
Efficiently Computing Static Single
Assignment Form and the Control
Dependence Graph

RON CYTRON, JEANNE FERRANTE, BARRY K. ROSEN, and

MARK N. WEGMAN

IBM Research Division

and

F. KENNETH ZADECK

Brown University

In optimizing compilers, data structure choices directly influence the power and efficiency of

practical program optimization. A poor choice of data structure can inhibit optimization or slow

compilation to the point that advanced optimization features become undesirable. Recently,
static single assignment form and the control dependence graph have been proposed to represent
data flow and control flow propertiee of programs. Each of these previously unrelated techniques

lends efficiency and power to a useful class of program optimization. Although both of these
structures are attractive, the difficulty of their construction and their potential size have
discouraged their use. We present new algorithms that efficiently compute these data structures
for arbitrary control flow graphs. The algorithms use dominance frontiers, a new concept that

may have other applications. We also give analytical and experimental evidence that all of these
data structures are usually linear in the size of the original program. This paper thus presents

strong evidence that these structures can be of practical use in optimization.

Categories and Subject Descriptors: D .3.3 [Programming Languages]: Language

Constructs—control structures; data types and structures; procedures, functions and subroutines;

D.3.4 [Programming Languages]: Processors—compilers; optimization; I. 1.2 [Algebraic
Manipulation]: Algorithms—analysis of algorithms; 1.2.2 [Artificial Intelligence]: Automatic

Programming-program transformation

A preliminary version of this paper, “An Efficient Method of Computing Static Single Assign-
ment Form, ” appeared in the conference Record of the 16th ACM Symposium on principles of
Programming Languages (Jan. 1989).
F. K. Zadeck’s work on this paper was partially supported by the IBM Corporation, the office of
Naval Research, and the Defense Advanced Research Projects Agency under contract NOCIO14-83-

K-0146 and ARPA order 6320, Amendment 1.

Authors’ ac!drwses: R. i3yiru:I, J. Ferrante, and M. N. Wegman, Computer Sciences Department,
IBM Research Division, P. O. Box 704, Yorktown Heights, NY 10598; B. K. Rosen, Mathemati-

cal Sciences Department, IBM Research Division, P. O. Box 218, Yorktown Heights, NY 10598;
F. K. Zadeck, Computer Science Department, P.O. Box 1910, Brown University, Providence, RI
02912.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
@ 1991 ACM 0164-0925/91/1000-0451 $01.50

ACM Transact~ons on Programmmg Languages and Systems, VO1 13, NO 4, October, le91, Pages 451.490

452 s Ron Cytron et al.

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Control dependence, control flow graph, clef-use chain,
dominator, optimizing compilers

1. INTRODUCTION

In optimizing compilers, data structure choices directly influence the power

and efficiency of practical program optimization. A poor choice of data

structure can inhibit optimization or slow compilation to the point where

advanced optimization features become undesirable. Recently, static single

assignment (SSA) form [5, 431 and the control dependence graph [241 have

been proposed to represent data flow and control flow properties of programs.

Each of these previously unrelated techniques lends efficiency and power to a

useful class of program optimizations. Although both of these structures are

attractive, the difficulty of their construction and their potential size have

discouraged their use [4]. We present new algorithms that efficiently compute

these data structures for arbitrary control flow graphs. The algorithms use

dominance frontiers, a new concept that may have other applications. We

also give analytical and experimental evidence that the sum of the sizes of all

the dominance frontiers is usually linear in the size of the original program.

This paper thus presents strong evidence that SSA form and control

dependence can be of practical use in optimization.

Figure 1 illustrates the role of SSA form in a compiler. The intermediate

code is put into SSA form, optimized in various ways, and then translated

back out of SSA form. Optimizations that can benefit from using SSA form

include code motion [221 and elimination of partial redundancies [431, as well

as the constant propagation discussed later in this section.

Variants of SSA form have been used for detecting program equivalence [5,

521 and for increasing parallelism in imperative programs [211. The represen-

tation of simple data flow information (clef-use chains) may be made more

compact through SSA form. If a variable has D definitions and U uses, then

there can be D x U clef-use chains. When similar information is encoded in

SSA form, there can be at most E def-use chains, where E is the number of

edges in the control flow graph [40]. Moreover, the clef-use information

encoded in SSA form can be updated easily when optimizations are applied.

This is important for a constant propagation algorithm that deletes branches

to code proven at compile time to be unexecutable [50]. Specifically, the

def-use information is just a list, for each variable, of the places in the
program text that use that variable. Every use of V is indeed a use of the

value provided by the (unique) assignment to V.
To see the intuition behind SSA form, it is helpful to begin with straight-line

code. Each assignment to a variable is given a unique name (shown as a

subscript in Figure 2), and all of the uses reached by that assignment are

renamed to match the assignment’s new name.

Most programs, however, have branch and join nodes. At the join nodes, we

add a special form of assignment called a @-function. In Figure 3, the

ACM TransactIons on Programming Languages and Systems, Vol. 13, No, 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 453

Orlgmal Opt Imlzed
Intermediate Code Intermediate Code

J T

P()+P~+P~-+ . . . Pn

Fig, 1. Vertical arrows represent translation to/from static single assignment form, Horizontal
arrows represent optimizations,

V+4 VI-4

+-V+5 + vi

V+-6 V2*6

--V+7 +-- V2

Fig. 2. Straight-line code and its single assignment version.

if P if P

then V - 4 then VI + 4

else V +- 6 else V2 + 6

v~ e- q5(vf, V2)

/* IJse V several times. */ /* Use V~ several

Fig.3. if-then-else anditssingle assignment version.

+5

+7

tines. */

operands to the @-function indicate which assignments to V reach thle join

point. Subsequent uses of V become uses of V3. The old variable V is thus

replaced by new variables Vl, Vz, V3, ..., and each use of Vi is reached by

just one assignment to Vi. Indeed, there is only one assignment to Vi in the

entire program. This simplifies the record keeping for several optirnizations.

An especially clear example is constant propagation based on SSA form [501;

the next subsection sketches this application.

1.1 Constant Propagation

Figure 4 is a more elaborate version of Figure 3. The else branch includes a

test of Q, and propagating the constant true to this use of Q tells a compiler

that the else branch never falls through to the join point. If Q is the constant

true, then all uses of V after the join point are really uses of the constant 4.

Such possibilities can be taken into account without SSA form, but the

processing is either costly [48] or difficult to understand [49]. With SSA form,

the algorithm is fast and simple.

Initially, the algorithm assumes that each edge is unexecutable (i. e., never

followed at run time) and that each variable is constant with an as-yet

unknown value (denoted T). Worklists are initialized appropriately, and the
assumptions are corrected until they stabilize. Suppose the algorithm finds

that variable P is not constant (denoted _L) and, hence, that either branch of

ACM Transactions on Programming Languages and Systems, Vol. 13. No. 4, October 1991.

454 . Ron Cytron et al

if P if P

then do V +- 4 then do Vi +- 4

end end

else do V + 6 else do V2 +- 6

if Q then return if Q then return

end end

V3 + 4(V1, V2)

. . . +V+5 . . . +- V3+S

Fig 4, Example ofconstant propagation

the outer conditional may betaken. The outedges of the test ofP are marked

executable, and the statements they reach are processed. When VI +4 is

processed, the assumption about VI is changed from T to 4, and all uses of

VI are notified that they are uses of4. (Each use ofVl is indeed a use of

this value, thanks to the single assignment property.) In particular, the

@function combines 4with Vz. The second operand of the @function, how-

ever, isassociated with the inedge of thejoin point that corresponds to falling

through the else branch. So long as this edge is considered unexecutable, the

algorithm uses T for the second operand, no matter what is currently as-

sumed about Vz. Combining 4 with T yields 4, so uses of V~ are still

tentatively assumed to be uses of 4. Eventually, the assumption about Q may

change from T to a known constant or to ~ . A change to either false or L

would lead to the discovery that the second inedge of the join point can be

followed, and then the 6 at Vz combines with the 4 at VI to yield L at V~. A

change to true would have no effect on the assumption at V3. Traditional

constant propagation algorithms, on the other hand, would see that assign-

ments of two different constants to V seem to “reach” all uses after the join

point. They would thus decide that V is not constant at these uses.

The algorithm just sketched is linear in the size of the SSA program it sees

[501, but this size might be nonlinear in the size of the original program. In
particular, it would be safe but inefficient to place a +-function for every

variable at every join point. This paper shows how to obtain SSA form

efficiently. When ~-functions are placed carefully, nonlinear behavior is still

possible but is unlikely in practice. The size of the SSA program is typically

linear in the size of the original program; the time to do the work is

essentially linear in the SSA size.

1.2 Where to Place @-Functions

At first glance, careful placement might seem to require the enumeration of

pairs of assignment statements for each variable. Checking whether there

are two assignments to V that reach a common point might seem to be

intrinsically nonlinear. In fact, however, it is enough to look at the domi-

nance fi-ontier of each node in the control flow graph. Leaving the technicali-

ties to later sections, we sketch the method here.

ACM Transactions on Programming Languages and Systems, Vol 13, No 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 455

Suppose that a variable V has just one assignment in the original program,

so that any use of V will be either a use of the value V. at entry to the

program or a use of the value VI from the most recent execution of the

assignment to V. Let X be the basic block of code that assigns to V, so X

will determine the value of V when control flows along any edge X + 1{ to a

basic block Y. When entered along X + Y, the code in Y will see VI and be

unaffected by V.. If Y # X, but all paths to Y must still go through X (in

which case X is said to strictly dominate Y), then the code in Y will a [ways

see VI. Indeed, any node strictly dominated by X will always see Vl, no

matter how far from X it may be. Eventually, however, control may be able

to reach a node Z not strictly dominated by X. Suppose Z is the first such

node on a path, so that Z sees VI along one inedge but may see V. along

another inedge. Then Z is said to be in the dominance frontier of X and is

clearly in need of a @-function for V. In general, no matter how many

assignments to V may appear in the original program and no matter how

complex the control flow may be, we can place ~-functions for V by finding

the dominance frontier of every node that assigns to V, then the dominance

frontier of every node where a +-function has already been placed, and so on.

The same concept of dominance frontiers used for computing SSA form can

also be used to compute control dependence [20, 24], which identify those

conditions affecting statement execution. Informally, a statement is control

dependent on a branch if one edge from the branch definitely causes that

statement to execute while another edge can cause the statement to be

skipped. Such information is vital for detection of parallelism [2], program

optimization, and program analysis [28].

1.3 Outline of the Rest of the Paper

Section 2 reviews the representation of control flow by a directed graph,

Section 3 explains SSA form and sketches how to construct it. This section

also considers variants of SSA form as defined here. Our algorithm can be

adjusted to deal with these variants. Section 4 reviews the dominator tree

concept and formalizes dominance frontiers. Then we show how to compute

SSA form (Section 5) and the control dependence graph (Section 6) efficiently.

Section 7 explains how to translate out of SSA form. Section 8 shows that our

algorithms are linear in the size of programs restricted to certain control

structures. We also give evidence of general linear behavior by reporting on

experiments with FORTRAN programs. Section 9 summarizes the algo-

rithms and time bounds, compares our technique with other techniques, and

presents some conclusions.

2. CONTROL FLOW GRAPHS

The statements of a program are organized into (not necessarily maximal)

basic blocks, where program flow enters a basic block at its first statement

and leaves the basic block at its last statement [1, 36]. Basic blocks are

indicated by the column of numbers in parentheses in Figure 5. A control

jZow graph is a directed graph whose nodes are the basic blocks of a program

and two additional nodes, Entry and Exit. There is an edge from Entry to

ACM Transactions on Programming Languages and Systems, Vol. 13, No, 4, October 1991

456 . Ron Cytron et al.

1+1

J+ I

K+l

L+-1

repeat

if (P)

then do

J- I

if (Q)

then L t 2

else L - 3

K-K+ I

end

else KtK+2

print (I, J,K, L)

repeat

if (R)

(1)

(1)

(1)

(1)

(2)

(2)

(3)

(3)

(3)

(4)

(5)

(6)

(6)

(7)

(8)

(9)

(9)

then L +- L + 4 (10)

until (S) (11)

1-1+6

until (T)

(12)

(12)

4
9

10

11

@IEl--&
Fig 5 Simple pro~amand itscontrol flow graph

any basic block at which the program can be entered, and there is an edge to

Exit from any basic block that can exit the program. For reasons related to

the representation of control dependence and explained in Section 6, there is

also an edge from Entry to Exit. The other edges of the graph represent

transfers of control (jumps) between the basic blocks. We assume that each

node is on a path from Entry and on a path to Exit. For each node X, a

successor of X is any node Y with an edge X + Y in the graph, and

SZLCC(X) is the set of all successors of X; similarly for predecessors. A node

with more than one successor is a branch node; a node with more than one

predecessor is a join node. Finally, each variable is considered to have an
assignment in Entry to represent whatever value the variable may have

when the program is entered. This assignment is treated just like the ones

that appear explicitly in the code. Throughout this paper, CFG denotes the

control flow graph of the program under discussion.

For any nonnegative integer J, a path of length J in CFG consists of a

sequence of J + 1 nodes (denoted Xo, ., XJ) and a sequence of J edges

(denoted e,, eJ) such that e, runs from XJ_, to X, for all j with
1< j < J. (We write eJ: X~_l ~ X~.) As is usual with sequences, one item

(node or edge) may occur several times. The null path, with J = O, is

ACM Transactions on Programmmg Languages and Systems, Vol 13, No 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 457

allowed. We write p: X.: XJ for an unrestricted path p, but p: X. “ XJ if

p is known to be nonnull.

Nonnull paths p: X. ~ XJ and q: YO ~ YK are said to converge at a node Z

if

X. # Yo; (1)

XJ=Z=YK; (2)

(XJ=Y,) -(j= Jork=K). (3)

Intuitively, the paths p and q start at different nodes and are almost

node-disjoint, but they come together at the end. The use of or rather than

and in (3) is deliberate. One of the paths may happen to be a cycle Z ~ Z, but

we still need to consider the possibility of convergence.

3. STATIC SINGLE ASSIGNMENT FORM

This section initially assumes that programs have been expanded to an

intermediate form in which each statement evaluates some expressions and

uses the results either to determine a branch or to assign to some variables.

(Other program constructs are considered in Section 3.1.) An assignment

statement A has the form LHS(A) - RHS(A), where the left-hand side

LHS(A) is a tuple of distinct target variables (U, V, . ..) and the right-hand

side RHS(A) is a tuple of expressions, with the same length as the LHS

tuple. Each target variable in LHS(A) is assigned the corresponding value

from RHS(A). In the examples already discussed, all tuples are l-tuples, and

there is no need to distinguish between V and (V). Section 3.1 sketches the

use of longer tuples in expanding other program constructs (such as proce-

dure calls) so as to make explicit the variables used and/or changed by the

statements in the source program. Such explicitness is a prerequisite for

most optimization anyway. The only novelty in our use of tuples is the fact

that they provide a simple and uniform way to fold the results of analysis

into the intermediate text. Practical concerns about the size of the inte rmedi -

ate text are addressed in Section 3.1.

Translating a program into SSA form is a two-step process. In the first

step, some trivial o-functions V ~ @(V, V, . . .) are inserted at some of the

join nodes in the program’s control flow graph. In the second step, new

variables V, (for i = O, 1,2, . . .) are generated. Each mention of a variable V

in the program is replaced by a mention of one of the new variables V,, where

a mention may be in a branch expression or on either side of an assignment

statement, Throughout this paper, an assignment statement may be either

an ordinary assignment or a @function. Figure 6 displays the result of

translating a simple program to SSA form.

A +-function at entrance to a node X has the form V ~ +(R, S, . . .), where

V, R, S, . . . are variables. The number of operands R, S, . is the number
of control flow predecessors of X. The predecessors of X are listed in some

arbitrary fixed order, and the jth operand of + is associated with the jth

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991.

458 0 Ron Cytron et al.

1-1
J+ I

Kti

L+-1

repeat

if (P)

then do

J+ I

if (Q)

then L +-- 2

else L +--- 3

K-K+ I

end

else K+--K+2

11-1

Jl +-1

Kl +-l

L1tl

repeat

12 - #(13,11)

J2 - @(J4, JI)
K2 + l#J(K~,K~)

L2 +- 4(L9, L1)
if (P)

then do

J3 - 12

if (Q)

then L3 t 2

else L4 +- 3

L5 - @(L3, L4)
K3 +K2+1

end

else K4 +- K2+2

J4 - #(J3, J2)

K5 - @(K3, K4)

L6 + ~(L2,L~)

print (I, J,K, L) print(12, J4, K5, L6)

repeat repeat

L7 +- @(L~,L~)

if (R) if (R)

then L+-L+4 then L8 -L7+4

L9 + @(L8, L7)

until (S) until (S)

1+1+6 13-12+6

until (T) until (T)

Fig.6 Simple program anditsSSAform.

predecessor. Ifcontrol reaches Xfromits jth predecessor, then the run-time

supportl remembers J“ while executing the o-functions in X. The value of

@(R, S,...) is just the value of the jth operand. Each execution of a

qifunction uses only one ofthe operands, but which one depends on the flow

of control just before entering X. Any d-functions in X are executed before
the ordinary statements in X. Some variants of d-functions as defined here

are useful for special purposes. For example, each @function can be tagged

lWhen SSA form is used only as an intermediate form (Figure 1), there is no need actually to
provide this support. For us, the semantics of @ are only important when assessing the
correctness of intermediate steps in a sequence of program transformations beginning and
ending with code that has no +-functions, Others [6, 11, 521 have found it useful to give @
another parameter that incidentally encodes j, under various restrictions on the control flow.

ACM Transactions on Programming Languages and Systems, Vol. 13, No 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 459

with the node X where it appears [5]. When the control flow of a language is

suitably restricted, each @function can be tagged with information about

conditionals or loops [5, 6, 11, 52]. The algorithms in this paper apply to such

variants as well.

SSA form may be considered as a property of a single program OY as a

relation between two programs. A single program is defined to be in SSA

form if each variable is a target of exactly one assignment statement in the

program text. Translation to SSA form replaces the original program by a

new program with the same control flow graph. For every original variable

V, the following conditions are required of the new program:

(1) If two nonnull paths X ~ Z and Y~ Z converge at a node Z, and nodes X
and Y contain assignments to V (in the original program), then a trivial

+-function V + q5(V, V) has been inserted at Z (in the new program).

(2) Each mention of V in the original program or in an inserted +fulnction
has been replaced by a mention of a new variable V,, leaving the new

program in SSA form.

(3) Along any control flow path, consider any use of a variable V (in the

original program) and the corresponding use of V, (in the new program).

Then V and Vi have the same value.

Translation to minimal SSA form is translation to SSA form with the

proviso that the number of @-functions inserted is as small as possible,

subject to Condition (1) above. The optimizations that depend on SSA form

are still valid if there are some extraneous +-functions beyond those that

would appear in minimal SSA form. However, extraneous +-functions can

cause information to be lost, and they always add unnecessary overhead to

the optimization process itself. Thus, it is important to place +-functions only

where they are required. One variant of SSA form [52] would sometimes

forego placing a @-function at a convergence point Z, so long as there nre no

more uses for V in or after Z. The @function could then be omitted without

any risk of losing Condition (3). This has been called pruned SSA form [16],

and it is sometimes preferable to our placement at all convergence points.

However, as Figure 16 in Section 7 illustrates, our form is sometimes

preferable to pruned form. When desired, pruned SSA form can be obtained

by a simple adjustment of our algorithm [16, Section 5.1].

For any variable V, the nodes at which we should insert @-functions in the

original program can be defined recursively by Condition (1) in the definition

of SSA form. A node Z needs a +-function for V if Z is a convergence point for

two paths that originate at two different nodes, both nodes containing

assignments to V or needing @-functions for V. Nonrecursively, we may

observe that a node Z needs a @-function for V because Z is a convergence

point for two nonnull paths X ~ Z and Y ~ Z that start at nodes X and Y

already containing assignments to V. If Z did not already contain an

assignment to V, then the @function inserted at Z adds Z to the set of nodes
that contain assignments to V. With more nodes to consider as origins of

paths, we may observe more nodes appearing as convergence points of

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991.

460 . Ron Cytron et al.

nonnull paths originating at nodes with assignments to V. The set of nodes

needing @functions could thus be found by iterating an observation/

insertion cycle. 2 The algorithm presented here obtains the same end results

in much less time.

3.1 Other Program Constructs

If the source program computes expressions using constants and scalar

variables to assign values to scalar variables, then it is straightforward to

derive an intermediate text that is ready to be put into SSA form (or

otherwise analyzed and transformed by an optimizing compiler). However,

source programs commonly use other constructs as well: Some variables are

not scalars, and some computations do not explicitly indicate which variables

they use or change. This section sketches how to map some important

constructs to an explicit intermediate text suitable for use in a compiler.

3.1.1 Arrays. It will suffice to consider one-dimensional arrays here.

Arrays of higher dimension involve more notation but no more concerns.

If A and B are array variables, then array assignment statements like

A + B or A +- O, if allowed by the source language, can be treated just like

assignments to scalar variables. Many of the mentions of A in the source

program, however, will be mentions of A(i) for some index i, which may be

taken to be an integer variable. Treating A(i) as a variable would be

awkward, both because an assignment to A(i) may or may not change the

value of A(j) and because the value of A(i) could be changed by assigning to i

rather than to A(i). An easier approach is illustrated in Figure 7. The entire

array is treated like a single scalar variable, which may be one of the

operands of Access or Update. 3 The expression Access(A, i) evaluates to the

ith component of A; the expression Update(A, j, V) evaluates to an array

value that is of the same size as A and has the same component values,

except for V as the value of the jth component. Assigning a scalar value V to

A(j) is equivalent to assigning an array value to the entire array A, where

the new array value depends on the old one, as well as on the index j and on

the new scalar value V. The translation to SSA form is unconcerned with

whether the values of variables are large objects or what the operators mean.

As with scalars, translation of array references to SSA form removes some

anti- and output-dependences [32]. In the program in Figure 7a, dependence

analysis may prohibit reordering the use of A(i) by the first statement and

the definition of A(j) by the second statement. After translation to SSA form,

the two references to A have been renamed, and reordering is then possible.
For example, the two statements can execute concurrently. Where optimiza-

tion does not reorder the two references, Section 7.2 describes how transla -

2In typical cases, paths originating at @functions add nothing beyond the contributions from

paths originating at ordinary assignments. The straightforward iteration is still too slow, even
in typical cases
3This notation is similar to Select and Update [24], which, in turn, is similar to notation for
referencing aggregate structures in a data flow language [23].

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 461

+ A(i) - Access (A, i) +- ACCeSS(A8, 17)

A(j) + V A t Llpdate(A, j,V) A9 + Update(A8, j~, V~)

- A(k) + 2 T - Access (A, k) T1 + Access(A9,k~~)

-T+2 +T1+2

(a) (b) (c)

Fig. 7. Source code with array component references (a) is equivalent to code with explicit
Access and Update operators that treat the array A just like a scalar (b). Transformationto
SSA form proceeds as usual (c).

tion out of SSA form reclaims storage that would otherwise be necessary to

maintain distinct variables.

Consider the loop shown in Figure 8a, which assigns to every component of

array A. The value assigned to each component A(i) does not depend (even

indirectly) on any of the values previously assigned to components of A. In

terms of its effect on A, the whole loop is like an assignment of the form

A + (...), where A is not used in (...). Any assignment to a component of A
that is not used before entering such an initialization loop is dead code that

should be eliminated. With or without SSA form, the Update operator in

Figure 8b makes A appear to be live at entry to the loop.

One reasonable response to the crudeness of the Update operator is to

accept it. Address calculations and other genuine scalar calculations can still

be optimized extensively. Another response is to perform dependence analy-

sis [3, 10, 32, 51], which can sometimes determine that no subsequent

accesses of A require values produced by any other assignment to A. Such is

the case for each execution of the assignment to A(i) in Figure 8a. The

assignment statement can then be viewed as an initialization of A. The

problem for us, or for anyone who uses Update to make arrays loolk like

scalars, is to communicate some of the results of dependence analysis to

optimizations (like dead code elimination) that are usually formulated in

terms of “scalar” variables. A simple solution to this formal problem is

shown in Figure 8c, where the HiddenUpdate operator does not mention the

assigned array operand. The actual code generated for an assignment from a

HiddenUpdate expression is exactly the same as for an assignment from the

corresponding Update expression, where the hidden operand is supplied by

the target of the assignment.

3.1.2 Structures. A structure can be generally regarded as an array,

where references to structure fields are treated as references to elements of

the array. Thus, an assignment to a structure field is translated iIItO an

Update of the structure, and a use of a structure field is translated into an

Access of the structure. In the prevalent case of simple structure field

references, this treatment results in arrays whose elements are indexed by

constants. Dependence analysis can often determine independence i31111011g

such accesses, so that optimization may move an assignment to one field far
from an assignment to another field. If analysis or language semantics

reveals a structure whose n fields are always accessed disjointly, then the

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, Octob,w 1991,

462 . Ron Cytron et al.

integer A(1:1OO) integer AO(I:lOO)

integer A1(l:lOO)

integer A2(I:IOO)

i+l il +--l

repeat repeat

i2 t ~(ii,i~)

Al + f#(fio, A2)

A(i) t-- i A2 + update (Al,lz, iZ)

i+l+l i3 -iz+i
until i > 100 until i3 > 100

(a) (b)

integer AO(I:lOO)

integer A1(I:lOO)

integer A2(1:100)

il+--l

repeat

i2 +-- #(i~, i3)

Al +- ~(A0,A2)

A2 +- HiddenUpdate(12, i2)

13 +-12+1

until i3 > 100

(c)

Fig. 8, Source loop with array assignment (a) is equivalent to code with an Update operator

that treats the array A just hke a scalar (b), As Section 72 explains, the eventual translation

out of SSA form will leave just one array here, Using HiddenUpdate (c) is a purely formal way
tosummarize some results of dependency analysis, if available.

structure can be decomposed into n distinct variables. The elements of such

structures are united in the source program only for organizational reasons,

and the expression of the structure’s decomposition in SSA form makes

the program’s actual use of the structure more apparent to subsequent

optimization.

3.1.3 Implicit References to Variables. The construction of SSA form

requires knowing those variables modified and used by a statement. In

addition to those variables explicitly referenced, a statement may use or

modify variables not mentioned by the statement itself. Examples of such

implicit references are global variables modified or used by a procedure call,

aliased variables, and dereferenced pointer variables. To obtain SSA form,

we must account for implicit as well as explicit references, either by conser-

vative assumptions or by analysis. Heap storage can be conservatively mod-

eled by representing the entire heap as a single variable that is both modified

and used by any statement that may change the heap. More refined modeling

is also possible [15], but the conservative approach is already strong enough

to support optimization of code that does not involve the heap but is

interspersed with heap-dependent code.

For any statement S, three types of references affect translation into SSA

form:

(1) MustMod(S) is the set of variables that must be modified by execution of
s.

(2) MayMod(S) is the set of variables that may be modified by execution of
s.

(3) May Use(S) is the set of variables whose values prior to execution of S

may be used by S.

We represent implicit references for any statement S by transformation to

an assignment statement A, where all the variables in MayMod(S) appear

ACM Transactions on Programmmg Languages and Systems, Vol, 13, No, 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 463

in LHS(A) and all the variables in May Use(S) u (ikfcz~illod(s) –

MustMod(S)) appear in RHS(A).

An optimizing compiler may or may not have access to the bodies of all

procedures called (directly or indirectly) or to summaries of their effects. If no

specific information is available, it is customary to make conservative as-

sumptions. A call might change any global variable or any parameter passed

by reference, but it is reasonable to assume that variables local to the caller

will not change. Such assumptions limit the extent that transformations can

be performed. Techniques are available to extract more detailed information:

To determine parameter aliasing and effects of procedures on global vari-

ables, see [7-9], [19], [37], and [42]; to determine pointer aliasing, see [14, 15,

27, 29, 33, 34], and [44].

When a sophisticated analysis technique is applied, the usual result is that

there are few side effects and the tuples (both LHS and RHS) are small.

Small tuples can be represented directly. Sophisticated analysis, however, is

often unavailable. Many compilers do no interprocedural analysis at all.

Consider a call to an external procedure that has not been analyzed. Both

tuples for the call must contain all global variables. The compilers own

representation of the tuples can still be compact. The representation caln be a

structure that includes a flag (set to indicate that all globals are in the tuple)

plus a direct representation of the few local variables that are in the tuple

because of parameter transmission. The intuitive explanations and theoreti-

cal analyses of optimization techniques (with or without SSA form) are

conveniently formulated in terms of explicit tuples; compact representations

can still be used in the implementations.

3.2 Overview of the SSA Algorithm

Translation to minimal SSA form is done in three steps:

(1) The dominance frontier mapping is constructed from the contrcd flow
graph (Section 4.2).

(2) Using the dominance frontiers, the locations of the @-functions for each

variable in the original program are determined (Section 5.1).

(3) The variables are renamed (Section 5.2) by replacing each mention of an

original variable V by an appropriate mention of a new variable V,.

4. DOMINANCE

Section 4.1 reviews the dominance relation [47] between nodes in the control

flow graph and how to summarize this relation in a dominator tree. Section

4.2 introduces the dominance frontier mapping and gives an algorithm for its

computation.

4.1 Dominator Trees

Let X and Y be nodes in the control flow graph CFG of a program. If -X
appears on every path from Entry to Y, then X dominates Y. Domination is

both reflexive and transitive. If X dominates Y and X # Y, then X strictly

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991

464 . Ron Cytron et al

Entry [- I -]

(’E=’k
w

(-i ‘(-)
1 [- I Exit] Exit [- I -]

I
(Exit)

2[-1 Exit,2]

(-l~xit2
3[-18] 7[8181 8[-1 Exi’t ,2]

P \
5[;]6] 6&\]

(Exit,2)
9[-1 Exit,2,9]

(-)
,_,~2 ,,

4[616] 10[111 11] li[91Exit:2,9]

I
(Exit ,2)

12[Exit,21Exit,2]

Fig. 9 Control flow graph anddominator tree of the simple program Thesets ofnodes listed in

()and[] brackets summarize thedominance frontier calculation from Section 4.2, Each node X
is annotated with two sets [DFIOCaj (X) I DF’(X)] and a third set (DFUP(X)).

dominates Y. In formulas, we write X>> Y for strict domination and X ~ Y

for domination. If X does not strictly dominate Y, we write X ~ Y. The

immediate dominator of Y (denoted idom(Y)) is the closest strict dominator

of Y on any path from Entry to Y. In a dominator tree, the children of a

node X are all immediately dominated by X. The root of a dominator tree is

Entry, and any node Y other than Entry has idom(Y) as its parent in the

tree. The dominator tree for CFG from Figure 5 is shown in Figure 9. Let N

and E be the numbers of nodes and edges in CFG. The dominator tree can be

constructed in 0(Ea(E, N)) time [35] or (by a more difficult algorithm) in

0(E) time [26]. For all practical purposes, a(E, N) is a small constant,4 so
this paper will consider the dominator tree to have been found in linear time.

The dominator tree of CFG has exactly the same set of nodes as CFG but a

very different set of edges. Here, the words predecessor, successor, and path

always refer to CFG. The words parent, child, ancestor, and descendant

always refer to the dominator tree.

4Under the definition of a ueed in analyzing the dominator tree algorithm [35, p. 123], N s E
implies that a(17, N) = 1 when logz N < 16 and a(ll, N) = 2 when 16 < logz N < 216.

ACM TransactIons on Programming Languages and Systems, Vol. 13, No 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 465

4.2 Dominance Frontiers

The dominance frontier DF(X) of a CFG node X is the set of all CFG nodes

Y such that X dominates a predecessor of Y but does not strictly dominate

Y:

DF(X) = {Y[(~Pe Pred(Y))(X> Pand X? Y)}.

Computing D1’(X) directly from the definition would require searching

much of the dominator-tree. The total time to compute DF(X) for all nodes

X would be quadratic, even when the sets themselves are small. To compute

the dominance frontier mapping in time linear in the size Ex I DF(X) I of

the mapping, we define two intermediate sets DFIOC~l and DFUP for eaclh node

such that the following equation holds:

DF(X) = DFIOC~l(X) U (J DFUP(Z). (4)
ZeChildren(X)

Given any node X, some of the successors of X may contribute to DIF(X).

This local contribution DFIOC.l(X) is defined by

Given any node Z that is not the root Entry of the dominator tree, some of

the nodes in DF(Z) may contribute to DF(idom(Z)). The contribution

DFUP(Z) that Z passes up to idom(Z) is defined by

DFUP(Z)~f{Ye DF(Z) I idom(Z) ~ Y}.

LEMMA 1. The dominance frontier equation (4) is correct.

PROOF. Because dominance is reflexive, DFIOC.l(X) G DF(X). Because

dominance is transitive, each child Z of X has DFUP(Z) G DF(X). We must

still show that everything in DF(X) has been accounted for. Suppose Y e

DF(X), and let U ~ Y be an edge such that X dominates U but dcles not

strictly dominate Y. If U = X, then Y e DFIOC.Z(X), and we are done. If

U # X, on the other hand, then there is a child Z of X that dominates U but

cannot strictly dominate Y because X does not strictly dominate Y. This

implies that Ye DFUP(Z). ❑

The intermediate sets can be computed with simple equality tests as

follows:

LEMMA 2. For any node X,

DFIOC~t(X) = {Y= SUCC(X) I idom(Y) # X}.

PRooF. We assume that Y ~ Succ(X) and show that

(X> Y) # (idom(Y) =X).

The = part is true because the immediate dominator is defined to be a strict

dominator. For the = part, suppose that X strictly dominates Y and, hence,

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991.

466 . Ron Cytron et al,

for each ~ in a bottom-up traversal of the dominator tree do

DF(X) + 0
for each Y E Succ(X) do

/*local./ if id.m(Y) # X then llF(X) +- IIF’(X) U {Y}

end

for each Z E Children(x) do

for each Y E LIF’(Z) do

/*up*/ if idorn(Y) # X then DF’(X) - llF’(X) U {Y}

end

end

end

Fig. 10. Calculation of DF(X) for each CFG node X.

that some child V of X dominates Y. Then V appears on any path from

Entry to Y that goes to X and then follows the edge X + Y, so either

V dominates X or V = Y. But V cannot dominate X, so V = Y and

idom(Y) = idom(v) = x. n

LEMMA 3. For any node X and any child Z of X in the dominator tree,

DFUP(Z) = {Ye DF(Z) I idom(Y) # X}.

PROOF. We assume that Y GDF(Z) and show that

(X> Y)+ (idom(Y) =X).

The - part is true because strict dominance is the transitive closure of

immediate dominance. For the + part, suppose that X strictly dominates Y

and, hence, that some child V of X dominates Y. Choose a predecessor U o!i

Y such that Z dominates U. Then V appears on any path from Entry to Y

that goes to U and then follows the edge U + Y, so either V dominates U or

V = Y. If V = Y, then idom(Y) = idom(V) = X, and we are done. Suppose

that V + Y (and, hence, that V dominates U) and derive a contradiction.

Only one child of X can dominate U, so V = Z and Z dominates Y. This

contradicts the hypothesis that Ye DF(Z). ❑

These results imply the correctness of the algorithm for computing the

dominance frontiers given in Figure 10. The /*local*/ line effectively com-

putes DFIOC.Z(X) on the fly and uses it in (4) without needing to devote
storage to it. The /*up*/ line is similar for DFUP(Z). We traverse the
dominator tree bottom-up, visiting each node X only after visiting each of its

children. To illustrate the working of this algorithm, we have annotated the

dominator tree in Figure 9 with the information [1 and () brackets.

THEOREM 1. The algorithm in Figure 10 is correct.

PROOF. Direct from the preceding lemmas. ❑

Let CFG have N nodes and E edges. The loop over Succ(X) in Figure 10

examines each edge just once, so all executions of the /*local*/ line are

ACM TransactIons on Programming Languages and Systems, Vol. 13, No. 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 467

complete in time 0(E). Similarly, all executions of the /*up*/ line are

complete in time O(size(DF)). The overall time is thus O(E + size(DF)),

which amounts to a worst-case complexity of 0(E + N2). However, Section 8

shows that, in practice, the size of the mapping DF is usually linear. We

have implemented this algorithm and have observed that it is faster than the

standard data-flow computations in the PTRAN compiler [21.

4.3 Relating Dominance Frontiers to Joins

We start by stating more formally the nonrecursive characterization of where

the @-functions should be located. Given a set Y of CFG nodes, the set J(Y)

of join nodes is defined to be the set of all nodes Z such that there are two

nonnull CFG paths that start at two distinct nodes in Y and converge at Z.

The iterated join J+ (5“) is the limit of the increasing sequence of sets of

nodes

J1= J(Y);

J,+l = J(YU J,).

In particular, if Y happens to be the set of assignment nodes for a variable

V, then J+(Y) is the set of @function nodes for V.

The join and iterated join operations map sets of nodes to sets of nodes. We

extend the dominance frontier mapping from nodes to sets of nodes in the

natural way:

DF(S“) = ~QJDF(X) .

As with join, the iterated dominance frontier DF+ (Y) is the limit of the

increasing sequence of sets of nodes

DF1=DF(Y);

DF,+l = DF(W DF,) .

The actual computation of DF+ (Y) is performed by the efficient worklist

algorithm in Section 5.1; the formulation here is convenient for relating

iterated dominance frontiers to iterated joins. If the set Y is the set of

assignment nodes for a variable V, then we will show that

J+(Y) =DF+(Y)

(this equation depends on the fact that Entry is in Y) and, hence, that the

location of the @functions for V can be computed by the worklist algorithm

for computing DF+ (Y) that is given in Section 5.1.

The following lemmas do most of the work by relating dominance frontiers

to joins:

LEMMA 4. For any nonnull path p: X ~ Z in CFG, there is a node

X’ e {X} U DF+ ({ X}) on p that dominates Z. Moreover, unless X dominates

every node on p, the node X’ can be chosen in DFf ({ X}).

PRooF. If X dominates every node on p, then we just choose X’ = X to

get all the claimed properties of X’. We may assume that some of the nodes

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991.

468 . Ron Cytron et al

on p are not dominated by X. Let the sequence of nodes on p be X =

Xo, . . ., XJ = Z. For the smallest i such that X does not dominate X,, the

predecessor X,_ ~ is dominated by X and so puts X, into DF’(X). Thus, there

are choices of ~“ with XJ e DF+ ({ X}). Consider X’ = XJ for the largest j

with XJ ~ DF+ ({ X}). We will show that X’ >> Z. Suppose not. Then j < J,

and there is a first k with j < k s J such that X’ does not dominate Xh. The

predecessor Xh _ ~ is dominated by X’ and so puts X~ into DF(X’). Thus,

Xh e DF(DF+ ({ X})) = DF+ ({ X}), contradicting the choice of j. D

LEMMA 5. Let X + Y be two nodes in CFG, and suppose that nonnull paths

p: X$ Z and q: Y$ Z in CFG converge at Z. Then Z ~DF+({ X}) U

DF+({ Y}).

PROOF. We consider three cases that are obviously exhaustive. In the first

two cases, we prove that Z e DF+ ({ X}) U DF+ ({ Y}). Then we show that the

first two cases are (unobviously) exhaustive because the third case leads to a

contradiction. Let X’ be from Lemma 4 for the path p, with the sequence of

nodes X= XO, ..., XJ = Z. Let Y’ be from Lemma 4 for the path q, with the

sequence of nodes Y = YO, . . ., YK = Z.

Case 1. We suppose that X’ is on q and show that Z e DF+({ X}). By the

definition of convergence (specifically, (3) in Section 2), X’ = Z. We may now

assume that Z = X and X dominates every node on p. (Otherwise, Lemma 4

already asserts Z e DF+ ({ X}).) Because X dominates the predecessor XJ_ ~

of Z but does not strictly dominate Z, we have Z c DF(X) G DF+ ({ X}).

Case 2. We suppose that Y is on p, and show that Z e DF’ ({ Y}),

reasoning just as in Case 1.

Case 3. We derive a contradiction from the suppositions that X’ is not on

q and Y is not on p. Because X’ ~ Z but X’ is not on q, X’ >> YK = Z

and, therefore, dominates all predecessors of YK. In particular, X’ >> YK_ ~.

But X’ # YK_~, SO X’ >> Y&~, and we continue inductively to show that
X’ >> Y~ for all k. In particular, X’ >> Y’. On the other hand, by similar

reasoning from the supposition that Y >> Z but Y is not on p, we can show

that Y >> X’. Two nodes cannot strictly dominate each other, so Case 3 is

impossible. ❑

LEMMA 6. For any set Y’ of CFG nodes, J(7) G DF’(J7).

PROOF. We apply Lemma 5. ❑

LEMMA 7. For any set Y of CFG nodes such that Entry e Y, DF(Y) G

J(Y).

PROOF. Consider any Xc .Y and any Ye DF(X). There is a path from X

to Y where all nodes before Y are dominated by X. There is also a path from

Entry to Y where none of the nodes are dominated by X. The paths

therefore converge at Y. ❑

THEOREM 2. The set of nodes that need ~-functions for any variable V is the

iterated dominance frontier DF+ (Y), where Y is the set of nodes with

assignments to V.

ACM Transactions on Programmmg Languages and Systems, Vol. 13, No. 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 469

PROOF. By Lemma 6 and induction on i in the definition of J+, we can

show that

J+(Y) GDF+(Y). (5)

The induction step is as follows:

Ji+l = J(YUJ,) GJ(SWDF+(Y))

GDF+(!YUDF+(.Y)) =DF+(Y).

The node Entry is in Y, so Lemma 7 and another induction yield

DF+(Y)G J+(Y). (6)

The induction step is as follows:

DF,+l = DF(YUDF,) SDF(J’W J+(Y))

GJ(YU J+(Y)) =J+(Y).

The set of nodes that need @-functions for V is precisely J+(Y), so (5) and (6)
prove the theorem. ❑

5. CONSTRUCTION OF MINIMAL SSA FORM

5.1 Using Dominance Frontiers to Find Where @-Functions Are Needed

The algorithm in Figure 11 inserts trivial @-functions. The outer loop of this

algorithm is performed once for each variable V in the program. Several data

structures are used:

— W is the worklist of CFG nodes being processed. In each iteration of this

algorithm, W is initialized to the set &(V) of nodes that contain assign-

ments to V. Each node X in the worklist ensures that each node Y in

DF(X) receives a @function. Each iteration terminates when the w orklist

becomes empty.

— Work(*) is an array of flags, one flag for each node, where Work(X)

indicates whether X has ever been added to W during the current iteration

of the outer loop.

–HasAlready(*) is an array of flags, one for each node, where HasAlready(X)

indicates whether a @-function for V has already been inserted at X.

The flags Work(X) and Ha.sAlready(X) are independent. We need two flags

because the property of assigning to V is independent of the property of

needing a d-function for V. The flags could have been implemented with just

the values true and false, but this would require additional record keeping

to reset any true flags between iterations, without the expense of looping

over all the nodes. It is simpler to devote an integer to each flag and to test

flags by comparing them with the current iteration count.

Let each node X have AO,,~ (X) original assignments to variables,, where

each ordinary assignment statement LHS + RHS contributes the length of

the tuple LHS to A o,,~(x). counting assignments to variables is one of

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, Octc,ber 1991.

470 . Ron Cytron et al.

IterCount + O

for each node X do

HasAlready(X) + O

Work(X) - 0

end

W’+o

for each variable V do

IterCount +- IterCount --I 1

for each X ~ d(V) do

Work(X) +- IterCount

W+wu {x}
end

while W # @ do

take X from W

for each Y & DF’(.T) do

if HasAlready(Y) < IterCount

then do

place (F’ - @(V,..., V)) at Y

HasAlready(Y) + IterCount

if Work(Y) < IterCount

then do

Work(Y) +- IterCount

Jv +- w u {Y}
end

end

end

end

end

Fig, 11. Placement of ~-functions.

several measures of program size. 5 By this measure, the program expands

from size AO,,~ = XX AO,,~(X) to size A,O, = XX AtO,(X), where each @-

function placed at X contributes 1 to A,.,(X) = A o,,g(x) + A+(X). There is
a similar expansion in the number of mentions of variables, from Morlg =

Xx M~,,g(X) to Mto, = Xx Mto,(X), where each @-function placed at X
contributes 1 plus the indegree of X to MtOt(X) = MOrLg(X) + M+(X).

Placing a ~-function at Y in Figure 11 has cost linear in the indegree of Y,

so there is an O(EX M*(X)) contribution to the running time from the work
done when HasAlready(Y) < IterCount. Replacing mentions of variables will

contribute at least 0(M~Ot) to the running time of any SSA translation

algorithm, so the cost of placement can be ignored in analyzing the contribu-

tion of Figure 11 to the 0(. .) bound for the whole process. The 0(N) cost of

5The various measures relevant here are reviewed when the whole SSA translation process is
summarized in Section 9 1.

ACM TransactIons on Programming Languages and Systems, Vol. 13, No, 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 471

initialization can be similarly ignored because it is subsumed by the cost of

the dominance frontier calculation. What cannot be ignored is the cost of

managing the worklist W. The statement take X from W in Figure 11 is

performed A,O,(X) times, and each time incurs a cost linear in I DF(X) I

because all Ye DF(X) are polled. The contribution of Figure 11 to the

running time of the whole process is therefore O(ZX(A ~Ot(X) x I DF(X) I)).

Sizing the output in the natural way as A tot, we can also describe the

contribution as 0(A ~Otx aurgDF), where the weighted average

aurgDF~f (~ (A,O,(X) x I DF(X) 1))/(~ Aw(X)) (7)

emphasizes the dominance frontiers of nodes with many assignments. As

Section 8 shows, the dominance frontiers are small in practice, and Figure 11

is effectively 0(A tOt). This, in turn, is effectively 0(AO,i~).

5.2 Renaming

The algorithm in Figure 12 renames all mentions of variables. New variables

denoted V,, where i is an integer, are generated for each variable V. Figure

12 begins a top-down traversal of the dominator tree by calling SEAFtCH at

the root node Entry. The visit to a node processes the statements associated

with the node in sequential order, starting with any @-functions that may

have been inserted. The processing of a statement requires work for only

those variables actually mentioned in the statement. In contrast with Fig-

ure 11, we need a loop over all variables only when we initialize two arrays

among the following data structures:

–S(*) is an array of stacks, one stack for each variable V. The stacks can

hold integers. The integer i at the top of S(V) is used to construct the

variable Vi that should replace a use of V.

— C(*) is an array of integers, One for each variable V. The countelc value

C’(V) tells how many assignments to V have been processed.

– WhichPred(X, Y) is an integer telling which predecessor of Y in CFG is

X. The jth operand of a +-function in Y corresponds to the jth predecessor

of Y from the listing of the inedges of Y.

—Each assignment statement A has the form

LHS(A) - RHS(A)

where the right-hand side RHS(A) is a tuple of expressions and the

left-hand side LHS(A) is a tuple of distinct target variables. These tuples

change as mentions of variables are renamed, but the original target tuple

is still remembered as oldLILS(A). To minimize notation, a conditional

branch is treated as an ordinary assignment to a special variable whose

value indicates which edge the branch should follow. A real implementa-

tion would recognize that a conditional branch involves a little less work
than a genuine assignment: The LHS part of the processing can be

omitted.

ACM Transactions on Programmmg Languages and Systems, Vol. 13, No. 4, October 1991

472 . Ron Cytron et al.

for each variable V do

c(v) + o
S(V) +- Empty Stack

end

call SEARCH (Entry)

SEARCH(X) :

for each statement .4 in X do

if A is an ordinary assignment

then

for each variable V used In RHS(A) do

replace use of 1’ by use of V, where i = Top(S(V))

end

for each V in LHS(A) do

it- C(v)
replace P’ by new tj in LHS(A)

push i onto S(V)

C’(V) - i + 1

end

end /* of first loop +/

for each Y c SUCC(X) do

~ + tt7hichPred(Y)X)

for each ~-function F’ in Y do

replace the j-th operand t’ in RHS(F) by V, where i = Top(S(V))

end

end

for each Y c Children(X) do

call SEARCH(Y)

end

for each assignment A in X do

for each V in oldLHS(A) do

pop s(v)
end

end

end SEARCH

Fig. 12 Renaming mentions ofvariables. Thelistofusesof V, grows with each replacement of
V by V, ina RHS

The processing ofan assignment statement A considers the mentions of

variables in A. The simplest case is that of a target variable V inthetuple

LHS(A). Weneed anew variable V,. By keeping acount C(V) ofthe number

of assignments to V that have already been processed, we can find an

appropriate new variable by using i = C(V) and then incrementing C(V).

To facilitate renaming uses of V in the future, we also push i (which

identifies V,) onto a stack S(V) of (integers that identify) new variables

replacing V.

ACM Transactions on Pro~amming Languages and Systems, Vol 13, N0 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 473

A subtler computation is needed for the right-hand side RHS(A). Consider

any variable V used in RHS(A); that is, V appears in at least one of the

expressions in the tuple. We want to replace V by Vi, where V, is the target

of the assignment that produces the value for V actually used in RHS(A).

There are two subcases because A maybe either an ordinary assignment or a

~-function. Both subcases get V, from the top of the stack S(V), but they

inspect S(V) at different times in Figure 12. Lemma 10, introduced later in

this section, shows that V, is correctly chosen in both subcases.

The correctness proof for renaming depends on results from Section 4 and

on three more lemmas. We start by showing that it makes sense to speak of

“the” assignment to a variable in the transformed program.

LEMMA 8. Each new variable Vi in the transformed program is a target of

exactly one assignment.

PRooF. Because the counter C(V) is incremented after processing each

assignment to V, there can be at most one assignment to V,. To show that

there is at least one assignment to V,, we consider the two ways V, can be

mentioned. If V, is mentioned on the LHS on an assignment, then there is

nothing more to show. If the value of Vi is used, on the other hancl, then

i = Z’op(S(V)) was true at the time when the algorithm renamed the old use

of V to a use of Vi. At the earlier time when i was pushed onto S(V), it was

pushed because an assignment to V had just been changed to an assignment

to vi. ❑

A node X may contain assignments to the variable V that appeared in the

original program or were introduced to receive the value of a o-function for

V. Let TopA/7er(V, X) denote the new variable in effect for V after all

statements in node X have been considered by the first loop in Figure 12.

Specifically, we consider the top of each stack S(V) at the end of this loop

and define

TopAfter (V, X) ~f V, where i = Top(S(V)).

If there are no assignments to V in X, then the top-down traversal ensures

that TopAf3er(V, X) is inherited from the closest dominator of X that

assigns to V.

LEMMA 9. For any variable V and any CFG edge X ~ Y such that Y does

not have a rp-function for V,

TopAfter(V, X) = TopAfter(V, idom(Y)). (8)

PRooF. We may assume that X # idom(Y). Because Y does not have a

o-function for V, if a node Z has Ye DF(Z), then Z does not assign to a new

variable derived from V. We use this fact twice below.

By Lemma 2, Ye DFIOC=l(X) G DF(X), and, thus, X does not assign to a

new variable derived from V. Let U be the first node in the sequence

idom(X), idom(idom(X)), . . . that assigns to such a variable. Then

TopAfter (V, X) = TopAfter (V, U). (9)

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991.

474 . Ron Cytron et al

Because U assigns to a new variable derived from V, it follows that Y $

DF(U). But U dominates a predecessor of Y, so U strictly dominates Y. For

any Z with U >> Z >> idom(Y), we get Z >> X because Z >> Y and there is

an edge X * Y. By the choice of U, U>> Z >> X implies that Z does not

assign to a new variable derived from V. Therefore,

7’opAfter(V, U) = TopAfler (V, idom(Y)),

and (8) follows from (9). ❑

The preceding lemma helps establish Condition (3) in the definition of SSA

form, but first we must extend TopAfter so as to specify which new variable

corresponds to V just before and just after each statement A. There is one

iteration of the first loop in Figure 12 for A. We consider the top of each

stack just before and just after this iteration to define

TopBefore(V, A) ~f V, where i = Top(S (V)) before processing A;

TopAfter (V, A) ~f V, where i = TOP(S(V)) after processing A.

In particular, if A happens to be the last statement in block X, then

TopAfter(V, A) = TopAfler(V, X). If, on the other hand, A is followed by

another statement B, then TopA/ler(V, A) = TopBefore(V, B).

LEMMA 10. Consider any control flow path in the transformed program

and the same path in the original program. Consider any variable V and any

occurrence of a statement A along the path. If A is from the original program,

then the value of Vjust before executing A in the original program is the same

as the value of TopBefore(V, A) Just before executing A in the transformed

program.

PRooF. We use induction along the path. We consider the kth statement

executed along the path and assume that, for all j < k, the jth statement T

is either not from the original programG or has each variable V agreeing with

TopBefore(V, T) just before T. We assume that the kth statement A is from

the original program and show that V agrees with TopBefore(V, A) just

before A.

Case 1. Suppose that A is not the first original statement in its basic

block Y. Let T be the statement just before A in Y. By the induction

hypothesis and the semantics of assignment, V agrees with TopAfter(V, T)

just after T. Thus, V agrees with TopBefore(V, A) just before A.

Case 2. Suppose that A is the first original statement in its basic block Y,

Let X + Y be the edge followed by the control path. We claim that V agrees

with TopAfler(V, X) when control flows along this edge.

If X = Entry, then TopAfter(V, X) is VO and does hold the entry value of

V. If X # Entry, let T be the last statement in X. By the induction

hypothesis and the semantics of assignment, V agrees with TopAfter(V, T)

‘It could be a nominal Entry assignment or a @function,

ACM Transactions on Programming Languages and Systems, Vol 13, No, 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 475

...

? + T t

~ + @(..., TopAfter(V,X), . ..) /* No ~ for V */
Y Y

V4K

‘1

V 2 Z’opAfter(V, idom(Y))

Fig. 13. In the proof of Lemma 10, the node Y mayor may not have a +-function for V.

just after T and, hence, with TopAfter(V, X) when control flows along

x+ Y.
We must still bridge the gap between knowing that V agrees with

TopAfter(V, X) along X + Y and knowing that V agrees with

TopBefore(V, A) just before doing A in Y. As Figure 13 illustrates, there

may or may not be a @-function for V ahead of A in the transformed

program.

Case 2.1. Suppose that V has a ~-function Vi+- 4(. ..) in Y. The @

operand corresponding to X + Y is TopAfter (V, X), thanks to the loop over

successors of X in Figure 12. This is the operand whose value is assigned to

Vi, which is TopBefore(V, A). Thus, V agrees with TopBefore(V, A) just

before doing A in Y.

Case 2.2. Suppose that V does not have a ~-function in Y. By Lemma 9,

V agrees with TopAfter(V, X) = TopAfter(V, idom(Y)) = TopBefore(V, A)

just before doing A in Y. ❑

THEOREM 3. Any program can be put into minimal SSA form by comput-

ing the dominance frontiers and then applying the algorithms in Figure 11

and Figure 12. Let A ~Ot be the total number of assignments to variables in the

resulting program. ~ Let MtOt be the total number of mentions of variables in

the resulting program. Let E be the number of edges in CFG. Let avr.gDF be

the weighted average (7) of dominance frontier sizes. Then the running time of

the whole process is

()O E + ~ I DF(X) I + (A,o, x avrgDF) + M,O, .
x

PROOF. Figure 11 places the @functions for V at the nodes in the iterated

dominance frontier DF+ (Y), where Y is the set of assignments to V in the

original program. By Theorem 2, DF+ (Y) is the set of nodes that need

7Each ordinary assignment LHS + RHS contributes the length of the tuple LHS to A,.,, and

each @-function contributes 1 to A ~Ot.

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991.

476 . Ron Cytron et al.

@-functions for V, so we have obtained Condition (1) in the definition of

translation to SSA form with the fewest possible @functions. We must still

show that renaming is done correctly by Figure 12. Condition (2) in the

definition follows from Lemma 8. Condition (3) follows from Lemma 10.

Let N be the number of nodes in CFG. The dominator tree has O(N)

edges, and Figure 12 runs in 0(N + E + Mtot) time. The N + E term is

subsumed by the 0(E + x ~ I DF(X) I) cost of computing the dominance

frontiers, so Figure 12 contributes 0(M,O,). As explained at the end of

Section 5.1, Figure 11 contributes 0(AfOt x czurgDF). ❑

6. CONSTRUCTION OF CONTROL DEPENDENCE

In this section we show that control dependence [241 are essentially the

dominance frontiers in the reverse graph of the control flow graph. Let X and

Y be nodes in CFG. If X appears on every path from Y to Exit, then X

postdominates Y.a Like the dominator relation, the postdominator relation is

reflexive and transitive. If X postdominates Y but X # Y, then X strictly

postdominates Y. The immediate postdominator of Y is the closest strict

postdominator of Y on any path from Y to Exit. In a postdominator tree, the

children of a node X are all immediately postdominated by X.

A CFG node Y is control dependent on a CFG node X if both of the

following hold:

(1) There is a nonnull path p: X ~ Y such that Y postdominates every node

after X on p.

(2) The node Y does not strictly postdominate the node X.

In other words, there is some edge from X that definitely causes Y

to execute, and there is also some path from X that avoids executing Y.

We associate with this control dependence from X to Y the label on the

control flow edge from X that causes Y to execute. Our definition of

control dependence here can easily be shown to be equivalent to the original

definition [241.

LEMMA 11. Let X and Y be CFG nodes. Then Y postdominates a successor

of X if and only if (iff) there is a nonnull path p: X ~ Y such that Y

postdominates every node after X on p.

PROOF. Suppose that Y postdominates a successor U of X. Choose any

path q from U to Exit. Then Y appears on q. Let r be the initial segment of

q that reaches the first appearance of Y on q. For any node V on r, we can

get from U to Exit by following r to V and then by taking any path from V
to Exit. Because Y postdominates U but does not appear before the end of r,

Y must postdominate V as well. Let p be the path that starts with the edge

X + U and then proceeds along r. Then p: X ~ Y and Y postdominates

every node after X on p.

8The postdominance relation in [24] is irreflexive, whereas the definition we use here is
reflexive. The two relations are identical on pairs of distinct elements, We choose the reflexive
defimtlon here to make postdominance the dual of the dominance relation,

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991,

Static Single Assignment Form and the Control Dependence Graph . 477

build RCFG

build dominator tree for RCFG

apply the algorithm in Figure 10 to find the

dominance frontier mapping RDF for RCFG

for each node X do CD(X) t-- 0 end

for each node Y do

for each X E RDF(Y) do

CD(X) - CD(X) U { Y }

end

end

Fig. 14. Algorithm for computing the set CD(X) of nodes that are contro 1dependent on X

[

Node

Entry

1

2

3

4

5

6

7

8

9

10
11
12

CD(Node)

1,2,8,9,11,12

3,6,7

4,5

10

9,11

2,8,9,11,12

Fig. 15. Control dependences of theprogram in Figure5.

Conversely, given a path p with these properties, let U be the first node

after X on p. Then U is a successor of X and Y postdominates U. []

The reverse control flow graph RCFG has the same nodes as the control

flow graph CFG, but has an edge Y + X for each edge X + Y in CFG. The

roles of Entry and Exit are also reversed. The postdominator relation on

CFG is the dominator relation on RCFG.

COROLLARY 1. Let X and Y be nodes in CFG. Then Y is control dependent

on X in CFG iff X~ DF(Y) in RCFG.

l?ROOF. Using Lemma 11 to simplify the first condition in the definition of

control dependence, we find that Y is control dependent on X iff Y postdomi -

nates a successor of X but does not strictly postdominate X. In RCFG this

means that Y dominates a predecessor of X but does not strictly dominate

X; that is, X~DF(Y). ❑

Figure 14 applies this result to the computation of control depenclences.

After building the dominator tree for RCFG by the standard method [351
in time 0(Ea(E, N)), we spend O(size(RDF)) finding dominance frontiers

and then inverting them. The total time is thus 0(E + size(RDF)) for all

ACM TransactIons on Programming Languages and Systems,Vol. 13, No 4, October 1991

478 ● Ron Cytron et al.

practical purposes. By applying the algorithm in Figure 14 to the control flow

graph in Figure 5, we obtain the control dependence in Figure 15. Note that

the edge from Entry to Exit was added to CFG so that the control depend-

ence relation, viewed as a graph, would be rooted at Entry.

7. TRANSLATING FROM SSA FORM

Many powerful analysis and transformation techniques can be applied to

programs in SSA form. Eventually, however, a program must be executed.

The @-functions have precise semantics, but they are generally not repre-

sented in existing target machines. This section describes how to translate

out of SSA form by replacing each @-function with some ordinary assign-

ments. Naive translation could yield inefficient object code, but efficient code

can be generated if two already useful optimization are applied: dead code

elimination and storage allocation by coloring.

Naively, a k-input @-function at entrance to a node X can be replaced by k

ordinary assignments, one at the end of each control flow predecessor of X.

This is always correct, but these ordinary assignments sometimes perform a

good deal of useless work. If the naive replacement is preceded by dead code

elimination and then followed by coloring, however, the resulting code is

efficient.

7.1 Dead Code Elimination

The original source program may have dead code (i.e., code that has no effect

on any program output). Some of the intermediate steps in compilation (such

as procedure integration) may also introduce dead code. Code that once was

live may become dead in the course of optimization. With so many possible

sources for dead code, it is natural to perform (or repeat) dead code elimina-

tion late in the optimization process, rather than burden many intermediate

steps with concerns about dead code.

Translation to SSA form is one of the compilation steps that may introduce

dead code. Suppose that V is assigned and then used along each branch of an

if . ..then... else.... but that V is never used after the join point. The

original assignments to V are live, but the added assignment by the @

function is dead. Often, such dead +-functions are useful, as in the equiva-

lencing and redundancy elimination algorithms that are based on SSA form

[5, 431. One such use is shown in Figure 16. Although others have avoided
placement of dead @functions in translating to SSA form [16, 52], we prefer

to include the dead O-functions to increase optimization opportunities.

There are many different definitions of dead code in the literature. Dead

code is sometimes defined to be unreachable code and sometimes defined (as

it is here) to be ineffectual code. In both cases, it is desirable to use the

broadest possible definition, subject to the correctness condition that “dead”

code really can be safely removed. g A procedural version of the definition is

‘The definition used here is broader than the usual one [1, p 595] and similar to that of “faint”
variables [25, p, 489].

ACM TransactIons on Programming Languages and Systems, Vol. 13, No. 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 479

if Pi

then do

Yi+-1

use of Y1

end

else do

Y2 + xl

use of Y2

end

Y3 - 4’(Y1, Y2)

. . .

if Pi

then Z1 t 1

else Z2 ~ Xl

Z3 + 4(ZI, Z2)
use of Z3

if Pi

then do

Yltl

use of Y1

end

else do

Y2 + xl

use of Y2

end

Y3+ 4(YI, Y2)

. . .

use of Y3

Fig. 16. Ontheleft isanunoptimized program containing a dead @function that assigns toY3.

The value numbering technique in [5] can determine that Y3 and Z3 have the same value, Thus,
Z3 and many of the computations that produce it can be eliminated. The dead ~-function is

brought tolifebyusing Y3 inplaceof Z3.

more intuitive than a recursive version, so we prefer the procedural style.

Initially, all statements are tentatively marked dead. Some statements,

however, need to be marked live because of the conditions listed below.

Marking these statements live may cause others to be marked live. When the

natural worklist eventually empties, any statements that are still marked

dead are truly dead and can be safely removed from the code.

A statement is marked live iff at least one of the following holds:

(1) The statement is one that should be assumed to affect program output,

such as an 1/0 statement, an assignment to a reference parameter, or a

call to a routine that may have side effects.

(2) The statement is an assignment statement, and there are statements

already marked live that use some of its outputs.

(3) The statement is a conditional branch, and there are statements already

marked live that are control dependent on this conditional branch,

Several published algorithms eliminate dead code in the narrower sense

that requires every conditional branch to be marked live [30, 31, 381.1° Our

algorithm, given in Figure 17, goes one step further in eliminating dead

conditional branches. (An unpublished algorithm by R. Paige does this al so.)

‘“The more readily accessible [31] contains a typographical error; the earlier technical report [301
should be consulted for the correct version.

ACM TransactIons on Programmmg Languages and Systems, Vol. 13, No. 4, October 1991.

480 . Ron Cytron et al

for each statement S do

if S G Pre Live

then Live(S) - true

else Live(S) + false

end

iVorkList t- Pre Live

while (WorkList # 0) do

take S from 14To~kList

for each D c Definers(S) do

if Live(D) = false

then do

Live(l)) t- true

PVorkList - \VorkList U { ~ }

end

end

for each block B in CD-l (B/ock(S)) do

If Liz~e(Last(B)) = false

then do

Live(Last(B)) - true

WorkList t WorkList U { Last(B) }

end

end

end

for each statement S do

If Live(S) = false

then delete S from Block(S)

end

Fig. 17 Dead code ehmination

The following data structures are used:

—~ive(S) indicates that statement S is live.

—PreLiue is the set of statements whose execution is initially assumed to

affect program output. Statements that result in 1/0 or side effects outside

the current procedure scope are typically included.

— WorkList is a list of statements whose Iiveness has been recently dis-

covered.

—Definers(S) is the set of statements that provide values used by state-
ment S.

—Last(B) is the statement that terminates basic block B.

–Block(S) is the basic block containing statement S.

— ipdom(l?) is the basic block that immediately postdominates block 1?.

ACM TransactIons on Programming Languages and Systems, Vol 13, No. 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 481

– CD-1(B) is the set of nodes that are control dependence predecessors of the

node corresponding to block B. This is the same as RDF(B) in Figure 14.

After the algorithm discovers the live statements, all those still not marked

live are deleted. 11 Other optimizations (such as code motion) may leave

empty blocks, so there is already ample reason for a late optimization to

remove them. The empty blocks left by dead code elimination can be removed

along with any other empty blocks.

The fact that statements are considered dead until marked live is crucial

for condition (2). Statements that depend (transitively) on themselves are

never marked live unless required by some other live statement. Condition

(3) is handled by the loop over CD- l(Block(S)). A basic block whose termina-

tion controls a block with live statements is itself live.

7.2 Allocation by Coloring

At first, it might seem possible simply to map all occurrences of Vi back to V

and to delete all of the ~-functions. However, the new variables introduced by

translation to SSA form cannot always be eliminated, because optimization

may have capitalized on the storage independence of the new variables. The

useful persistence of the new variables introduced by translation to SSA form

can be illustrated by the code motion example in Figure 18. The source code

(Figure 18a) assigns to V twice and uses it twice. The SSA form (Figure 18b)

can be optimized by moving the invariant assignment out of the loop,

yielding a program with separate variables for separate purposes (Figure

18c). The dead assignment to V3 will be eliminated. These optimization

leave a region in the program where VI and Vz are simultaneously live.

Thus, both variables are required: The original variable V cannot substitute

for both renamed variables.

Any graph coloring algorithm [12, 13, 17, 18, 211 can be used to reduce the

number of variables needed and thereby can remove most of the associated

assignment statements. The choice of coloring technique should be guided by

the eventual use of the output. If the goal is to produce readable source code,

then it is desirable to consider each original variable V separately, coloring

just the SSA variables derived from V. If the goal is machine code, then all of

the SSA variables should be considered at once. In both cases, the process of

coloring changes most of the assignments that were inserted to model the

@functions into identity assignments, that is, assignments of the form V - V.

These identity assignments can all be deleted.

Storage savings are especially noticeable for arrays. If optimization does

not perturb the order of the first two statements in Figure 7, then ~arrays

A ~ and A ~ can be assigned the same color and, hence, can share the

same storage. The array A ~ is then assigned an Update from an iden-

tically colored array. Such operations can be implemented inexpensively by

llA conditional branch can be deleted by transforming it to an unconditional branch to any one

of its prior targets.

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991.

482 . Ron Cytron et al.

while (. ..) do while (. ..) do

W3 - ~(w~, W-J

V3 - lj(v~, v~)

read V read V1
Wtv+w WI +vi+w3

V+6 V2t6
W+v+w W2 +V2+W1

end end
(a) (b)

V2G6

while (. ..) do

W3 + ~(w~, w~)

V3 + $+(VO, V2)

read VI

WI +V1+W3

W2 4- V2+W1
end

(c)

Fig 18. Program that really uses two instances for a variable after code motion. (a) Source
program; (b)unoptimized SSA form; (c) result of code motion,

assigning to just one component if the array s share storage. Inparticular, the

actual operation performed by HiddenUpdate is always of this form.

8. ANALYSIS AND MEASUREMENTS

The number of nodes that contain d-functions for a variable V is a function of

the program control flow structure and the assignments to V. Program

structure alone determines dominance frontiers and the number of control

dependence. It is possible that dominance frontiers may be larger than

necessary for computing @function locations for some programs, since the

actual assignments are not taken into account. In this section we prove that

the size of the dominance frontiers is linear in the size of the program when

control flow branching is restricted to if-then-else constructs and while-do

loops. (We assume that expressions and predicates perform no internal

branching.) Such programs can be described by the grammar given in Fig-

ure 19. We also give experimental results that suggest that the behavior is

linear for actual programs.

THEOREM 4. For programs comprised of straight-line code, if-then-else,

and while-do constructs, the dominance frontier of any CFG node contains at

most two nodes.

PROOF. Consider a top-down parse of a program using the grammar shown

in Figure 19. Initially, we have a single (program) node in the parse tree

and a control flow graph CFG with two nodes and one edge: Entry - Exit.

The initial dominance frontiers are DF(Entry) = @ = DF(Exit). For each

production, we consider the associated changes to CFG and to the dominance

frontiers of nodes. When a production expands a nonterminal parse tree node

S, a new subgraph is inserted into CFG in place of S. In this new subgraph,

each node corresponds to a symbol on the right-hand side of the production.
We will show that applying any of the productions preserves the following

invariants:

–Each CFG node S corresponding to an unexpanded (statement) symbol

has at most one node in its dominance frontier.

ACM TransactIons on Programmmg Languages and Systems, Vol. 13, No. 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 483

<program> :: = <S. tatenent> (1)
<statement> ::= <statement><staternent> (2)
<statement> ::= if <predicate> (3)

then <statement>

else <statement>

<statement> ::= while <predicate> (4)
do <statement>

<statement.> ::= <variable> - <expression> (5)

Fig. 19. Grammar for control structures

—Each CFG node T corresponding to a terminal symbol has at most two

nodes in its dominance frontier.

We consider the productions inturn.

(l) This production adds aCFG node Sand edges Entry +S+Exit, yield-

ing DF(S) = {Exit}.

(2) When this production is applied, aCF’G node Sisreplaced by twon odes

SI and Sz. Edges previously entering and leaving S now enter SI and

leave Sz. A single edge is inserted from SI to Sz. Although the control

flow graph has changed, consider how this production affects thedornina -

tortree: Nodes Sland Szdominate all nodes that were dominateclby S;

additionally, Sldominates Sz. Thus, wehave DF(Sl) = DF(S) = DIF(SJ.

(3) When this production is applied, a CFG node S is replaced by nodes Ti~,

s Sel.e,then? and Te.~i~. Edges previously entering and leaving S now

enter T,~ and leave T,~~z~. Edges are inserted from Ti~ to both S~~,.mand

s~l~~; edges are also inserted from St~~~ and S~l~~ to Te~~i~. In the
dominator tree, Ti ~ and T,~~i ~ both dominate all nodes that were domi-

nated by S. Additionally, Ti ~ dominates S~~~~ and S.l,.. IBy the argument

made for production (2), we have DF(T,~) = DF(S) = DF(T,~~i ~]). NOW

consider nodes Sthen and Sel~e. From the definition of a dominance

fr(mtier, we obtain DF(S,~e.) = DF(S.l.,) = { T.n~,fl}.

(4) When this production is applied, a CFG node S is replaced by nodes

T whzle and SdO. All edges previously associated with node S are now

associated with node TUkil.. Edges are inserted from TW~,l, to Sd. and

from S& to TU~,l,. Node TWh,l, dominates all nodes that were dominated
by node S. Additionally, TU~,l, dominates SdO. Thus, we have DF(TWhil.)

= DF(S) U { TWhi~=)and DF(SdO) = { T~h,~,}.

(5) After application of this production, the new control flow graph is isomor-

phic to the old graph. ❑

COROLLARY 2. For programs comprised of straight-line code, if-then-else,

and while-do constructs, every node is control dependent on at most two

nodes.

PROOF. Consider a program P composed of the allowed constructs and its

associated control flow graph CFG. The reverse control flow graph R(CFG is

ACM Transactions on Programmmg Languages and Systems, Vol. 13, No. 4~October 1991.

484 . Ron Cytron et al.

Table 1. Summary Statistics of Our Experiment

Statements

in all
Package name procedures

EISPACK 7,034

FL052 2,054
SPICE 14,093

Totals 23,181

Statements

per procedure

Min Median Max Description

22 89 327 Dense matrix eigenvectors and values

9 54 351 Flow past an airfoil
8 43 753 Circuit simulation

8 55 753 221 FORTRAN procedures

itself a structured control flow graph for some program P’. For all Y in

RCFG, DF(Y) contains at most two nodes by Theorem 4. By Corollary 1, Y

is then control dependent on at most two nodes. ❑

Unfortunately, these linearity results do not hold for all program struc-

tures. In particular, consider the nest of repeat-until loops illustrated in

Figure 5. For each loop, the dominance frontier of the entrance to that loop

includes each of the entrances to surrounding loops. For n nested loops, this

leads to a dominance frontier mapping whose total size is 0(nz), yet each

variable needs at most 0(n) d-functions. Most of the dominance frontier

mapping is not actually used in placing @functions, so it seems that the

computation of dominance frontiers might take excessive time with respect to

the resulting number of actual @functions. We therefore wish to measure the

number of dominance frontier nodes as a function of program size over a

diverse set of programs.

We implemented our algorithms for constructing dominance frontiers and

placing ~-functions in the PTRAN system, which already offered the required

local data flow and control flow analysis [2]. We ran these algorithms on 61

library procedures from EISPACK [46] and 160 procedures from two “Perfect”

[391 benchmarks. Some summary statistics of these procedures are shown in
Table I. These FORTRAN programs were chosen because they contain irre-

ducible intervals and other unstructured constructs. As the plot in Figure 20

shows, the size of the dominance frontier mapping appears to vary linearly

with program size. The ratio of these sizes ranged from 0.6 (the Entry node

has an empty dominance frontier) to 2.1.

For the programs we tested, the plot in Figure 21 shows that the number of

~-functions is also linear in the size of the original program. The ratio of

these sizes ranged from 0.5 to 5.2. The largest ratio occurred for a procedure
of only 12 statements, and 95 percent of the procedures had a ratio under 2.3.

All but one of the remaining procedures contained fewer than 60 statements.

Finally, the plot in Figure 22 shows that the size of the control dependence

graph is linear in the size of the original program. The ratio of these sizes

ranged from O.6 to 2.4, which is very close to the range of ratios for
dominance frontiers.

The ratio avrgDF (defined by (7) in Section 5.1) measures the cost of

placing ~-functions relative to the number of assignments in the resulting

ACM TransactIons on Programmmg Languages and Systems, Vol. 13, No. 4, October 1991

1600-

1500-

140k

1300-

1200-

11oo-

1000--

900 —

800 —

700 — *

600 — *** *

500 — ***** *
**

400 —
*

300 —

200 — *:*@*?:*:: ‘** *
*

loo—

0
I I I I I 6~o ~~oo

o 100 200 300 400 500

Static Single Assignment Form and the Control Dependence Graph . 485

*

*
*

*
* *

Fig. 20. Size of dominance frontier mapping versus number of program statements.

1300

!

1200 *

110

100

900 *
800

*

700
*

600 *

*
*

*

*

*
*

*
500 — ** *

‘e ***400 — **
****:*

300 — *** * *
*

*
*

loo—

0
I I I I I I --&-Too

0 100 200 300 400 500 600

Fig, 21. Number of rj-functions versus number of program statements

SSA form program. This ratio varied from 1 to 2, with median 1.3. There was

no correlation with program size.

We also measured the expansion A,., / A.... in the number of assignments
when translating to SSA form. This ratio varied from 1.3 to 3.8. Fina”lly, we

measured the expansion MtOt / MO,,~ in the number of mentions (assignments

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991.

486 . Ron Cytron et al.

160

150

!

1400

130

120

110

100

900 *

800

700

600

500

400

300
1

* **
* *

* **

?@%’”‘****

*

*

** *

**

200 — **2**
* $*

loo—

0
I 1 I I

0 100 200 300 400 500 600 700 800

Fig. 22. Size of control dependence graph versus number of program statements.

or uses) of variables when translating to SSA form. This ratio varied from 1.6

to 6.2. For both of these ratios, there was no correlation with program size.

9. DISCUSSION

9.1 Summary of Algorithms and Time Bounds

The conversion to SSA form is done in three steps:

(1)

(2)

(3)

The dominance fi-ontier mapping is constructed from the control flow

graph CFG (Section 4.2). Let CFG have N nodes and E edges. Let DF

be the mapping from nodes to their dominance frontiers. The time to

compute the dominator tree and then the dominance frontiers in CFG is

O(E + Xx I DF(X)I).

Using the dominance frontiers, the locations of the @functions for each

variable in the original program are determined (Section 5.1). Let A ~Otbe

the total number of assignments to variables in the resulting program,

where each ordinary assignment statement LHS * RHS contributes the

len~h of the tuple LffS to A ~ot, and each ~-function contributes I to
A ,.,. Placing @functions contributes 0(A,O, x aurgDF) to the overall

time, where aurgDF is the weighted average (7) of the sizes I DF(X) 1.

The variables are renamed (Section 5.2). Let M,O, be the total number of

mentions of variables in the resulting program. Renaming contributes

0(M, O,) to the overall time.

To state the time bounds in terms of fewer parameters, let the overall size

R of the original program be the maximum of the relevant numbers: N

ACM TransactIons on Programming Languages and Systems, Vol 13, No 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 487

nodes, E edges, AOT,~ original assignments to variables, and MO,,~ original

mentions of variables. In the worst case, avrgDF = ~ (IV) = 0(R), and k

ordinary assignments can require 0(I&) insertions of qLfunctions. Thus,

A tOt = !J(R2) at worst. In the worst case, a c$function has !J(1?) operands.

Thus, M,Ot = 0(R3) at worst. The one-parameter worst-case time bounds are

thus 0(122) for finding dominance frontiers and 0(R3) for translation to

SSA form.

However, the data in Section 8 suggest that the entire translation to SSA

form will be linear in practice. The dominance frontier of each node in CFG

is small, as is the number of ~-functions added for each variable. In effect,

avrgDF is constant, A ~Ot= 0(Ao,,~), and M,O, = O(MO,,~). The entire trans-
lation process is effectively O(R).

Control dependence are read off from the dominance frontiers in the

reverse graph RCFG (Section 6) in time 0(E + size(RDF)). Since the size of

RDF is the size of the output of the control dependence calculation, this

algorithm is linear in the size of the output. The only quadratic behavior is

caused by the output being fl(R2) in the worst case. The data in Section 8

suggest that the control dependence calculation is effectively 0(R).

9.2 Related Work

Minimal SSA form is a refinement of Shapiro and Saint’s [45] notion of a

pseudoassignment. The pseudoassignment nodes for V are exactly the nodes

that need o-functions for V. A closer precursor [221 of SSA form associated

new names for V with pseudoassignment nodes and inserted assignments

from one new name to another. Without explicit @functions, however, it was

difficult to manage the new names or reason about the flow of values.

Suppose the control flow graph CFG has N nodes and. E edges for a

program with Q variables. One algorithm [411 requires 0(Ea(E, N)) bit

vector operations (where each vector is of length Q) to find all of the

pseudoassignments. A simpler algorithm [43] for reducible programs com-

putes SSA form in time 0(E x Q). With lengths of bit vectors taken into

account, both of these algorithms are essentially 0(R2) on programs of size

R, and the simpler algorithm sometimes inserts extraneous o-functions. The

method presented here is 0(R3) at worst, but Section 8 gives evidence that it

is 0(R) in practice. The earlier 0(R2) algorithms have no provision for

running faster in typical cases; they appear to be intrinsically quadratic.

For CFG with N nodes and E edges, previous general control dependence

algorithms [24] can take quadratic time in (N + E). This analysis is based on

the worst-case 0(N) depth of the (post) dominator tree [24, p. 326]. Section 6

shows that control dependence can be determined by computing dominance

frontiers in the reverse graph RCFG. In general, our approach can also take

quadratic time, but the only quadratic behavior is caused by the output being

fl(N2) in the worst case. In particular, suppose a program is comprised only

of straight-line code, if-then-else, and while-do constructs. By Corollary 2,

our algorithm computes control dependence in linear time. We obtain a
better time bound for such programs because our algorithm is based on

dominance frontiers, whose sizes are not necessarily related to the depth of

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991.

488 . Ron Cytron et al.

the dominator tree. For languages that offer only these constructs, control

dependence can also be computed from the parse tree [28] in linear time, but

our algorithm is more robust. It handles all cases in quadratic time and

typical cases in linear time.

9.3 Conclusions

Previous work has shown that SSA form and control dependence can support

powerful code optimization algorithms that are highly efficient in terms of

time and space bounds based on the size of the program after translation to

the forms. We have shown that this translation can be performed efficiently,

that it leads to only a moderate increase in program size, and that applying

the early steps in the SSA translation to the reverse graph is an efficient way

to compute control dependence. This is strong evidence that SSA form and

control dependence form a practical basis for optimization.

ACKNOWLEDGMENTS

We would like to thank Fran Allen for early encouragement and Fran Allen,

Trina Avery, Julian Padget, Bob Paige, Tom Reps, Randy Scarborough, and

Jin-Fan Shaw for various helpful comments. We are especially grateful to the

referees, whose thorough reports led to many improvements in this paper.

REFERENCES

1. AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compzlers: Principles, Techniques, and Tools.

Addison-Wesley, Reading, Mass , 1986.
2, ALLEN, F, E., BURKE, M,, CHARLES, P,, CYTRON, R., AND FERRAiYTE, J An overview of the

PTRAN analysis system for multiprocessing. J. Parallel Distrib. Comput. 5, (Oct. 1988),

617-640.
3. ALLEN, J. R Dependence analysis for subscripted variables and its application to program

transformations. Ph.D. thesis, Department of Computer Science, Rice Univ., Houston, Tex,,

Apr. 1983.

4 ALLEN, J R , AND JOHNSON, S Compiling C for vectorization, parallelization and inline

expansion. In Proceedings of the SIGPLAN ’88 Symposium on Compder Construction.

SIGPLAN Not. (ACM) 23, 7 (June 1988), 241-249
5. ALPERN, B , WEGMAN, M, N., AND ZADECK, F. K. Detecting equality of values m programs

In Conference Record of the 15th ACM Symposium on Principles of Programming Languages

(Jan. 1988), ACM, New York, pp. 1-11,
6. BALLANCE, R. A., MACCABE, A. B., AND OTTENSTEIN, K. J. The program dependence web: A

representation supporting control-, data-, and demand driven interpretation of languages, In
Proceedings of the SIGPLAN 90 Symposkum on Compiler Construction. SIGPLAN Not.

(ACM) 25, 6 (June 1990), 257-271.
7. BANNING, J. B, An efficient way to find the side effects of procedure calls and the aliases of

variables. In Conference Record of the 6th ACM Syrnpoa~um on Principles of Programming

Languages (Jan. 1979) ACM, New York, pp. 29-41
8. BARTH, J. M. An interprocedural data flow analysis algorithm. In Conference Record of the

4th ACM Symposium on Principles of Programmmg Languages (Jan. 1977) ACM, New

York: pp. 119-131.

9. BURKE, M. An interval-based approach to exhaustive and incremental interprocedural data

flow analysis. ACM Trans. Program Lang. Syst. 12, 3 (July 1990), 341-395.
10. BURKE, M,, AND CYTRON, R. Interprocedural dependence analysis and parallelization. In

Proceedings of the SIGPLAN 86 Symposium on Compiler Construction SIGPLAN Not

(ACM) 21, 7 (June 1986), 162-175.

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991

Static Single Assignment Form and the Control Dependence Graph . 489

11. CARTWRIGHT, R., AND FELLEISEN, M. The semantics of program dependence. In Proceedings

of the SIGPLAN 89 Symposium on Compiler Construction. SIGPLAN Not. (ACM) 24, 7 (July

1989), 13-27.

12. CHAITIN, G. J. Register allocation and spilling via graph coloring. In Proceedings of the

SIGPLAN 82 Symposium on Compiler Construction. SIGPLAN Not. (ACM) 17, 6 (June

1982), 98-105.

13. CHAITIN, G. J., AUSLANDER, M. A., CHANDRA, A. K., COCICE, J., HOPKINS, M. IE., AND

MARKSTEIN, P. W. Register allocation via coloring. Comput. Lang. 6 (1981), 47-57.

14. CHASE, D. R. Safety considerations for storage allocation optimizations. In Proceedings of

the SIGPLAN 88 Symposium on Compiler Construction. SIGPLAN Not. (ACM) 23, 7 (June
1988), 1-10.

15. CHASE, D. R., WEGMAN, M. AND ZADECK, F. K. Analysis of pointers and structures. In
Proceedings of the SIGPLAN 90 Symposium on Compiler Construction. SIGPLAN Not.

(ACM) 25, (June 1990), 296-310.

16, CHOI, J., CYTRON, R., AND FERRANTE, J. Automatic construction of sparse data flow evalua-

tion graphs. In Conference Record of the 18th ACM Symposium on Principles of Program-

ming Languages (Jan, 1991). ACM, New Yorkj pp. 55-66.

17. CHOW, F. C. A portable machine-independent global optimizer—Design and measure-

ments. Ph. D. thesis and Tech. Rep. 83-254, Computer Systems Laboratory, Stanford Univ.,

Stanford, Calif., Dec. 1983.

18. CHOW, F. C., AND HENNESSY, J. L. The priority-based coloring approach to register alloca-
tion. ACM Trans. Program. Lang. Syst. 12, 4 (Oct. 1990), 501-536.

19. COOPER, K. D. Interprocedural data flow analysis in a programming environment. Ph.D.
thesis, Dept. of Mathematical Sciences, Rice Univ., Houston, Tex., 1983.

20. CYTRON, R., AND FERRANTE, J. An improved control dependence algorithm. Tech. Rep. RC
13291, IBM Corp., Armonk, N. Y., 1987.

21. CYTRON, R., AND FERRANTE, J. What’s in a name? In Proceedings of the 1987 International

Conference on Parallel Processing (Aug. 1987), pp. 19-27.

22, CYTRON, R., LOWRY, A., AND ZADECK, F. K. Code motion of control structures in high-level

languages. In Conference Record of the 13th ACM Symposium on Principles of Programming

Languages (Jan. 1986). ACM, New York, pp. 70-85.

23. DENNIS, J. B. First version of a data flow procedure language. Tech. Rep. Comput. Strut.

Group Memo 93 (MAC Tech. Memo 61), MIT, Cambridge, Mass., May 1975.

24. FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. The program dependence gmph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9, 3 (July 1987), 319– 349.

25. GIEGERICH, R. A formal framework for the derivation of machine-specific optimizers. ACM

Trans. Program. Lang. Syst. 5, 3 (July 1983), 478-498.

26. HAREL, D. A linear time algorithm for finding dominators in flow graphs and related
problems. In Proceedings of the 17th ACM Symposium on Theory of Computing (May 1985).
ACM, New York, pp. 185-194.

27. HORWITZ, S., PFEIFFER, P., AND REPS, T. Dependence analysis for pointer variables. In

Proceedings of the SIGPLAN 89 Symposium on Compiler Construction. SIGPLf~N Not.

(ACM) 24, 7 (June 1989).
28. HORWITZ, S., PRINS, J., AND REPS, T. Integrating non-interfering versions of programs.

ACM Trans. Program. Lang. Syst. 11, 3 (July 1989), 345-387.

29. JONES, N. D., AND MUCHNICK, S. S. Flow analysis and optimization of lLISP-like structures.
In Program Flow Analysis, S. S. Muchnick and N, D. Jones, Eds. Prentice-Hall, Englewood

Cliffs, N. J., 1981, chap. 4, pp. 102-131.
30. KENNEDY, K. W. Global dead computation elimination. Tech. Rep. SETL Newsl. 111,

Courant Institute of Mathematical Sciences, New York Univ., New York, N. Y., Aug. 1973.

31. KENNEDY, K. W. A survey of data flow analysis techniques. In Program Flow Analysis,
S. S. Muchnick and N. D. Jones, Eds. Prentice-Hall, Englewood Cliffs, N. J., 1981.

32. KUCK, D. J. The Structure of Computers and Computations. Wiley, New York, 1978.

33. LARUS, J. R. Restructuring symbolic programs for concurrent execution on multiprocessors.
Tech. Rep. UCB/CSD 89/502, Computer Science Dept., Univ. of California at Berkeley,
Berkeley, Calif., May 1989.

ACM Transactions on Proq-amming Languages and Systems, Vol. 13, No. 4, October 1991.

490 . Ron Cytron et al

34 LARUS, J R., AND HILFINGER, P. N Detecting conflicts between structure accesses In
Proceedings of the ACM SIGPLAN 88 Sympostum on Compder Construction. SIGPLAN Not.

23, 7 (July 1988), 21-34,

35. LENGAUER, T., AND TARJAN, R. E. A fast algorithm for finding dominators m a flowgraph.
ACM Trans. Program. Lang. Syst. 1, 1 (July 1979), 121-141

36. MUCHNICK, S. S., AND JONES, N. D , EDS Program Flow Analysis. Prentice-Hall, Engle-

wood Cliffs, NJ., 1981

37 MYEKS, E. W. A precise interprocedural data flow algorithm, In Conference Record of the

8th ACM Symposium on Principles of Programming Languages (Jan. 1981). ACM, New

York, pp. 219-230.

38. OTTENSTEIN, K. J. Data-flow graphs as an intermediate form. Ph.D. thesis, Dept. of
Computer Science, Purdue Univ., W. Lafayette, Ind., Aug. 1978.

39. POINTER, L. Perfect report: 1. Tech. Rep CSRD 896, Center for Supercomputing Research
and Development, Univ. of Illinois at Urbana-Champaign, Urbana, 111,,July 1989

40 REIF, J. H., AND LEWIS, H. R. Efficient symbolic analysis of programs. J. Comput. Syst, SCZ.

32, 3 (June 1986), 280-313.

41. REIF, J. H., AND TARJAN, R. E Symbolic program analysis in almost linear time. SIAM J.

Comput. 11, 1 (Feb. 1982), 81-93

42. ROSEN, B. K. Data flow analysis for procedural languages J. ACM 26, 2 (Apr. 1979),
322-344.

43. ROSEN, B. K , WEGMAN, M. N., AND ZADECK, F. K. Global value numbers and redundant
computations. In Conference Record of the 15th ACM Symposui m on Przn ciples of Program-

ming Languages, (Jan. 1988). ACM, New York, pp. 12-27,

44. RUGGIERI, C., AND MURTAGH, T. P. Lifetime analysis of dynamically allocated objects. In
Conference Record of the 15th ACM Symposzum on Principles of Programming Languages

(Jan. 1988). ACM, New York, pp. 285-293.

45. SHAPIRO, R. M , AND SAINT, H The representation of algorithms. Tech. Rep, CA-7002-1432,
Massachusetts Computer Associates, Feb. 1970.

46. SMITH, B. T,, BOYLE, J. M., DONGARRA, J. J,, GARBOW, B, S., IIIEBE, Y., KLEMA, V. C,, AND

MOLER, C B. Matrzx Eigensystem Routines – Eispack Guide. Springer-Verlag, New York,
1976.

47 TARJAN, R. E. Finding dominators in directed graphs. SIAM J. Comput 3, 1 (1974), 62-89,

48. WEGBREIT, B Property extraction in well-founded property sets. IEEE Trans. Softw. Eng.

SE-1, 3 (Sept. 1975), 270-285.

49. WEGMAN, M. N , AND ZADECK, F, K. Constant propagation with conditional branches. In
Conference Record of the 12th ACM Symposium on Prlnczples of Programm mg Languages

(Jan.). ACM, New York, pp. 291-299.

50. WEGMAN, M. N., AND ZADECK, F. K. Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst. To be published.

51 WOLFE, M. J. Optimizing supercompilers for supercomputers. Ph.D, thesis, Dept of Com-
puter Science, Univ. of Illinois at Urbana-Champaign, Urbana 111., 1982

52. YANG, W., HORWITZ, S., AND REPS, T. Detecting program components with equivalent
behaviors. Tech Rep. 840, Dept. of Computer Science, Univ. of Wisconsin at Madison,
Madison, Apr. 1989

Received July 1989; revised March 1991; accepted March 1991

ACM TransactIons on Programming Languages and Systems, Vol 13, No 4, October 1991

