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Instruction Selection on SSA

“Optimal” instruction selection on trees is polynomial

SSA programs are directed graphs
=⇒ Data dependence graphs

Translating back from SSA graphs to trees is not satisfactory

“Optimal” instruction selection is NP-complete on DAGs

The problem is common subexpressions

Doing it on graphs provides more opportunities for complex
instructions:

Patterns with multiple results

DAG-like patterns
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Instruction Selection on SSA

Graph Rewriting

For every machine instruction specify:

A set of graphs (patterns) of IR nodes

Every pattern has associated costs

1 Find all matchings of the patterns in the IR graph

2 Pick a correct and optimal matching

3 Replace each pattern by corresponding machine instruction

=⇒ Result is an SSA graph with machine nodes
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Graphs
Let G = (V ,E ) be a directed acyclic graph (DAG)

Let Op be a set of operators

Every node has a degree deg v : V → N0

Every node v ∈ V has an operator: op : V → Op

Every operator o ∈ Op has an arity # : Op → N0

Let 2 ∈ Op be an operator with # 2 = 0

Nodes with operator 2 denote “glue” points in the patterns (later)

Every node’s degree must match the operator’s arity:

# op v = deg v

Definition (Program Graph)

A graph G is a program graph if it is acyclic and

∀v ∈ V : op v 6= 2
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Patterns

A graph P = (V ,E ) is rooted if there exists a node v ∈ VP such that
there is a path from v to every node v ′ in P

If P is rooted, denote the root by rtP

Definition (Pattern Graph, Pattern)

A graph P is a pattern if

it is acyclic and rooted

op rtP 6= 2

Note that we explicitly allow nodes with operator 2 in patterns
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Equivalence of Nodes in Patterns

Complex patterns often have common sub-patterns

Store Load

Add

ConstAdd

Shall be treated as equivalent

Selecting the common sub-pattern at the Add node shall enable
selecting the complex instruction at Store and Load
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Equivalence of Nodes in Patterns

Definition (Equivalence of nodes)

Consider two patterns P and Q and two nodes v ∈ P, w ∈ Q:

v ∼ w :⇐⇒ v = w

∨ (span v ∼= spanw ∧ rtP 6= v ∧ rtQ 6= w)

Either the two nodes are identical

v ,w are no pattern roots and their spanned subgraphs are isomorphic

span v : induced subgraph that contains all nodes reachable from v
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Matching of a Node

Let P = {P1,P2, . . . } be a set of patterns

Let G be some program graph

Definition (Matching)

A matching Mv of a node v ∈ VG with a set of patterns P is a family of
pairs

Mv =
(
(Pi , ıi )

)
i∈I I ⊆ {1, . . . , |P|}

of patterns and injective graph morphisms ıi : Pi → G satisfying

v ∈ ran ıi and opw 6= 2 =⇒ opw = op ıi (w) ∀w ∈ Pi
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Matchings
Example

Pattern PA Program Graph Pattern PB

Add

2 Shl

2 Const

Load

Add

2 Shl

2 Const

Load

Add

Shl

Const
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Selection

We have computed a covering of the graph

i.e. instruction selection possibilities

Now, find a subset of the covering that leads to good and correct code

Cast the problem as a mathematical optimization problem:

Partitioned Boolean Quadratic Programming (PBQP)
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PBQP

Let R∞ = R+ ∪ {∞} and

~ci ∈ Rki∞ be cost vectors

Cij ∈ Rki∞ × Rkj
∞ be cost matrices

Definition (PBQP)

Minimize ∑
1≤i<j≤n

~x>i · Cij · ~xj +
∑

1≤i≤n
~x>i · ~ci

with respect to

~xi ∈ {0, 1}ki

~x>i ·~1 = 1, 1 ≤ i ≤ n

~x>i · Cij · ~xj <∞, 1 ≤ i < j ≤ n
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PBQP

~xi are selection vectors

Exactly one component is 1

This selects the component

Cost matrices relate selection of made in different selection vectors

Can be modelled as a graph:

cost vectors are nodes

matrices are edges

only draw non-null matrix edges
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PBQP as a Graph

~ci

~cj

3
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4 5
3 6
1 2


Cij

Colors indicate selection vectors ~xi = (0 1 0)> and ~xj = (1 0)>

This selection contributes the cost of 6 to the global costs

Edge direction solely to indicate order of ij in the matrix subscript
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Mapping Instruction Selection to PBQP
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Mapping Instruction Selection to PBQP

Cost vectors are defined by node coverings:

Let Mv be a node matching of v

The alternatives of the node are given by partitioning the matchings
by equivalence:

Mv /∼

Common sub-patterns have to result in the same choice

Costs come from an external specification
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Mapping Instruction Selection to PBQP

Matrices have to maintain selection correctness

Consider two alternatives

Au = (Pu, ıu) Av = (Pv , ıv )

at two nodes u, v connected by an edge u → v .

The matrix entry for those alternatives is

c(Au,Av ) =


∞ op ı−1u (v) = 2 and ı−1v (v) 6= rtPv

∞ op ı−1u (v) 6= 2 and ı−1u (v) 6∼ ı−1v (v)

0 else

Id est:

If Au selects a leaf at v , Av has to select a root

If Au does not select a leaf, both subpatters have to be equivalent
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Example
Program Graph

Load Load

Add

Phi Const

18



Example
Patterns

Const

C (Const)

Phi

P (Phi)

Load

2

L (Load)

Add
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A (Add)

Load

Add

Const2

LAC (Load+Add+Const)

Load

Add

22

LA (Load+Add)

Add

Const2

AC (Add+Const)
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Example
Matchings

Load Load

Add

Phi Const

L1, LA1, LAC1 L2, LA2, LAC2

A, AC, LA1, LAC1, LA2, LAC2

C, AC, LAC1, LAC2P
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Example
PBQP Instance

 L1

LA1

LAC1
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A

AC
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LAC1, LAC2
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(
C

AC, LAC1, LAC2

)(
P
)

 0 0 ∞∞
∞∞ 0 ∞
∞∞∞ 0

 0 0 ∞∞
∞∞ 0 ∞
∞∞∞ 0
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
0
0
0
0

 
0 ∞
∞ 0
0 ∞
∞ 0


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Reducing the Problem

Optimality-preserving reductions of the problem:

Independent edges (e.g. matrix of zeroes):

Nodes of degree 1:

Nodes of degree 2:
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Reducing the Problem

Heuristic Reduction:

Chose the local minimum at a node

Leads to a linear algorithm

Each reduction eliminates at least one edge

If all edges are reduced, minimizing nodes separately is easy
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Summary

Map instruction selection to an optimization problem

SSA graphs are sparse =⇒ reductions often applied

In practice: heuristic reduction rarely happens

Efficiently solvable

Convenient mechanism:

Implementor specifies patterns and costs
maps each pattern to an machine node
Rest is automatic

Criteria for pattern sets that allow for correct selections in every
program not discussed here!
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