L ——_—

Grammar Flow Analysis

] 5]
Grammar Flow Analysis

— Wilhelm /Maurer: Compiler Design, Chapter 8 —

Reinhard Wilhelm

Universitat des Saarlandes
wilhelm@cs.uni-saarland.de

25. Oktober 2011

Grammar Flow Analysis

Generators for compiler components require information about the
language.
This information is collected on the specification of the language,

» the context-free grammar describing its syntax,
» the attribute grammar describing its static semantics.

Grammar flow analysis is a static analysis of grammars computing
S———
such information. — B

Grammar Flow Analysis

Notation
Generic names for
— | A B,C,X,Y,Z | Non-terminal symbols
—1| a, b,c,... Terminal symbols
— | u,v,w,x,y,z Terminal strings
— | a, 8,7, 0,0 Strings over Vy U VT
—~— | p,p,p1,p2,... | Productions

» Standard notation for production

“ p_(.)EQ—> UO)<1U1)SQPEEB)
— Arity of p

(9, ') — Position i in production p (0 < i < np)
> p|i] stands for Xj, (0 < i < np),

» X occurs at position i — p[i] = X

Grammar Flow Analysis

Reachability and Productivity

Non-terminal A is

reachable iff ttlere exist 1,2 € VT U V) such that
5 = p1Ayp>

productive iff there exists w € V3, A —— w

“

These definitions are useless for tests:
they involve quantifications over infinite sets.

it

Grammar Flow Analysis

A two level Definition —

1. A nonterminal is reachable through its occurrencel *
(p, i)withi > 0 iff p[0] is reachable,

2. A nonterminal is reachable iff it is reachable through at |eastF
one of 1ts occurrences,

3.;‘5’ is reachable. N~

-7

- N

_—

=

1. A nonterminal A is productive through production p iff /{"‘7,
A= p[0] and all nonterminals on the right side are productive.

/

2. A nonterminal is productive iff it is productive through at
least one of its alternatives.

» Reachability and productivity for a grammar given by a

{recursive) system of equations.

» |east solution wanted to eliminate as many useless
nonterminals as possible.

Grammar Flow Analysis

Typical Two Level Simultaneous Recursion

Productivity: 6 property of left side nonterminal depends on the
- p@pertiewt side nonterminals,

2. Jcombination of the information from the _/
different alternatives for a nonterminal.

Reachability: (1.) property of occurrences of nonterminals on the
right side depends on on the property of the left

side nonterminal,
@ combination of the information from the

different occurrences for a nonterminal, \/
3. the initial property.

In the specification

1. given by tLa.nSJWns

2. given by combinatienfunctions

Grammar Flow Analysis

Schema for the Computation

» Grammar_Flo ysis (GFA) computes a property
functionf/ : Vy — D
where D is some domain of information for nonterminals,

mostly properties trees,

» Productivity computed by a bottom-up Grammar Flow
/.
Analysis (@om-up GFA)

>Re/achahi.|_ity computed by a top-down Grammar Flow
Analysis (top-down GFA)

Grammar Flow Analysis

Trees, Subtrees, Tree Fragments

S S
/\ A ﬁ : §
Parse tree

Subtree
for X

upper treefragment

for X
X reachable: Set of upper tree fragments for X not empty,
X productive: Set of subtrees for X not empty.

Grammar Flow Analysis

Bottom-up GFA

Given a cfg G.
A bottom-up GFA-problem for G and a propew

D: a domain DT,

T: transfer functions F,7: D|" — DT for each p € P,

C: a combination function V1{: 2PT — D7.
This defines a system of equations fof G anc@

[(X)= VT {@(/(p[ll), ., 1(p[np])) | P[O] = X} VX € Vi ()

copt7T D (G_SCTE)](P'(TD

Grammar Flow Analysis

Top-down GFA

Given a cfg G.
A top down — GFA-problem for G and a property function /:
D: a domain D|;

T: n, transfer functions F,;|: D| — D|, 1<i < n,,
for each production p € P,

C: a combination function V|: 2P} — D],
S: a value [y for S under the function /.

A top-down GFA-problem defines a system of equations for G and /

I(S) = |
=\| p.i)= I-(_) il (L(p[0])) forall pe P, 1 <i<n, (1])
(X)) :\V.unl(p, i)]ﬂzﬁ}, for all X € Viy — {S}

Grammar Flow Analysis

Recursive System of Equations

Systems like (/T) and (/]) are in general recursive.

Questions: Do they have

» solutions?

» unique solutions?

Grammar Flow Analysis

/&%W AW

They do have solutions if | C
» the domain {ﬂ[»(’(,
» is partially ordered by some relation C,
» has a uniquely defined smallest element, _L,
» has a least upper bound, d; LI d, for each two elements dy, d> \/

» and has only finitely ascending chains,

and

» the transfer and the combination functions are monotonic.

/

Our domains are finite, all functions are monotonic.

Grammar Flow Analysis

Fixpoint lteration

» Solutions are fixpoints of a function
|: [V — D] — [Vy — DJ.

» Computed iteratively starting with 1L, the function which
maps all nonterminals to L.

» Apply transfer functions and combination functions until
nothing changes.

We always compute least fixpoints.

Grammar Flow Analysis

Productivity Revisited

Dt {false C true} true for productive
= F1 A (true for n, = 0)
— VTV (false for nonterminals

without productions)

Domain: D7 satisfies the conditions,
transfer functions: conjunctions are monotonic,

combination function: disjunction is monotonic.

Resulting system of equations:

Pr(X) = \{NA;Z,Pr(p[i]) | p[0] = X} forall X € Vy

(Pr)

Grammar Flow Analysis

Example: Productivity

Given the following grammar:

™~

S — S
S — aX
G={S,5X,Y,Z},{a,b},d X — bS|aYbY| ;,S)
Y — _ba]
. -2 /
Resulting system of equations: — EhpeinE e
S X Y /
g : Ef()) ; %’:%;())v Pr(Y) false | false ')l[f\;a‘)l/ie false
Pr(Y) = tue M-Pr(Z) = twwe .
Pr(Z) = %%,\M) Y
‘ 8

Grammar Flow Analysis

Reachability Revisited

D| false C {true} true for reachable

Fpil _id identity mapping

ViV Boolean Or (false, if there
- is no occ. of the nonterminal)

lo M

Domain: D] satisfies the conditions,
transfer functions: identity is monotonic,
combination function: disjunction is monotonic.

Resulting system of equations for reachability:

Re(S) = true
Re(X)= V{Re(p[O]) | p[i] =X, 1 <i<n,} VX #S

(Re)

Grammar Flow Analysis

Example: Reachability W
Given the grammar G = ({S,U, V., X,Y,Z},{a,b,c,d}, \

The equations:
(i_> L) { Ml/

Y > YZ|Ya|b Re(S) = true

LV Re(U) = false

! X _ ¢ 0 9) Re(V) = Re(U)V Re(V)

—V V| d Re(X) = Re(Z)

L Z — ZX) Re(Y) = @:S-)VM)
- Re(Z) = Re(Y)V Re(Z)

Fixpoint iteration:
S U V X Y /

true | false | false | false (ﬁﬁz false

Ll |

Grammar Flow Analysis

First and Follow Sets

Parser generators need precomputed information about sets of
» prefixes of words for nonterminals (words that can begin words
for non-terminals)
» followers of nonterminals (words which can follow a
nonterminal).

Strategic use: Removing non-determinism from expand moves of

the Pg¢
These sets can be computed by GFA.

Grammar Flow Analysis

Another Grammar for Arithmetic Expressions

Left-factored grammar G, i.e. left recursion removed.

S=—=E

E — TE E generates T with a continuation E’

E' — +El|e E’ generates possibly empty sequence of + T
T — FT' T generates F with a continuation T’

T' — xTle T’ generates possibly empty sequence of xFs
F —id|(E)

G> defines the same language as Gg und Gj.

Grammar Flow Analysis

The FIRST Sets

» A production N — « is applicable for symbols that “begin” «

» Example: Arithmetic Expressions, Grammar G,
» The production F — id is applied when the current symbol is

id

» The production F — (E) is applied when the current symbol is
(

» The production T — F is applied when the current symbol is
id or (

» Formal definition:

FIRSTi(a) ={1:w|a = w,w € Vi}

Grammar Flow Analysis

The FOLLOW; Sets

» A production N — ¢ is applicable for symbols that “can follow"

N in some derivation

» Example: Arithmetic Expressions, Grammar G S0+

» The production E’ — ¢ is applied for symbolg # ang_)_
» The production T’ — € is applied for symbols #,) and +

==

» Formal definition:

FOLLOW4(N) = {a € V1|3, : S = alNavy}

Grammar Flow Analysis

Definitions

Let Kk > 1
k-prefix of a word w = a7 ... a,

k'W—{ ai...ap, if n<k

aj...ax otherwise
k-concatenation
By V* x V¥ — V=K defined by u®yv = k : uv
extended to languages
k:L={k:w|wel}
Li®klr = {X@ky ’ x€eli,y€e LQ}

VER =i set of words of length at most k ...
VT# = V<k U Vk L{41 ... possibly terminated by #.

Grammar Flow Analysis

F/RSTk and FOLLOWk

FIRSTk : (Vy U V7)* — 2Y7 where

FIRST (o) = {k: u| o = u} 5
set of k—prefixes of terminal words for
o . € FIRST,(X) € FOLLOW,(X)

<k

FOLLOW, : Vy — 2VT# where
FOLLOW,(X) = {w|S = BX~v and w € FIRST(7)}

set of k—prefixes of terminal words that may immediately follow X.

Grammar Flow Analysis

GFA-Problem FIRST,

bottom up-GFA-problem FIRST

<k
L (2V7 ,C,0,U)
T Firp(dy,...,dn,) = {uo}®xd1@ k{1 }Or oDy . .. Bpdn, Br{n, },
if p=(Xo = uoXiun Xo...Xp,tn,);
Firp, = k : u for a terminal production X — u

CU
The recursive system of equations for FIRST is
Fie(X)= U Firy(Fig(p[1]), - - ., Fir(p[ny])) VX € Vi

{p|p[0] = X}

(Fik)

Grammar Flow Analysis

FIRST, Example

The bottom up-GFA-problem FIRST; for grammar Gy with the
productions:

0: S — E 3: EF —- 4E 6: T — «T
e B -» TE" #e T -» EF T2 F -5 [B
2: E' — ¢ hig T¢ =% £ 8: F — id

G, defines the same language as Gy und Gj.
The transfer functions for productions 0 — 8 are:

Firo(d) = d Firs(d) = {+}

Firl(dl, dz) = FI.I’4L(d1, d2) = d1D1d> FirG(d) = {*}

Fir, = Firs = {e} Firz(d) = {(}
Firg = {Id}

Grammar Flow Analysis
lteration

lterative computation of the FIRST; sets:
S E| E T T’ F
) D1 0)))

il
S
o
(,)

Grammar Flow Analysis

GFA-Problem FOLLOW,

top down-GFA-problem FOLLOW,

L (27, C,0,U)

T Folyi(d) = {ui}®rFir(Xit1) @ uit1} Pk - . - Ok Fir(Xn,)Bi{tn, }Ord
if p = (Xo — UO)<1 U1X2 fexls an Unp);

Cu
S {#}
The resulting system of equations for FOLLOW(is
- U . _
For(X) s et o Fol, i(Fox(p[0])) VX € Vy — {S}
For(S) = {#}

(Fok)

Grammar Flow Analysis

FOLLOW, Example

Regard grammar G,. The transfer functions are:
FO/o,l(d) = d

FO/l,l(d) — Fll(E,)@ld = {—l—,é‘}@ld,
FO/]_,Q(d) = d

FO/3,1(d) =
FO/4,1(d) = Fl.l(Tl)@ld = {*,8}@1d,
FO/4,2(d) = d
FO/6,1(d) — id

Fol71(d) = {)}
lterative computation of the FOLLOW; sets:

S E| e | T | T |F
0] 0 [0 [0 |0

