
Instruction Selection on SSA Graphs

Sebastian Hack, Sebastian Buchwald, Andreas Zwinkau

Compiler Construction Course
W2017

Saarland University, Computer Science

Instruction Selection

Add

Const Load

Add

ConstConst

ia32 Add

Const

Const

2

Instruction Selection on SSA

“Optimal” instruction selection on trees is polynomial

SSA programs are directed graphs
=⇒ Data dependence graphs

Translating back from SSA graphs to trees is not satisfactory

“Optimal” instruction selection is NP-complete on DAGs

The problem is common subexpressions

Doing it on graphs provides more opportunities for complex
instructions:

Patterns with multiple results

DAG-like patterns

3

Instruction Selection on SSA

Graph Rewriting

For every machine instruction specify:

A set of graphs (patterns) of IR nodes

Every pattern has associated costs

1 Find all matchings of the patterns in the IR graph

2 Pick a correct and optimal matching

3 Replace each pattern by corresponding machine instruction

=⇒ Result is an SSA graph with machine nodes

4

Graphs
Let G = (V ,E) be a directed acyclic graph (DAG)

Let Op be a set of operators

Every node has a degree deg v : V → N0

Every node v ∈ V has an operator: op : V → Op

Every operator o ∈ Op has an arity # : Op → N0

Let 2 ∈ Op be an operator with # 2 = 0

Nodes with operator 2 denote “glue” points in the patterns (later)

Every node’s degree must match the operator’s arity:

op v = deg v

Definition (Program Graph)

A graph G is a program graph if it is acyclic and

∀v ∈ V : op v 6= 2

5

Patterns

A graph P = (V ,E) is rooted if there exists a node v ∈ VP such that
there is a path from v to every node v ′ in P

If P is rooted, denote the root by rtP

Definition (Pattern Graph, Pattern)

A graph P is a pattern if

it is acyclic and rooted

op rtP 6= 2

Note that we explicitly allow nodes with operator 2 in patterns

6

Equivalence of Nodes in Patterns

Complex patterns often have common sub-patterns

Store Load

Add

ConstAdd

Shall be treated as equivalent

Selecting the common sub-pattern at the Add node shall enable
selecting the complex instruction at Store and Load

7

Equivalence of Nodes in Patterns

Definition (Equivalence of nodes)

Consider two patterns P and Q and two nodes v ∈ P, w ∈ Q:

v ∼ w :⇐⇒ v = w

∨ (span v ∼= spanw ∧ rtP 6= v ∧ rtQ 6= w)

Either the two nodes are identical

v ,w are no pattern roots and their spanned subgraphs are isomorphic

span v : induced subgraph that contains all nodes reachable from v

8

Matching of a Node

Let P = {P1,P2, . . . } be a set of patterns

Let G be some program graph

Definition (Matching)

A matching Mv of a node v ∈ VG with a set of patterns P is a family of
pairs

Mv =
(
(Pi , ıi)

)
i∈I I ⊆ {1, . . . , |P|}

of patterns and injective graph morphisms ıi : Pi → G satisfying

v ∈ ran ıi and opw 6= 2 =⇒ opw = op ıi (w) ∀w ∈ Pi

9

Matchings
Example

Pattern PA Program Graph Pattern PB

Add

2 Shl

2 Const

Load

Add

2 Shl

2 Const

Load

Add

Shl

Const

10

Selection

We have computed a covering of the graph

i.e. instruction selection possibilities

Now, find a subset of the covering that leads to good and correct code

Cast the problem as a mathematical optimization problem:

Partitioned Boolean Quadratic Programming (PBQP)

11

PBQP

Let R∞ = R+ ∪ {∞} and

~ci ∈ Rki∞ be cost vectors

Cij ∈ Rki∞ × Rkj
∞ be cost matrices

Definition (PBQP)

Minimize ∑
1≤i<j≤n

~x>i · Cij · ~xj +
∑

1≤i≤n
~x>i · ~ci

with respect to

~xi ∈ {0, 1}ki

~x>i ·~1 = 1, 1 ≤ i ≤ n

~x>i · Cij · ~xj <∞, 1 ≤ i < j ≤ n

12

PBQP

~xi are selection vectors

Exactly one component is 1

This selects the component

Cost matrices relate selection of made in different selection vectors

Can be modelled as a graph:

cost vectors are nodes

matrices are edges

only draw non-null matrix edges

13

PBQP as a Graph

~ci

~cj

3
1
8



(
2
4

)

4 5
3 6
1 2


Cij

Colors indicate selection vectors ~xi = (0 1 0)> and ~xj = (1 0)>

This selection contributes the cost of 6 to the global costs

Edge direction solely to indicate order of ij in the matrix subscript
14

Mapping Instruction Selection to PBQP

Add

Const

u

v
Const

-

(
50
0

)

Add
Add+Const

(
100
100

)
(

0 ∞
∞ 0

)

Add

2 2

Add

Add

Const 2

Add+Const

Const

Const

15

Mapping Instruction Selection to PBQP

Cost vectors are defined by node coverings:

Let Mv be a node matching of v

The alternatives of the node are given by partitioning the matchings
by equivalence:

Mv /∼

Common sub-patterns have to result in the same choice

Costs come from an external specification

16

Mapping Instruction Selection to PBQP

Matrices have to maintain selection correctness

Consider two alternatives

Au = (Pu, ıu) Av = (Pv , ıv)

at two nodes u, v connected by an edge u → v .

The matrix entry for those alternatives is

c(Au,Av) =


∞ op ı−1u (v) = 2 and ı−1v (v) 6= rtPv

∞ op ı−1u (v) 6= 2 and ı−1u (v) 6∼ ı−1v (v)

0 else

Id est:

If Au selects a leaf at v , Av has to select a root

If Au does not select a leaf, both subpatters have to be equivalent
17

Example
Program Graph

Load Load

Add

Phi Const

18

Example
Patterns

Const

C (Const)

Phi

P (Phi)

Load

2

L (Load)

Add

22

A (Add)

Load

Add

Const2

LAC (Load+Add+Const)

Load

Add

22

LA (Load+Add)

Add

Const2

AC (Add+Const)

19

Example
Matchings

Load Load

Add

Phi Const

L1, LA1, LAC1 L2, LA2, LAC2

A, AC, LA1, LAC1, LA2, LAC2

C, AC, LAC1, LAC2P

20

Example
PBQP Instance

 L1

LA1

LAC1

  L2

LA2

LAC2




A

AC
LA1, LA2

LAC1, LAC2



(
C

AC, LAC1, LAC2

)(
P
)

 0 0 ∞∞
∞∞ 0 ∞
∞∞∞ 0

 0 0 ∞∞
∞∞ 0 ∞
∞∞∞ 0




0
0
0
0

 
0 ∞
∞ 0
0 ∞
∞ 0



21

Reducing the Problem

Optimality-preserving reductions of the problem:

Independent edges (e.g. matrix of zeroes):

Nodes of degree 1:

Nodes of degree 2:

22

Reducing the Problem

Heuristic Reduction:

Chose the local minimum at a node

Leads to a linear algorithm

Each reduction eliminates at least one edge

If all edges are reduced, minimizing nodes separately is easy

23

Summary

Map instruction selection to an optimization problem

SSA graphs are sparse =⇒ reductions often applied

In practice: heuristic reduction rarely happens

Efficiently solvable

Convenient mechanism:

Implementor specifies patterns and costs
maps each pattern to an machine node
Rest is automatic

Criteria for pattern sets that allow for correct selections in every
program not discussed here!

24

Literature

Sebastian Buchwald and Andreas Zwinkau.
Befehlsauswahl auf expliziten Abhängigkeitsgraphen.
Master’s thesis, Universität Karlsruhe (TH), Dec 2008.

Erik Eckstein, Oliver König, and Bernhard Scholz.
Code Instruction Selection Based on SSA-Graphs.
In SCOPES, pages 49–65, 2003.

Hannes Jakschitsch.
Befehlsauswahl auf SSA-Graphen.
Master’s thesis, Universität Karlsruhe, November 2004.

25

