Lexical Analysis

Lexical Analysis

Reinhard Wilhelm
Universitat des Saarlandes
wilhelm@cs.uni-sb.de

and
Mooly Sagiv
Tel Aviv University
sagiv@math.tau.ac.il

21. Oktober 2011

il

Lexical Analysis

Subjects
» Role of lexical analysis
» Regular languages, regular expressions
» Finite-state machines
» From regular expressions to finite-state machines
» A language for specifying lexical analysis
» The generation of a scanner
» Flex

it

Lexical Analysis

“Standard’ Structure, interfaces, mechanisms, where treated

(source(text) >
| —

lexical analysis((VoI.2, Ch.ﬁ)
=

< tokenized-program)

syntax analysis (Vol.2, Ch.3)
¢ ————
(syntax-tree >

'
semantic-analysis (Vol.2,Ch.4)

!

(decorated syntax-tree >

optimizations (Vol.3)

!

(intermediate rep. >

i

finite-state machines

pushdown automata

attribute grammar evaluators

abstract interpretation + transformations

Lexical Analysis

“Standard” Structure cont'd

.

(intermediate rep.)

!

code-generation (Vol.4)

!

(machine-program >

tree automata + dynamic programming + - - -

Lexical Analysis

Lexical Analysis (Scanning)

» Functionality

Input: program as sequence of characters
Output: program as sequence of symbols (tokens)

» Produce listing

» Report errors, symbols illegal in the programming language

» Screening subtask:

/’T’I_d’e_ntify language keywords and standard identifiers

» Eliminate “white-space”, e.g., consecutive blanks and newlines
» Count line numbers
» Construct table of all symbols occurring

Lexical Analysis

Automatic Generation of Lexical Analyzers

» The symbols of programming languages can be specified by regular
expressions.

» Examples:

» program as a sequence of characters.
» (alpha (alpha | digit)*) for identifiers
> (% until ““*¢)¢‘ for comments

» The recognition of input strings can be performed by a finite-state
machine.

» A table representation or a program for the automaton is
automatically generated from a regular expression.

Lexical Analysis

Automatic Generation of Lexical Analyzers cont'd

< regular-expression(s))

(input-program 4 (scanner—program) (tokenized—program)

Lexical Analysis

Notations

A language, L, is a set of words, x, over an alphabe@

aiar...a,, awordoverX, aj € X

€ The empty word
— " The words of length n over ©
— a7 The set of finite words over X
= The set of non-empty finite words over &
X.y The concatenation of x and y)(7
Language Operations
L1 U l_2 Union
Lil, ={xylxelyels} Concatenation
~L =% Rty Complement
L" = ol i 50 = Ll £ 1 0}
R - U rn Closure
n>0
i+ = U

n>1

Lexical Analysis

Regular Languages

Defined inductively

» () is a regular language over X
» {e} is a regular language over ¥

> For all a € ¥, {a} is a regular language over ¥

» If Ry and R, are regular languages over ¥, then so are:
> Rl U R2,
» R1R>, and
> Ri‘

Lexical Analysis

Regular Expressions and the Denoted Regular Languages

Defined inductively @/
» () is a regular expression over X denoting 0, /—¢_§_ (—

> ¢ is a regular expression over ¥ denoting {c},

—
» For all a € ¥, ais a regular expression over ¥ denoting {a},

» If and | rp are regular expressions over ¥ denotlng Ry and Ry,
reSp., then so are: -

> (r1|r), which denotes Ry U Ry,
> (rir2), which denotes R R», and
- - —_——

» (r1)", which denotes R}.
» Metacharacters, ¢, (,), |, * don't really exist,

are replaced by their non-underlined versions.
Clash between characters in X and metacharacters {(,), |,*}

ed&h(\!/

Lexical Analysis

Example
Expression Language Example words
alb {a, b} a,b
ab*a aj{b}*{a} aa,aba,abba,abbba,...
(ab)* {a g, ab, abab, . ..
abba {abba} abba

Lexical Analysis

Regular Expressions for Symbols (Tokens)

Alphabet for the symbol classses listed below:
b

teger- co stant
é”(“gj {4 IQ‘ (r,((;eal constant
fot-15) (o1
//%’_1_,5 co menE "/2 /

matching-parentheses?

il

Lexical Analysis

Automata

In the following, we will meet different types of automata.
Automata

> process some input, e.g. strings or trees,
» make transitions from configurations to configurations;
» configurations consist of (the rest of) the input and some

memorg'z

» the memory may be small, just one variable with finitely many
values, -

» but the memory may also be able to grow without bound,
adding and removing values at one of its ends;

» the type of memory an automaton has determines its ability to
recognize a class of languages,

» in fact, the more powerful an automaton type is, the better it
Is in rejecting input.

Lexical Analysis

Finite State Machine

/=
| ()
Input Tape i
The simplest type of
automaton, Actual State
its memory consists a
of only one variable,
which can store one V
out of finitely many = Conticl
values, its states,

Lexical Analysis

A Non-Deterministic Finite-State Machine (NFSM)
M= (¥, Q,A,qo, F) where:
» > — finite alphabet
» @ — finite set of states
/
» go € Q — initial state
» F C @ — final states
» A C Q% (XU{e})x Q — transition relation

May be represented as a transition diagram

» Nodes — States

> qgo has a special “entry” mark '\/(ap @
. = a

» final states doubly encircled p 2 ﬁ}

> An edge from p into q labeled by a if (p,a,q) € A

Lexical Analysis

Example: Integer and Real Constants

Di€{0,1,...,9} | . E £ J)‘ ‘
0 [{1.2}] 0 0 = F 0112
1| {1} o 10 |0 | I lgllf\glém
2 | {2} {3410 |0 q 5)
3| {4} o (0 |0 qQ =
41 {4} 0 1 {5} | {7} F = {17}
5 | {6} o |0 |0
6 || {7} (N
7100 o |0 |0

Di
)
Di 2 : \@ 2 (:6) @

Lexical Analysis

Finite-state machines — Scanners

Scanners

» get an input string (a
sequence of werts), [44'/_

» start in their initial state,

» attempt to find the end of
the next word,

Finite-state machines
» get an_input word,

» start in their initial
state,

» make a series of
transitions under the
characters constituting
the input word,

» accept (or reject). » terminate when the end of

the input is reached or an
error is encountered.

» when found, restart in
their initial state with the
rest of the input,

Lexical Analysis

Maximal Munch strategy

Find longest prefix of remaining input that is a legal symbol.

» first input character of the scanner — first “non-consumed”
character,

» in final state, and exists transition under the next character:;
make transition and remember position,

» in final state, and exists no transition under the next character:
Symbol found,

» actual state not final and no transition under the next
character: backtrack to last passed final state

» There is none: lllegal string
» Otherwise: Actual symbol ended there.

Warning: Certain overlapping symbol definitions will result in
quadratic runtime: Example: (a|a*;)

Lexical Analysis

Other Example Automata

» integer-constant
» real-constant

> identifier

» string

» comments

Lexical Analysis

M

The Language Accepted by a Finite-State Machine

> M:<Z,Q,A,q0,F>
» Forge Q, we ¥, (q,

) is a configuration
» The binary relation step on configurations is defined by:

(9,aw) 1 (p, w)
J U S

s Plen

> The reflexive transitive closure of -5 is denoted by 3,
» The language accepted by M

L(M) = {w | w € = | 3qr € F : (a0, w) Fiy (ar.)}
— = - N—

[Tl

Lexical Analysis

From Regular Expressions to Finite Automata

Theorem

(i) For every regular language R, there exists an NFSM M, such
that L(M) =

(ii) For every regular expression r, there exists an NFSM that
accepts the regular language defined by r.

Lexical Analysis

A Constructive Proof for (ii) (Algorithm)

» A regular language is defined by a regular expression r

e

» Construct an “NFSM" with one final state, gr, and the transition

o ©) -

» Decompose r and develop the NFSM according to the following

rules

- %4050 o‘h"

.
= ea

until only transitions under single characters and € remain.

Lexical Analysis

Examples

» a(al0)* over ¥ = {a,0}
> |dentifier

» String

Lexical Analysis

Nondeterminism

—

in a given state

» Several transitions may be possible under the same character

> c-moves (next character is not read) may “compete” with
non-g-moves.

» Deterministic simulation requires “backtracking”

it

Lexical Analysis

Deterministic Finite-State Machine (DFSM)

» No e-transitions

» At most one transition from every state under a given
character, i.e. forevery g€ Q, ac X,

{d'|(q,2,9') e A} <1

Lexical Analysis

From Non-Deterministic to Deterministic Automata

Theorem

For every NESM, M = (¥, Q, A, qo, F) there exists a DFSM,
M =(¥,Q,0,q,, F') such that L(M) = L(M’).

A Scheme of a Constructive Proof gSubset Construction)
Construct a DFSM whose states are Seits of states of the NFSM.
The DFSM simulates all possible transition paths under an input
word in parallel.

Set of new states

Ha,---.aqn} [n>1A3w e X : (qo, W) Fy (gi5€)} 5,\fa([(fJN
W=2%
ka0

>@@w\@

Lexical Analysis

The Construction Algorithm

Used in the construction: the set of e-Successors,

e-55(q) = {p | (a.) Fiy (p.€)} o

——

> Starts with gy = e-55(qo) as the initial DFSM state.

- \ - -
» lteratively creates more states and more transitions.

» For each DFSM state S C @ already constructed and ¢
charactera€ ¥, —= @W

A
A
5(S,a)=U U 5—55(p)§:?f 2

q€S (q,a,p)eA 7‘, @E)
Y
if non-empty

add new state_LS_(S,ja) if not previously constructed;
add transition from S to §(S, a).
» A DFSM state S is accepting (in F’) if there exists g € S such
that g € F

Lexical Analysis

Example: a(a|0)*

Lexical Analysis

DFSM minimization

DFSM need not have minimal size, i.e. minimal number of states
and transitions.
g and p are undistinguishable (have the same acceptance behavior) iff

—

for all words w (q,w) K}, and (p, w) 3, lead
into either F/ or Q' — F'.

for all w

Undistinguishability is an equivalence relation.
Goal: merge undistinguishable states = consider equivalence classes
as new states.

Lexical Analysis

DFSM minimization algorithm

» Input a DFSM M = (¥, Q, 4, qo, F)

» lIteratively refine a partition of the set of states, where each set
in the partition consists of states so far undistinguishable.

» Start with the partition M= {F,Q — F}

» Refine the current [T by splitting sets S € 1 if there exist
g1,q2 € S and a € ¥ such that ™~

> 5((]1,3) € 51 and (5(q2,a) €Syand 51 # S,
Lol S = S

» Merge sets of undistinguishable states into a single state.

Lexical Analysis

Example: a(al0)*

(1)
@"’ 19, i 9

Lexical Analysis

it

A Language for specifying lexical analyzers

(011[2(3/4/5(6[7[8|9) (0]12(3(4/5]6[7[8|9)"
(c[-(0[1]2]3]4[5]6]7|8[9) (0[1|2(3|4]5]|6]7[8]9)
(| E(0]1]2[3[4|5]6]78|9)(0[1]2[3]4]5[6]7[8]9)))

Lexical Analysis

Descriptional Comfort

Character Classes:
|dentical meaning for the DFSM (exceptions!), e.g.,
le=a-zA-Z
di=0-9
Efficient implementation: Addressing the transitions
indirectly through an array indexed by the character
codes.

Symbol Classes:
|dentical meaning for the parser, e.g.,
|dentifiers
Comparison operators
Strings

Lexical Analysis

Descriptional Comfort cont'd

Sequences of regular definitions:

Ay = &
A = Re g,
An = Rog A o 4

il

Lexical Analysis

Sequences of Regular Definitions

Goal: Separate final states for each definition (QQ
1. Substitute right sides for left sides

Create an NFSM for every regular expression separately;
\-

Merge all the NFSMs using ¢ transitions from the start state;
Construct a DFSM;

Minimize starting with partition
\/

{FlaF27---7Fn7Q_UFi}
- - - i=1

sl

it

Lexical Analysis

Flex Specification

Definitions
%%

Rules

%%

C-Routines

it

Lexical Analysis

Flex Example

AT
extern int line_number;
extern float atof (char *);
nr
DIG [0-9]
LET [a-zA-Z]
hele
[=#<>+-%] { return(*yytext); }
({DIG}+) { yylval.intc = atoi(yytext); return(301); }
({DIG}*\.{DIG}H(E(\+|\-)?7{DIG}+)?)
{yylval.realc = atof(yytext); return(302); }
\N"O\\LTEEN"\\D #\" { strcpy(yylval.strc, yytext);
return(303); }
ng=" { return(304); }
1= { return(305); }
Nk { return(306); }

Lexical Analysis

Flex Example cont'd

ARRAY { return(307); }
BOOLEAN { return(308); }
DECLARE { return(309); 1}

{LET} ({LET}|{DIG}H) * { yylval.symb
return(310); }
[]+ { /* White space */ }
\n { line_number++; }
{ fprintf(stderr,
"WARNING: Symbol ’%c’ is illegal, ignored!\n", *yytext);}
oo

look_up(yytext);

