restart by readinga. As
correctionshift(βa) is performed. If the symbol does not occur in any right side ofan items inq, but
as lookahead of a noncomplete item[A → α.β] in q, then the correctionreduce(A → α.β) could be
performed. If several such corrections are possible inq a plausiblecorrection is chosen. It could be
plausible to choose the operationshift(βa) or reduce(A→ α.β) in which the missing subwordβ is the
shortest. If neither ashift- nor areduce-correction is possible the correctionskip is applied.

Example 3.4.16Consider the grammarG0 with the productions

E → E + T

E → T

T → T ∗ F

T → F

F → (E)

F → Id

100 3 Syntactic Analysis

[S → R., {#}]

[S → L = R., {#}]

[S ′ → S., {#}]

∗

R

Id

L

L

=

L
Id

R

S4

S6

S2

S0

[R→ L., {#}]
[S → L. = R]

L→ .Id]
[L→ . ∗R]
[R→ .L]
[S → L = .R]

[R→ .L]

[L→ . ∗R]
[S → .R]

[S ′ → .S]
[S → .L = R]

[L→ ∗.R]
[R→ .L]
[L→ . ∗R]

[R→ L., {#, =}] [L→ ∗R., {=, #}]

Id

[L→ .Id]

[L→ .Id]

[L→ id., {=, #}]

∗

S7
R

S5

∗

S

S3

S8

S9

S1

Fig. 3.18. Transition diagram of theLALR(1) parser for the grammar of Example 3.4.15

for which the canonicalLR(0) automaton was constructed in Example 3.4.5. As input we choose

(Id +)

After reading the prefixes(Id + the stack of anSLR(1) parser contains the sequence of states
S0S4S8S6, corresponding to the reliable prefix(E +. The actual stateS6 consists of the items :

S6 = { [E → E + .T],

[T → .F],

[F → .Id],

[F → .(E)] }

We consider amSLR(1) parser. Its lookahead sets of the items inS6 are thefollow1-sets of the left
sides, i.,e.

S6 λS

[E → E + .T] +,)

[T → .F] ∗, +,)

[F → .Id] ∗, +,)

[F → .(E)] ∗, +,)

Reading) in stateS6 leads toerror. However, there are incomplete items inS6 with lookahead). One of
these items is used for reduction. One such item is[E → E + .T]. The reduction produces a new stack
contentS0S4S8 sinceS8 is the successor state ofS4 under the left sideE. A shift-transition reading)
is possible in stateS8. This leads to new stateS11 on top of the stack. A sequence of reductions reaches
the final statef . ⊓⊔

3.4 Bottom-up Syntax Analysis 101

This error recovery is a pure forward recovery. It is similarto the one offered by the parser generator
CUP for JAVA .

The One-Error-Hypothesis

Im Folgenden stellen wir ein verfeinertes Verfahren vor, das aus den Parsertabellen eine Fehlerbe-
handlung erzeugt, dabei aber annimmt, dass the Programmim wesentlichensyntaktisch korrekt ist and
deshalb nur minimal abgeändert werden muss. Das Verfahren geht ebenfalls vorw"arts über the input.
Im Fehlerfall versucht es, the input nach Möglichkeit nur aneiner einzigen Stelle abzuändern. Das
nennen wir theEin-Fehler-Hypothese. Vorberechnete Informationen wird eingesetzt, um effizient zu
entscheiden, wie the Fehler in the input korrigiert werden sollte.

Eine Konfiguration of theLR parsers notieren wir als(ϕq, ai . . . an), wobeiϕq der Kellerinhalt ist
mit actualm stateq, und the restliche inputai . . . an. Das verfeinerte Verfahren versucht, zu jeder error
configuration(ϕq, ai . . . an) einepassendeKonfiguration zu finden, in the eine Fortsetzung the analy-
sis durch Lesen mindestens eines weiteren input symbol m"oglich ist. Eine Konfigurationpasstzu the
error configuration , wenn sie durch m"oglichst wenig Ver"anderungen aus the error configuration her-
vorgeht. Mit the Annahme theein-Fehler-Hypotheseschr"anken wir the zugelassenen Ver"anderungen
drastisch ein. The ein-Fehler-Hypothese besagt, dass the Fehler an the gegebenen Stelle durchein
fehlendes,ein "uberfl"ussiges oderein falsches Symbol an the Fehlerstelle verursacht wurde. Der
Fehlerbehandlungsalgorithmus verf"ugt deshalb über eineoperation for the Einsetzen, eine operation
for the L"oschen und eine operation for the ErsetzeneinesSymbols.

Let (ϕq, ai . . . an) eine error configuration . Das Ziel the Fehlerkorrektur mit einer the drei opera-
tions lässt sich wie folgt beschreiben:

L"oschen: Finde Kellerinhalteϕ′p mit

(ϕq, ai+1 . . . an) ⊢
∗

(ϕ′p, ai+1 . . . an) und action [p, ai+1] = shift

Ersetzen: Finde ein Symbola and Kellerinhalteϕ′p mit

(ϕq, aai+1 . . . an) ⊢
∗

(ϕ′p, ai+1 . . . an) und action [p, ai+1] = shift

Einf"ugen: Finde ein Symbola and Kellerinhalteϕ′p mit

(ϕq, aai . . . an) ⊢
∗

(ϕ′p, ai . . . an) und action [p, ai] = shift

The gesuchten Kellerinhalteϕ′p k"onnen sich dadurch ergeben, dass unter dem jeweils neuen next
input symbol reductions m"oglich sind, die in the error configuration nicht m"oglich waren. Eine
wichtige Eigenschaft the drei operations ist, dass sie the Terminierung of the Fehlerbehandlungsver-
fahren garantieren: jeder the drei Schritte stellt im Erfolgsfall den Lesezeiger um mindestens ein Sym-
bol weiter.

Fehlerbehandlungsmethoden mit Zur"ucksetzen erlauben zus"atzlich, eine zuletzt angewandte pro-
duction the FormX → αY r"uckg"angig zu machen andY ai . . . an als input zu betrachten, wenn the
anderen Korrekturversuche gescheitert sind.

Ein naives Verfahren wird the verschiedenen M"oglichkeiten einer Fehlerkorrektur dynamisch, d.h.
während of the Parserlaufs durchsuchen, bis eine geeigneteKorrektur gefunden ist. Das Überprüfen
einer Möglichkeit verlangt eventuell, eine Reihe reductions durchzuführen, gefolgt von einem Test,
ob man ein Symbol lesen kann. Bei Misserfolg ist dann the error configuration wiederherzustellen
und the nächste Möglichkeit auszprobieren. The Suche nach therichtigenAbänderung eines Symbols
kann damit sehr teuer sein. Deshalb interessieren wir uns for Vorberechnungen, die man bereits zur
Generierungszeit of the Parsers durchf"uhren kann, um Sackgassen bei the Fehlerkorrektur schneller
zu erkennen. Let(ϕq, ai . . . an) wieder the error configuration . Betrachten wir theEinf"ugeneines
Symbolsa ∈ VT . The Fehlerbehandlung kann aus the folgenden Sequenz von Schritten bestehen (siehe
Abbildung 3.19 (a)):

(1) eine Folge von reductions unter lookaheadsymbola, gefolgt von

