Lexical Analysis

Reinhard Wilhelm
Universität des Saarlandes
wilhelm@cs.uni-sb.de
and
Mooly Sagiv
Tel Aviv University
sagiv@math.tau.ac.il

21. Oktober 2011

Lexical Analysis

Subjects

- ► Role of lexical analysis
- ► Regular languages, regular expressions
- ► Finite-state machines
- ▶ From regular expressions to finite-state machines
- ► A language for specifying lexical analysis
- ▶ The generation of a scanner
- ► Flex

"Standard" Structure, interfaces, mechanisms, where treated

◆ロト ◆団ト ◆豆 ◆ 豆 ・ りへで

Lexical Analysis

"Standard" Structure cont'd

Lexical Analysis (Scanning)

Functionality

Input: program as sequence of characters

Output: program as sequence of symbols (tokens)

- Produce listing
- ▶ Report errors, symbols illegal in the programming language
- Screening subtask:
 - Identify language keywords and standard identifiers
 - ▶ Eliminate "white-space", e.g., consecutive blanks and newlines
 - Count line numbers
 - Construct table of all symbols occurring

Lexical Analysis

Automatic Generation of Lexical Analyzers

- ► The symbols of programming languages can be specified by regular expressions.
- Examples:
 - program as a sequence of characters.
 - ▶ (alpha (alpha | digit)*) for identifiers
 - "(*" until "*)" for comments
- ► The recognition of input strings can be performed by a finite-state machine.
- ► A table representation or a program for the automaton is automatically generated from a regular expression.

Automatic Generation of Lexical Analyzers cont'd

Lexical Analysis

Notations

A language, L, is a set of words, x, over an alphabet, Σ . $a_1 a_2 \dots a_n$, a word over Σ , $a_i \in \Sigma$ The empty word The words of length n over Σ \sum_{n} <u>-</u> Σ* The set of finite words over Σ Σ^+ The set of non-empty finite words over Σ The concatenation of x and yX.yLanguage Operations Union $L_1 \cup L_2$ Concatenation $L_1L_2 = \{x.y|x \in L_1, y \in L_2\}$ $= \Sigma^* - L$ Complement $= \{x_1 \ldots x_n | x_i \in L, 1 \le i \le n\}$ Closure

Regular Languages

Defined inductively

- \blacktriangleright \emptyset is a regular language over Σ
- ▶ $\{\varepsilon\}$ is a regular language over Σ
- ▶ For all $\underline{a} \in \Sigma$, $\{a\}$ is a regular language over Σ
- ▶ If R_1 and R_2 are regular languages over Σ , then so are:
 - $ightharpoonup R_1 \cup R_2$
 - $ightharpoonup R_1R_2$, and
 - ► R₁*

E. E. 1

Lexical Analysis

Regular Expressions and the Denoted Regular Languages

Defined inductively

- ▶ $\underline{\emptyset}$ is a regular expression over Σ denoting \emptyset ,
- ▶ $\underline{\varepsilon}$ is a regular expression over Σ denoting $\{\varepsilon\}$,
- ▶ For all $a \in \Sigma$, a is a regular expression over Σ denoting $\{a\}$,
- If r_1 and r_2 are regular expressions over Σ denoting R_1 and R_2 , resp., then so are:
 - $(r_1|r_2)$, which denotes $R_1 \cup R_2$,
 - $ightharpoonup (r_1 r_2)^{-}$, which denotes $R_1 R_2$, and
 - $(r_1)^*$, which denotes R_1^* .
- ► Metacharacters, $\underline{\emptyset}, \underline{\varepsilon}, \underline{(}, \underline{)}, \underline{|}, \underline{*}$ don't really exist, are replaced by their non-underlined versions. Clash between characters in Σ and metacharacters $\{\underline{(},\underline{)},\underline{|},\underline{*}\}$ escape.

Example

Expression Language Example words
$$a|b$$
 $\{a,b\}$ a,b ab^*a $\{a\}\{b\}^*\{a\}$ $aa,aba,abba,abbba,...$ $\{ab\}^*$ $\{ab\}^*$

Lexical Analysis

Regular Expressions for Symbols (Tokens)

Alphabet for the symbol classses listed below:

$$\Sigma =$$

$$(1/2)$$
 integer-constant $(1/2)$ integer-constant $(1/2)$ real-constant

$$\begin{array}{c}
\left(a \mid \cdots \mid z\right) & \left(a \mid \cdots \mid z \mid o \mid \cdots \mid z\right) \\
\left(a \mid \cdots \mid z\right) & \left(a \mid \cdots \mid z \mid o \mid \cdots \mid z\right) \\
\text{string} & \text{comments} \\
\left(a \mid \cdots \mid z\right) & \text{comments} \\
\left(a$$

matching-parentheses?

Automata

In the following, we will meet different types of automata. *Automata*

- process some input, e.g. strings or trees,
- ▶ make transitions from configurations to configurations;
- configurations consist of (the rest of) the input and some memory;
- ▶ the *memory* may be small, just one variable with finitely many values.
- but the memory may also be able to grow without bound, adding and removing values at one of its ends;
- the type of memory an automaton has determines its ability to recognize a class of languages,
- ▶ in fact, the more powerful an automaton type is, the better it is in rejecting input.

Lexical Analysis

Finite State Machine

The simplest type of automaton, its memory consists of only one variable, which can store one out of finitely many values, its *states*,

A Non-Deterministic Finite-State Machine (NFSM)

 $M = \langle \Sigma, Q, \Delta, q_0, F \rangle$ where:

- \triangleright Σ finite alphabet
- ► Q finite set of states
- ▶ $q_0 \in Q$ initial state
- ▶ $F \subseteq Q$ final states
- $\blacktriangleright \ \Delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q \ \ \text{transition relation}$

May be represented as a transition diagram

- ▶ Nodes States
- $ightharpoonup q_0$ has a special "entry" mark
- ► final states doubly encircled
- ▶ An edge from p into q labeled by a if $(p, a, q) \in \Delta$

Lexical Analysis

Example: Integer and Real Constants

	$Di \in \{0,1,\dots,9\}$		E	ε
0	{1,2}	Ø	Ø	Ø
1	{1}	Ø	Ø	Ø
2	{2}	{3}	Ø	Ø
3	{4}	Ø	Ø	Ø
4	{4}	Ø	{5}	{7}
5	{6}	Ø	Ø	Ø
6	{7}	Ø	Ø	Ø
7	Ø	Ø	Ø	Ø

Finite-state machines — Scanners

Finite-state machines

- ▶ get an input word,
- start in their initial state,
- make a series of transitions under the characters constituting the input word,
- accept (or reject).

Scanners

- get an input string (a sequence of words), char
- start in their initial state,
- attempt to find the end of the next word,
- when found, restart in their initial state with the rest of the input,
- terminate when the end of the input is reached or an error is encountered.

Lexical Analysis

Maximal Munch strategy

Find longest prefix of remaining input that is a legal symbol.

- first input character of the scanner first "non-consumed" character.
- ▶ in final state, and exists transition under the next character: make transition and remember position,
- in final state, and exists no transition under the next character: Symbol found,
- actual state not final and no transition under the next character: backtrack to last passed final state
 - ► There is none: Illegal string
 - Otherwise: Actual symbol ended there.

Warning: Certain overlapping symbol definitions will result in quadratic runtime: Example: $(a|a^*;)$

Other Example Automata

- ▶ integer-constant
- ► real-constant
- ▶ identifier
- string
- comments

Lexical Analysis

The Language Accepted by a Finite-State Machine

- $ightharpoonup M = \langle \Sigma, Q, \Delta, q_0, F \rangle$
- ▶ For $q \in Q$, $w \in \Sigma^*$, (q, w) is a configuration
- ► The binary relation step on configurations is defined by:

$$(q, aw) \vdash_{M} (p, w)$$
if $(q, a, p) \in \Delta$

- ▶ The reflexive transitive closure of \vdash_M is denoted by \vdash_M^*
- ► The language accepted by M

$$L(M) = \{ w \mid w \in \Sigma^* \mid \exists q_f \in F : (q_0, w) \vdash_M^* (q_f, \varepsilon) \}$$

From Regular Expressions to Finite Automata

Theorem

- (i) For every regular language R, there exists an NFSM M, such that L(M) = R.
- (ii) For every regular expression r, there exists an NFSM that accepts the regular language defined by r.

Lexical Analysis

A Constructive Proof for (ii) (Algorithm)

- ightharpoonup A regular language is defined by a regular expression r
- Construct an "NFSM" with one final state, q_f , and the transition q_0
- Decompose r and develop the NFSM according to the following

until only transitions under single characters and ε remain.

Examples

- $a(a|0)^*$ over $\Sigma = \{a, 0\}$
- ► Identifier
- String

Lexical Analysis

Nondeterminism

- Several transitions may be possible under the same character in a given state
- ightharpoonup ε-moves (next character is not read) may "compete" with non-ε-moves.
- ► Deterministic simulation requires "backtracking"

Deterministic Finite-State Machine (DFSM)

- ▶ No ε -transitions
- ▶ At most one transition from every state under a given character, i.e. for every $q \in Q$, $a \in \Sigma$,

$$|\{q'\,|\,(q,a,q')\in\Delta\}|\leq 1$$

Lexical Analysis

From Non-Deterministic to Deterministic Automata

Theorem

For every NFSM, $M = \langle \Sigma, Q, \Delta, q_0, F \rangle$ there exists a DFSM, $M' = \langle \Sigma, Q', \delta, q'_0, F' \rangle$ such that L(M) = L(M').

A Scheme of a Constructive Proof (Subset Construction)

Construct a DFSM whose states are sets of states of the NFSM.

The DFSM simulates all possible transition paths under an input word in parallel.

Set of new states

$$\{\{q_1,\ldots,q_n\}\mid n\geq 1 \land \exists w\in \Sigma^*: (q_0,w)\vdash_M^*(q_i,\varepsilon)\} \qquad \xi-\int_M(cenn) W = \xi \qquad \qquad \{q_0,v\} \mid q_0,\varepsilon \mid F(q_0,\varepsilon)\}$$

The Construction Algorithm

Used in the construction: the set of ε -Successors, ε -SS $(q) = \{p \mid (q, \varepsilon) \vdash_M^* (p, \varepsilon)\}$

- ▶ Starts with $q_0' = \varepsilon$ -SS (q_0) as the initial DFSM state.
- ▶ Iteratively creates more states and more transitions.

▶ For each DFSM state $S \subseteq Q$ already constructed and character $a \in \Sigma$,

$$\delta(S,a) = \bigcup_{q \in S} \bigcup_{(q,a,p) \in \Delta} \varepsilon - SS(p) \subseteq \begin{cases} q, & \text{if } a \neq b \\ \text{if } a \neq b \end{cases}$$

if non-empty

add new state $\delta(S, a)$ if not previously constructed; add transition from S to $\delta(S, a)$.

▶ A DFSM state S is accepting (in F') if there exists $q \in S$ such that $q \in F$

Lexical Analysis

Example: $a(a|0)^*$

DFSM minimization

DFSM need not have minimal size, i.e. minimal number of states and transitions.

q and p are undistinguishable (have the same acceptance behavior) iff

for all words w $(q, w) \vdash_{M}^{*}$ and $(p, w) \vdash_{M}^{*}$ lead into either F' or Q' - F'.

Undistinguishability is an equivalence relation.

Goal: merge undistinguishable states \equiv consider equivalence classes as new states.

Lexical Analysis

DFSM minimization algorithm

- ▶ Input a DFSM $M = \langle \Sigma, Q, \delta, q_0, F \rangle$
- ▶ Iteratively refine a partition of the set of states, where each set in the partition consists of states so far undistinguishable.
- ▶ Start with the partition $\Pi = \{F, Q F\}$
- ▶ Refine the current Π by splitting sets $S \in \Pi$ if there exist $q_1, q_2 \in S$ and $a \in \Sigma$ such that
 - $\delta(q_1, a) \in S_1$ and $\delta(q_2, a) \in S_2$ and $S_1 \neq S_2$
- Merge sets of undistinguishable states into a single state.

Example: $a(a|0)^*$

{ \quad \qua

Lexical Analysis

A Language for specifying lexical analyzers

 $\begin{array}{l} (0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)^* \\ (\varepsilon|.(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)^* \\ (\varepsilon|E(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9))) \end{array}$

Descriptional Comfort

Character Classes:

Identical meaning for the DFSM (exceptions!), e.g.,

$$le = a - z A - Z$$

$$di = 0 - 9$$

Efficient implementation: Addressing the transitions indirectly through an array indexed by the character codes.

Symbol Classes:

Identical meaning for the parser, e.g.,

Identifiers

Comparison operators

Strings

Lexical Analysis

Descriptional Comfort cont'd

Sequences of regular definitions:

$$A_{1} = R_{1}$$

$$A_{2} = R_{2} \leftarrow A_{1}$$

$$A_{n} = R_{n} \leftarrow A_{1} - A_{n-1}$$

Sequences of Regular Definitions

Goal: Separate final states for each definition

- 1. Substitute right sides for left sides
- 2. Create an NFSM for every regular expression separately;
- 3. Merge all the NFSMs using ε transitions from the start state;
- 4. Construct a DFSM;
- 5. Minimize starting with partition

$$\{F_1, F_2, \ldots, F_n, Q - \bigcup_{i=1}^n F_i\}$$

Lexical Analysis

Flex Specification

Definitions

%%

Rules

%%

C-Routines

Flex Example

```
%{
extern int line_number;
extern float atof(char *);
%}
DIG
        [0-9]
LET
       [a-zA-Z]
%%
[=#<>+-*]
                   { return(*yytext); }
({DIG}+) { yylval.intc = atoi(yytext); return(301); }
({DIG}*\.{DIG}+(E(+|-)?{DIG}+)?)
           {yylval.realc = atof(yytext); return(302); }
\"(\\.|[^\"\\])*\" { strcpy(yylval.strc, yytext);
                     return(303); }
"<="
                   { return(304); }
                   { return(305); }
:=
1.1.
                   { return(306); }
```

◆□▶ ◆□▶ ◆■▶ ◆■ か 9 9 0 0

Lexical Analysis

Flex Example cont'd