# Grammar Flow Analysis

- Wilhelm/Maurer: Compiler Design, Chapter 8 -

Reinhard Wilhelm Universität des Saarlandes wilhelm@cs.uni-saarland.de

25. Oktober 2011

Generators for compiler components require information about the language.

This information is collected on the specification of the language,

- the context-free grammar describing its syntax,
- the attribute grammar describing its static semantics.

Grammar flow analysis is a static analysis of grammars computing such information.

### Notation

| Generic names                        | for                                                 |
|--------------------------------------|-----------------------------------------------------|
| A, B, C, X, Y, Z                     | Non-terminal symbols                                |
| $a, b, c, \dots$                     | Terminal symbols                                    |
| u, v, w, x, y, z                     | Terminal strings                                    |
| $\alpha, \beta, \gamma, arphi, \psi$ | Strings over $V_{\mathcal{N}} \cup V_{\mathcal{T}}$ |
| $p, p', p_1, p_2, \ldots$            | Productions                                         |

- Standard notation for production
- $p = (X_0 \rightarrow u_0 X_1 u_1 \dots X_{n_p} u_{n_p})$   $n_p \text{Arity of } p$
- ▶ (p, i) Position i in production p  $(0 \le i \le n_p)$
- ▶ p[i] stands for  $X_i$ ,  $(0 \le i \le n_p)$ ,
- ▶ X occurs at position i p[i] = X

# Reachability and Productivity

#### Non-terminal A is

reachable iff there exist  $\varphi_1, \varphi_2 \in V_T \cup V_N$  such that  $S \stackrel{*}{\Longrightarrow} \varphi_1 A \varphi_2$ 

productive iff there exists  $w \in V_T^*$ ,  $A \stackrel{*}{\Longrightarrow} w$ 

These definitions are useless for tests; they involve quantifications over infinite sets.

### A two level Definition

- 1. A nonterminal is reachable through its occurrence (p, i)withi > 0 iff p[0] is reachable,
- 2. A nonterminal is **reachable** iff it is reachable through at least one of its occurrences,
- 3. S' is reachable.
- 1. A nonterminal A is productive through production p iff A = p[0] and all nonterminals on the right side are productive.
- 2. A nonterminal is **productive** iff it is productive through at least one of its alternatives.
- Reachability and productivity for a grammar given by a (recursive) system of equations.
- Least solution wanted to eliminate as many useless nonterminals as possible.



# Typical Two Level Simultaneous Recursion

Productivity:

- property of left side nonterminal depends on the properties of the right side nonterminals,
- 2. combination of the information from the different alternatives for a nonterminal.

Reachability:

- 1. property of occurrences of nonterminals on the right side depends on on the property of the left side nonterminal,
- 2) combination of the information from the different occurrences for a nonterminal,
- 3. the initial property.

#### In the specification

- 1. given by transfer functions
- 2. given by combination functions

## Schema for the Computation

- Grammar Flow Analysis (GFA) computes a property function  $I: V_N \to D$  where D is some domain of information for nonterminals, mostly properties of sets of trees,
- Productivity computed by a bottom-up Grammar Flow Analysis (bottom-up GFA)
- Reachability computed by a top-down Grammar Flow Analysis (top-down GFA)

### Trees, Subtrees, Tree Fragments



X reachable: Set of upper tree fragments for X not empty,

X productive: Set of subtrees for X not empty.

### Bottom-up GFA

Given a cfg G.

A bottom-up GFA-problem for G and a property function I:

D: a domain  $D\uparrow$ ,

T: transfer functions  $F_p \uparrow : D \uparrow^{n_p} \to D \uparrow$  for each  $p \in P$ ,

C: a combination function  $\nabla \uparrow: 2^{D\uparrow} \to D\uparrow$ .

This defines a system of equations for G and I:

# Top-down GFA

Given a cfg G.

A top down – GFA-problem for G and a property function I:

D: a domain  $D\downarrow$ ;

T:  $n_p$  transfer functions  $F_{p,i} \downarrow : D \downarrow \rightarrow D \downarrow$ ,  $1 \le i \le n_p$ , for each production  $p \in P$ ,

C: a combination function  $\nabla \downarrow : 2^{D\downarrow} \to D\downarrow$ ,

S: a value  $I_0$  for S under the function I.

A top-down GFA-problem defines a system of equations for G and I

$$I(S) = I_0$$

$$L(p,i) = F_{p,i} \downarrow (I(p[0])) \text{ for all } p \in P, \ 1 \le i \le n_p$$

$$I(X) = \nabla \downarrow \{I(p,i) \mid p[i] = X\}, \text{ for all } X \in V_N - \{S\}$$

# Recursive System of Equations

Systems like  $(I\uparrow)$  and  $(I\downarrow)$  are in general recursive. Questions: Do they have

- solutions?
- unique solutions?

lathice

#### They do have solutions if

- ▶ the domain
  - ▶ is partially ordered by some relation <u>□</u>,
  - ▶ has a uniquely defined smallest element, ⊥,
  - ▶ has a least upper bound,  $d_1 \sqcup d_2$ , for each two elements  $d_1, d_2$  ∨
  - and has only finitely ascending chains,

and

the transfer and the combination functions are monotonic.

Our domains are finite, all functions are monotonic.

fur 1 E false

## Fixpoint Iteration

- Solutions are fixpoints of a function  $I: [V_N \to D] \to [V_N \to D].$
- ightharpoonup Computed iteratively starting with  $\perp\!\!\!\perp$ , the function which maps all nonterminals to  $\perp$ .
- Apply transfer functions and combination functions until nothing changes.

We always compute least fixpoints.

# Productivity Revisited

(true for  $n_p = 0$ ) (false for nonterminals without productions)

Domain:  $D\uparrow$  satisfies the conditions, transfer functions: conjunctions are monotonic, combination function: disjunction is monotonic.

Resulting system of equations:

$$Pr(X) = \bigvee \{ \bigwedge_{i=1}^{n_p} Pr(p[i]) \mid p[0] = X \} \text{ for all } X \in V_N$$
 (Pr)

# Example: Productivity

Given the following grammar:

Given the following grammar: 
$$G = (\{S', S, X, Y, Z\}, \{a, b\}, \begin{cases} S' \rightarrow S \\ S \rightarrow aX \\ X \rightarrow bS \mid aYbY \\ Y \rightarrow ba \mid aZ \\ \overline{Z} \rightarrow aZX \end{cases}$$

Resulting system of equations:

$$Pr(S) = Pr(X)$$
  
 $Pr(X) = Pr(S) \lor Pr(Y)$   
 $Pr(Y) = true \lor Pr(Z) = true$   
 $Pr(Z) = Pr(Z) \land Pr(X)$ 

#### Fixpoint iteration

| S     | Χ             | Υ     | Z     |
|-------|---------------|-------|-------|
| false | false<br>trul | false | false |
| tru   |               |       |       |

# Reachability Revisited

```
D\downarrow false \sqsubseteq \{true\} true for reachable identity mapping \nabla\downarrow V Boolean Or (false, if there is no occ. of the nonterminal) I_0 true
```

Domain:  $D\downarrow$  satisfies the conditions,

transfer functions: identity is monotonic,

combination function: disjunction is monotonic.

Resulting system of equations for reachability:

$$Re(S) = true$$
 $Re(X) = \bigvee \{Re(p[0]) \mid p[i] = X, \ 1 \le i \le n_p\} \ \forall X \ne S$ 
 $(Re)$ 

# Example: Reachability

Given the grammar  $G = (\{S, U, V, X, Y, Z\}, \{a, b, c, d\}, \{a, b, c, d\},$ The equations:

$$\begin{cases}
S \to Y \\
Y \to YZ \mid Ya \mid b \\
U \to V \\
X \to c \\
V \to Vd \mid d \\
Z \to ZX
\end{cases}, S)$$

$$Re(S) = true \\
Re(U) = false \\
Re(V) = Re(U) \lor Re(V) \\
Re(X) = Re(Z) \\
Re(Y) = Re(S) \lor Re(Y) \\
Re(Z) = Re(Y) \lor Re(Z)$$
Fixpoint iteration:

$$Re(S) = true$$
 $Re(U) = false$ 
 $Re(V) = Re(U) \lor Re(V)$ 
 $Re(X) = Re(Z)$ 
 $Re(Y) = Re(S) \lor Re(Y)$ 

#### Fixpoint iteration:

| S    | U     | V     | X     | Υ     | Z     |
|------|-------|-------|-------|-------|-------|
| true | false | false | false | false | false |
|      |       |       | true  |       | The   |

#### First and Follow Sets



Parser generators need precomputed information about sets of

- prefixes of words for nonterminals (words that can begin words for non-terminals)
- followers of nonterminals (words which can follow a nonterminal).

Strategic use: Removing non-determinism from expand moves of the  $P_G$ 

These sets can be computed by GFA.

## Another Grammar for Arithmetic Expressions

Left-factored grammar  $G_2$ , i.e. left recursion removed.

$$S \to E$$
  
 $E \to TE'$   $E$  generates  $T$  with a continuation  $E'$   
 $E' \to +E|\epsilon$   $E'$  generates possibly empty sequence of  $+T$ s  
 $T \to FT'$   $T$  generates  $F$  with a continuation  $T'$   
 $T' \to *T|\epsilon$   $T'$  generates possibly empty sequence of  $*F$ s  
 $F \to i\mathbf{d}|(E)$ 

 $G_2$  defines the same language as  $G_0$  und  $G_1$ .

### The FIRST<sub>1</sub> Sets

- lacktriangle A production N o lpha is applicable for symbols that "begin" lpha
- $\triangleright$  Example: Arithmetic Expressions, Grammar  $G_2$ 
  - ▶ The production  $F \rightarrow id$  is applied when the current symbol is id
  - The production F o (E) is applied when the current symbol is (
  - The production  $T \to F$  is applied when the current symbol is id or (
- Formal definition:

$$FIRST_1(\alpha) = \{1 : w \mid \alpha \stackrel{*}{\Longrightarrow} w, w \in V_T^*\}$$

### The FOLLOW<sub>1</sub> Sets

- A production  $N \to \epsilon$  is applicable for symbols that "can follow" N in some derivation
- $\triangleright$  Example: Arithmetic Expressions, Grammar  $G_2$ 
  - ▶ The production  $E' \to \epsilon$  is applied for symbols # and )
  - ▶ The production  $T' \rightarrow \epsilon$  is applied for symbols #, ) and +
- Formal definition:

$$FOLLOW_1(N) = \{ a \in V_T | \exists \alpha, \gamma : S \stackrel{*}{\Longrightarrow} \alpha Na\gamma \}$$

### **Definitions**

Let 
$$k \ge 1$$
  
 $k$ -prefix of a word  $w = a_1 \dots a_n$   
 $k : w = \begin{cases} a_1 \dots a_n & \text{if } n \le k \\ a_1 \dots a_k & \text{otherwise} \end{cases}$   
 $k$ -concatenation  
 $\bigoplus_k : V^* \times V^* \to V^{\le k}$ , defined by  $u \bigoplus_k v = k : uv$   
extended to languages  
 $k : L = \{k : w \mid w \in L\}$   
 $L_1 \bigoplus_k L_2 = \{x \bigoplus_k y \mid x \in L_1, y \in L_2\}$ .  
 $V^{\le k} = \bigcup_{i=1}^k V^i$  set of words of length at most  $k \dots$   
 $V^{\le k}_{T\#} = V^{\le k}_T \cup V^{k-1}_T \{\#\} \dots$  possibly terminated by  $\#$ .

# $FIRST_k$ and $FOLLOW_k$

$$FIRST_k : (V_N \cup V_T)^* \to 2^{V_T^{\leq k}} \text{ where }$$
  
 $FIRST_k(\alpha) = \{k : u \mid \alpha \stackrel{*}{\Longrightarrow} u\}$ 

set of k-prefixes of terminal words for  $\alpha$  .



$$FOLLOW_k: V_N \to 2^{V_{T\#}^{\leq k}}$$
 where  $FOLLOW_k(X) = \{ w \mid S \stackrel{*}{\Longrightarrow} \beta X \gamma \text{ and } w \in FIRST_k(\gamma) \}$ 

set of k-prefixes of terminal words that may immediately follow X.

## GFA-Problem FIRST<sub>k</sub>

#### bottom up-GFA-problem FIRST<sub>k</sub>

L 
$$(2^{V_T^{\leq k}}, \subseteq, \emptyset, \cup)$$
  
T  $Fir_p(d_1, \ldots, d_{n_p}) = \{u_0\} \oplus_k d_1 \oplus_k \{u_1\} \oplus_k d_2 \oplus_k \ldots \oplus_k d_{n_p} \oplus_k \{u_{n_p}\},$   
if  $p = (X_0 \to u_0 X_1 u_1 X_2 \ldots X_{n_p} u_{n_p});$   
 $Fir_p = k : u$  for a terminal production  $X \to u$   
C  $\cup$ 

The recursive system of equations for  $FIRST_k$  is

$$Fi_k(X) = \bigcup_{\{p|p[0] = X\}} Fir_p(Fi_k(p[1]), \dots, Fi_k(p[n_p])) \ \forall X \in V_N$$

$$(Fi_k)$$

## FIRST<sub>k</sub> Example

The bottom up-GFA-problem  $FIRST_1$  for grammar  $G_2$  with the productions:

0: 
$$S \rightarrow E$$
 3:  $E' \rightarrow +E$  6:  $T' \rightarrow *T$   
1:  $E \rightarrow TE'$  4:  $T \rightarrow FT'$  7:  $F \rightarrow (E)$   
2:  $E' \rightarrow \varepsilon$  5:  $T' \rightarrow \varepsilon$  8:  $F \rightarrow id$ 

 $G_2$  defines the same language as  $G_0$  und  $G_1$ .

The transfer functions for productions 0 - 8 are:

$$Fir_0(d) = d$$
  
 $Fir_1(d_1, d_2) = Fir_4(d_1, d_2) = d_1 \oplus_1 d_2$   
 $Fir_2 = Fir_5 = \{\varepsilon\}$   
 $Fir_3(d) = \{+\}$   
 $Fir_6(d) = \{*\}$   
 $Fir_7(d) = \{(\}$   
 $Fir_8 = \{id\}$ 

### **Iteration**

Iterative computation of the  $FIRST_1$  sets:

| S | Ε | E' | T | $\mathcal{T}'$ | F |
|---|---|----|---|----------------|---|
| Ø | Ø | Ø  | Ø | Ø              | Ø |
|   |   |    |   |                |   |
|   |   |    |   |                |   |

## GFA-Problem FOLLOW<sub>k</sub>

#### top down-GFA-problem FOLLOW<sub>k</sub>

L 
$$(2^{V_{\overline{\tau}^{\#}}^{\leq k}},\subseteq,\emptyset,\cup)$$

**T** 
$$Fol_{p,i}(d) = \{u_i\} \oplus_k Fi_k(X_{i+1}) \oplus_k \{u_{i+1}\} \oplus_k \dots \oplus_k Fi_k(X_{n_p}) \oplus_k \{u_{n_p}\} \oplus_k d$$
  
if  $p = (X_0 \to u_0 X_1 u_1 X_2 \dots X_{n_p} u_{n_p});$ 

CU

**S** {#}

#### The resulting system of equations for $FOLLOW_k$ is

$$Fo_k(X) = \bigcup_{\substack{\{p \mid p[i] = X, 1 \leq i \leq n_p\} \\ Fo_k(S) = \{\#\}}} Fol_{p,i}(Fo_k(p[0])) \ \forall X \in V_N - \{S\}$$

$$Fol_{p,i}(Fo_k(p[0])) \ \forall X \in V_N - \{S\}$$

## FOLLOW<sub>k</sub> Example

Regard grammar  $G_2$ . The transfer functions are:

$$Fol_{0,1}(d) = d$$
  
 $Fol_{1,1}(d) = Fi_1(E') \oplus_1 d = \{+, \varepsilon\} \oplus_1 d$ ,  
 $Fol_{1,2}(d) = d$   
 $Fol_{3,1}(d) = d$   
 $Fol_{4,1}(d) = Fi_1(T') \oplus_1 d = \{*, \varepsilon\} \oplus_1 d$ ,  
 $Fol_{4,2}(d) = d$   
 $Fol_{6,1}(d) = d$   
 $Fol_{7,1}(d) = \{\}$ 

Iterative computation of the  $FOLLOW_1$  sets:

| S   | Ë | E' | T | T' | F |
|-----|---|----|---|----|---|
| {#} | Ø | Ø  | Ø | Ø  | Ø |
|     |   |    |   |    |   |
|     |   |    |   |    |   |