
Summary:

The paper proposes an approach called PetaBricks providing a new implicitly par-
allel language including a compiler and run-time framework, which makes it easy
to implement multiple algorithms for a given problem to compute a solution very
efficiently.
PetaBricks is especially useful in case of algorithmic compositions such as common
sort algorithms. As example the std::sort implementation of the C++ STL is
given, which defaults to a merge sort unless the list is smaller than a fixed thresh-
old, in which case insertion sort is performed. Although this threshold has been
hardcoded into the library, in practice it varies depending on certain hardware and
input characteristics. Therefore, the value has to be adapted (“auto-tuned”) to
these characteristics. In general, the authors call this a cutoff point, which describes
the point at which the execution of one algorithm should be continued by a better
performing algorithm for the given situation. Assuming that PetaBricks is given a
sufficient detailed description of the algorithm, these cutoff points can be determined
automatically.
Additionally, PetaBricks supports even the generation of parallel output code from
the given algorithmic description, since the PetaBricks language only models a de-
tailed description of what the algorithm does and leaves the choice how to the
compiler and run-time system.
The PetaBricks language mainly consists out of two major constructs: transforms
and rules. The transform is introduced with a header consisting out of to, from and
through arguments. These represent inputs, outputs and intermediate data used
within the transform. The transform itself defines the algorithm, which can be in-
voked from other compatible transforms. The transform construct therefore consists
out of rules, which encode different algorithmic choices for the algorithm. Thereby
defines each rule, how the given state can processed in order to archive a solution.
The compiler now tries to find the optimal sequence of applications of rules for the
given transforms, that finally compute the output of the program. As mentioned
earlier the explicit rule dependencies allow automatic parallelization and automatic
detection of auto-tunables such as cut-off points.

Summary A4

Like the approach presented in last week's paper the one we discuss this
week is about PetaBricks which includes a language and a compiler for
automatic algorithm choice. Furthermore it is able to detect parallelism in
these algorithms and exploit it.
Since algorithms mostly work fine for certain input ranges and loose
performance for others it is convenient to use different algorithms for
different input ranges. The problem with connecting several versions of an
algorithm by hand is on the one hand that the programmer has to find out the
points where to change the currently used one and on the other hand that
these values depend on the architecture the program is executed on so that
they cannot be optimal when defined once in the code.
PetaBricks solves this problem by a language providing constructs to enable
an autotuning mechanism that optimizes these parameters. There is the
"transform"- construct that defines algorithms which provide several
implementations and can be optimized. Its header consists of a "to", "from"
and a "through" argument representing the input, output and intermediate
data. Within a transform several "rules" can be defined to encode the
algorithm choice. These rules also have a "to" and a "from" field in their
header and contain dependencies. Additionally they have a "where" field to
limit where the rule can be applied. So the compiler has to find a sequence
of rules which are able provide the complete program output.
Besides the compiler PetaBricks includes the already mentioned autotuning
system. This system uses the encoded information about choices and tunable
parameters the compiler added to the generated code and produces a so called
application configuration file which includes the choices the system made.
As a benchmark the authors ran the poisson function, the eigenproblem,
sorting algorithms and matrix multiplication algortihms on the PetaBricks.
The system always chose the fastest implementation for every configuration
and the autotuning could even improve the speedup.

Questions / Opinion:

1. In paragraph 3.2 the authors mention that code generated for dynamic
scheduling incurs overhead. Why is that the case and why can it be solved by
generating a second version which is a sequential one for the leaves of the
execution tree?

1 Summary

Finding an optimal solution to a problem is generally not possible. The perfor-
mance depends on parameters such as the architecture, input data, parallelism,
etc. Furthermore, the complex nature of code often constraints the compiler
such that algorithm composition or selection is not possible anymore.
In this paper, the authors present a language and a source-to-source com-
piler to automate algorithm selection and tuning of cutoffs, called PetaBricks.
PetaBricks is an implicitly parallel programming language, that allows natu-
ral encoding of multiple algorithms into a program, and takes the burden of
algorithm selection from the programmer and hoists it to the compiler. By pro-
viding multiple algorithms to solve (parts of) a problem, the developer gives
the choice of algorithm selection and composition to the compiler. PetaBricks
is the first language where choice is provided at language level. Since algorithm
composition relies on the compiler, the compiler can also automatically detect
the optimal switch over points between the algorithms.
PetaBricks introduces transforms and rules. A transform is similar to a function
in C++: it has a header consisting of from, to, and through arguments, and a
body containing rules. A rule describes how to compute (part of) the output
given the corresponding inputs. The body of a rule is written in C++-like code.
The more rules a transform has, the more choices are exposed to the compiler.
PetaBricks can generate two types of code: 1) choices and autotuning are em-
bedded in the binary, such that the program can be tuned, generating a con-
figuration file and 2) a configuration file is used to statically select choices and
cutoffs.
PetaBricks attaches an autotuning library to the binary if necessary. The
PetaBricks runtime library contains a scheduler to manage parallelism, and
is responsible for data and the configuration.
In their evaluation, the authors use various benchmarks they implemented and
that are relevant in scientific and computing kernels. On all benchmarks their
approaches score the best performance overall.

2 Questions & Opinions

If the PetaBricks compiler automatically parallelizes a program, it has to make
sure concurrent tasks don’t interfere. When thinking of dynamic programming,
parallelizing becomes difficult. As the importance of the through part in a trans-
form header is not elaborated, might this be used to tell the compiler where tasks
may share memory and interfere? If not, what is the through keyword used for?

Their approach seems to fit well to recursive algorithms, but is this also appli-
cable for more complicated algorithms, performing on complex data structures,
and having more complicated control flow?

1

PetaBricks: A Language and Compiler for Algorithmic Choice

1. Summary

This paper discusses a new compiler and language called petabricks that relieves programmer

from having to decide which algorithm should be plugged in for which kind of input and

platform. Instead, programmer specifies different algorithms to compute output, and petabricks

compiler and runtime auto-tunes the program for best parallel performance by deciding switch

points between algorithms.

Algorithmic choices are provided by the programmer using constructs called rules inside

transforms. Transforms are equivalent to functions. User can also embed normal C++ code inside

the rules. User can also explicitly specify some rules using where clause. There is also a construct

named tunable which can be used to provide parameters for auto-tuning.

Petabricks compiler calculates dependencies, removes redundant rules from the transforms. It

also computes switch points between different algorithms. Runtime includes a scheduler that

takes the dependency graph, and schedules task in depth first manner in order to provide for

maximum parallelism. Light weight thread migration is also supported using continuation points

at which thread data is spilled into heap. Auto-tuner is used to decide thresholds and switch

points between rules for different platforms. Auto-tuner uses a data structure called choice

dependency graph to do this.

A nice side-effect of being able to specify multiple algorithms is to check correctness of them by

checking output consistency for different set of inputs. Finally, in order to avoid deadlocks

between tasks, system analyses the dependency graph for cycles.

Benchmarks of different kinds are used for evaluation. For each of these benchmarks, petabricks

system performs better than any implementation of single algorithm.

2. Open Questions
1. Is depth first search scheduling of tasks in the dependency graph is better than any

other kind of scheduling of tasks?

2. Is application region finding is contained in choice grid analysis phase? What is the

exact distinction between them?

Summary PetaBricks

The paper introduces PetaBricks, a language and runtime which allows the pro-
grammer to express algorithmical choices and which automatically finds the best fitting
algorithm for a specific architecture.

The authors motivate their language by stating that composed algorithms are al-
ready implemented by hand. However, this is deemed suboptimal by the authors of
the paper, as the optimal point where algorithms should be switched varies from one
system to another. Furthermore, even finding one optimal toggle point can be far from
trivial. To migitiate this issue, PetaBricks has language features to express algorith-
mic choice: rules and transforms. Transforms are quite similiar to functions, except
that they have to, from and through keywords which are used to explicitly state in-
puts, outputs and "intermediate data". Rules are used to express how some subset of
data is computed (the actual compute part is done in a C++ subset). They also feature
to and from keywords. Thanks to this explicit stating of dependencies, the compiler
is able to automatically parallelize rules when it tries to find a sequence of rules to
compute the acutal output. The actual compilation works as follows: after the AST
is built, dependencies are normalized. Then, for each rule, the data regions to which
they are applicable are computed (using linear algebra).Those regions are then split
into a rectilienear grid, where for each cell a uniform set of rules is applicable. Using
those, a data dependency graph between them is computed. This graph is then used
for the actual code generation. The runtime system features a scheduler for automatic
parallelization; for more efficient parallelism it uses work stealing. Furthermore, the
runtime has an auto-tuning system; it works bottom-up, first tuning the small subprob-
lems and then going up one level at a time. It seems to use genetic programming to
find an optimal solution.

The authors evaluate on 3 different problems: Solving Poisson’s equation, symmet-
ric eigenproblem and sorting. They can achieve speedups compared to using only one
algorithm, or a mix of algorithms with a hard coded switch point.

Open Questions
∙ Why exactly have PetaBrick’s transforms an optional "through"? Could one not

use to instead of it?

∙ What is a hpyer-quadrant in the context of graphs?

∙ What is the symbolic center to which dependencies are relative to?

∙ How useful is the system for non-recursive problems?

1

PetaBricks: A Language and Compiler for Algorithmic Choice

1 Summary
The paper presents the language PetaBricks which is tailored to allow automatic parallelization and
adaptive choice between algorithms.
The language introduces several new constructs, described of these are mainly transforms and rules:

Transforms are basically problem definitions, they declare the input and output data of the function
that the program computes. A transform may contain several rules to implement choice.

Rules are algorithm specifications that perform the computation for a specified region of data. Every
rule can specify which part of the output it generates and which inputs it needs, additionally rules
can specify on which data regions they are applicable.

The compiler will use this information to build a choice grid, specifying when a rule is applicable. Using
this choice grid the compiler will then build a rule dependency graph, defining possible choices based on
data region and ordering information for rule application.

The output of the compiler is a autotuning program that will perform a calibration to determine the
specific rule choices based on the rule dependency graph. This calibration is implemented using a genetic
algorithm which will feed the transform with input data to train the population of rule choices. Besides
choices between rules the tuning is also able to identify rules that can be executed in parallel using the
rule dependence graph.

The output of the calibration is a choice configuration file which encodes the best choices between
rules obtained by the genetic algorithm. This file can either be input to the runtime application to
execute the program with the obtained configuration or it can be feedback into the compiler to produce
a final binary with all choices hardcoded.

2 Questions
• How do they generate training input for their genetic tuning?

• Is parallelization included in their genetic tuning or is it performed afterwards?

1

	
	
	
	
	
	Open Questions

	

