Static Program Analysis:
Caches in WCET Analysis

Jan Reineke

Department of Computer Science
Saarland University
Saarbricken, Germany

Advanced Lecture, Winter 2014/15

SAARLAND
UNIVERSITY
I B

COMPUTER SCIENCE

Jan Reineke Caches in WCET Analysis

COMPUTER SCIENCE

SAARLAND giflq
UNIVERSITY 4l

Outline v

COMPUTER SCIENCE

Caches

Cache Analysis for Least-Recently-Used

~——

Beyond Least-Recently-Used
m Predictability Metrics
m Relative Competitiveness
m Sensitivity — Caches and Measurement-Based Timing Analysis

Summary

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 2/58

SAARLAND

Qutline UNIVERSITY |

COMPUTER SCIENCE

Caches

Jan Reineke Caches in WCET Analysis

Caches

m How they work:

» dynamically
» managed by replacement policy

|ab]

Main Memory

STRAM

Capacity: 32 KB
Latency: 3 cycles

m Why they work: principle of locality

» spatial
» temporal

Jan Reineke Caches in WCET Analysis

DM

~
2 MB

100 cycles

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

Static Program Analysis 14/15 4/58

Caches

m How they work:
» dynamically

» managed by replacement policy

CPU

Capacity:
Latency:

m Why they work: principle of locality

» spatial
» temporal

Jan Reineke

“hit”
[ab]

aq
Cache

32 KB

3 cycles

Caches in WCET Analysis

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

Main Memory

N~

2 MB
100 cycles

Static Program Analysis 14/15 4/58

SAARLAND
UNIVERSITY

Caches e

COMPUTER SCIENCE

m How they work:

» dynamically
» managed by replacement policy

“hit” /_\

N—

ab]
P!
CPU Cache Main Memory
N~
Capacity: 32 KB 2 MB

Latency: 3 cycles 100 cycles

m Why they work: principle of locality

» spatial
» temporal

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 4 /58

Caches

m How they work:
» dynamically

» managed by replacement policy

CPU

Capacity:
Latency:

m Why they work: principle of locality

» spatial
» temporal

Jan Reineke

“miSS”

|ab]

C3 ?
Cache

32 KB

3 cycles

Caches in WCET Analysis

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

Main Memory

N~

2 MB
100 cycles

Static Program Analysis 14/15 4/58

SAARLAND
UNIVERSITY

Caches e

COMPUTER SCIENCE

m How they work:

» dynamically
» managed by replacement policy

A
N—
c?
CPU 3 Main Memory
N~
Capacity: 32 KB 2 MB
Latency: 3 cycles 100 cycles

m Why they work: principle of locality

» spatial
» temporal

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 4 /58

SAARLAND
UNIVERSITY

Caches e

COMPUTER SCIENCE

m How they work:

» dynamically
» managed by replacement policy

“miSS” /_\

N—

ac]
C3"? C = <C1 CgCgC4>! _
CPU Cache [¢ Main Memory
N~
Capacity: 32 KB 2 MB

Latency: 3 cycles 100 cycles

m Why they work: principle of locality

» spatial
» temporal

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 4 /58

SAARLAND
UNIVERSITY

Caches e

COMPUTER SCIENCE

m How they work:

» dynamically
» managed by replacement policy

“miSS” /_\

N—

ac]
Cs! _
CPU Cache Main Memory
N~
Capacity: 32 KB 2 MB

Latency: 3 cycles 100 cycles

m Why they work: principle of locality

» spatial
» temporal

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 4 /58

SAARLAND
UNIVERSITY

Caches e

COMPUTER SCIENCE

m How they work:

» dynamically
» managed by replacement policy

“hit” /_\

N—

ac]
C4? _
CPU Cache Main Memory
N~
Capacity: 32 KB 2 MB

Latency: 3 cycles 100 cycles

m Why they work: principle of locality

» spatial
» temporal

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 4 /58

SAARLAND
UNIVERSITY

Caches e

COMPUTER SCIENCE

m How they work:

» dynamically
» managed by replacement policy

“hit” /_\
N—
ac|
C4! _
CPU Cache Main Memory
Capacity: 32 K « é MB 5

Latency: cycles 100 cycles

m Why they work: principle of locality

» spatial
» temporal

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 4 /58

SAARLAND
UNIVERSITY U4

Fully-Associative Caches ——

COMPUTER SCIENCE

Address: g 1023+ 0)
“Block
(offset)

P t— P ———
’7 (_Tag / Q ata Blocg

Tag Data Block @: associativity

Tag Data Block

—»@» ﬁf’,: 4——z
No
Data

Miss!

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 5/58

SAARLAND

" ok UNIVERSITY LA
Set-Associative Caches —
COMPUTER SCIENCE
Address: 10g2(5) — <= L09>(8 % D) P
Block
Tag (/chfx> offset
N
\
Cache Set: Cache Set:
Tag Data Block Tag Data Block *
Tag Data Block - Tag Data Block L
Tag Data Block | | Tag | Data Block | +
< S \—p
v _»
Yes:
’@" Hit! MUX
No:
Miss! Data

Special cases:
m direct-mapped cache: only one line per cache set g =
m fully-associative cache: only one cache set

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 6/58

SAARLAND g

Cache Replacement Policies o

COMPUTER SCIENCE

O Lgst-Recently-Used (LRU) used in
INTEL PENTIUM | and MIPS 24K/34K

m First-In First-Out (FIFO or Round-Robin) used in
MOTOROLA POWERPC 56X, INTEL XSCALE, ARM9, ARM11

m Pseudo-LRU (PLRU) used in
INTEL PENTIUM II-1V and POWERPC 75X

m Most Recently Used (MRU) as described in literature
IWTEL Neélggém

Each cache set is treated independently:
— Set-associative caches are compositions of fully-associative caches.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 7758

SAARLAND

Qutline UNIVERSITY 0o

COMPUTER SCIENCE

Cache Analysis for Least-Recently-Used

Jan Reineke Caches in WCET Analysis

SAARLAND
UNIVERSITY

Cache Analysis —

COMPUTER SCIENCE

Two types of cache analyses:

Local guarantees: classification of individual accesses

» May-Analysis — Overapproximates cache contents
» Must-Analysis — Underapproximates cache contents

Global guarantees: bounds on cache hits/misses

m Cache analyses almost exclusively fo@

m In practice: FIFO, PLRU, ...

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 9/58

SAARLAND
UNIVERSITY U4

Challenges for Cache Analysis —

COMPUTER SCIENCE

Always a cache hit/always a miss?

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 10/58

SAARLAND
UNIVERSITY [l

Challenges for Cache Analysis —

COMPUTER SCIENCE

Always a cache hit/always a miss?

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 10/58

SAARLAND gl

Deriving Invariants about Cache States SRS
using Abstract Interpretation

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

C Cache Semantics computable

C ~(Abstract Cache Sem.) efficiently
computable

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 11/58

SAARLAND gl

Deriving Invariants about Cache States SRS
using Abstract Interpretation

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

C Cache Semantics computable

C ~(Abstract Cache Sem.) efficiently
computable

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 11/58

SAARLAND g

Deriving Invariants about Cache States SRS
using Abstract Interpretation

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

C Cache Semantics computable

C ~(Abstract Cache Sem.) efficiently
computable

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 11/58

Deriving Invariants about Cache States SRS
using Abstract Interpretation

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

C Cache Semantics computable

C ~(Abstract Cache Sem.) efficiently
computable

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 11/58

SAARLAND piff

Deriving Invariants about Cache States SRS
using Abstract Interpretation

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics uncomputable

C Cache Semantics computable

C ~(Abstract Cache Sem.) efficiently
computable

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 11/58

Least-Recently-Used (LRU): Concrete Behaviot—.=2r =

My 0

“Cache Miss™; "

COMPUTER SCIENCE

LRU has

“Cache Hit”:

notion of age

L /@

o

m@
—~+ | <XIN|®W

Jan Reineke

Caches in WCET Analysis Static Program Analysis 14/15 12/58

LRU: How to predict cache hits?

ConcleTt Srau® STATS
C:§4,_~,¢L§ —> BU{_{_;

|deas”?

(-.
CH8— T, _ 8, =] | Vares 4 fl) o -

B —a@wj
A": K——Sf’l,_,,zloo‘f ,At f"'—z%?_)?(@)*
() =[4ec! | Vaes e]

SAARLAND pfifls
UNIVERSITY U3

LRU: Must-Analysis: Abstract Domain e

COMPUTER SCIENCE

m Used to predict cache hits.
m Maintains upper bounds on ages of memory blocks.
m Upper bound < associativity — memory block definitely cached.

Example
...and its interpretation:

Abstract state:
Describes the set of all concrete cache

{x} age 0 states in which x, s, and t occur,
{1 1 m x with an age of 0,
@ 2 m s and f with an age not older than 2.
age 3
Y({x AL As th) =

{[x,s,t, a|,[x,t s a,[x,stb],...}

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 14 /58

Sound Update — Local Consistency

Abstract Update

(must)

—

concrete cache states

Lifted
Concrete
Update

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

—

concrete cache states

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 15/58

Sound Update — Best Abstract Transformer

T8 o oFoy

Abstract Update

> (must’)

(must)

concrete cache states

Lifted
Concrete
Update

A\

N

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

concrete cache states

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 16 /58

SAARLAND
UNIVERSITY U4l

Abstraction Function for Must-Analysis o

COMPUTER SCIENCE

What should the abstraction function @ be?
Do o and Tform a Galois connection?

A, o (F) = Ade 8. Nﬁ 4(4)

2.V

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 17 /58

SAARLAND pite

LRU: Must-Analysis: Update ARSI

COMPUTER SCIENCE

Z

— S

{x} Gz

o i W
Potential Cache Miss”: \

(.1 ~ 0

{} {s,t}
.

gl X {s}

“Definite Cache Hit”: " ! i

2 {s:)t} {t}

30 { {}

Why does t not age in the second case?

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 18 /58

SAARLAND i

LRU: Must-Analysis: Join UNiversiTY B
Need to combine information where control-flow merges. .
Join should be conservative (ensures yxis monotone):

= ~(A) S(AUB)

= 7(B) C (AU B)

(a) (c} 0
! |_|U-h Gep —
{c,} {a} {a,c}
{d} {d} | {d} |
L
L o

“Intersection @imal @

f—,

(Q#L/ /1,7E' /%/': M & {«*{%/) /r#/ak]}

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 19/58

SAARLAND pfia

LRU: Must-Analysis: Join ol

COMPUTER SCIENCE

Need to combine information where control-flow merges.
Join should be conservative (ensures -~ is monotone):

m (A C~(Au B)

m (B) (AU B)

{a} {c} {}
{} {e} _ {}
{c,f} L {a} {a,c}
{d} {d} {d}

“Intersection + Maximal Age”

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 19/58

SAARLAND pfia

LRU: Must-Analysis: Join ol

COMPUTER SCIENCE

Need to combine information where control-flow merges.
Join should be conservative (ensures -~ is monotone):

m (A C~(Au B)

m (B) (AU B)

{a} {c} {}
{} {e} _ {}
{c,f} L {a} {a,c}
{d} {d} {d}

“Intersection + Maximal Age”

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 19/58

SAARLAND pfia

LRU: Must-Analysis: Join ol

COMPUTER SCIENCE

Need to combine information where control-flow merges.
Join should be conservative (ensures -~ is monotone):

m (A C~(Au B)

m (B) (AU B)

{a} {c} {}
{} {e} _ {}
{c,f} L {a} {a,c}
{d} {d} {d}

“Intersection + Maximal Age”

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 19/58

SAARLAND pfia

LRU: Must-Analysis: Join ol

COMPUTER SCIENCE

Need to combine information where control-flow merges.
Join should be conservative (ensures -~ is monotone):

m (A C~(Au B)

m (B) (AU B)

{a} {c} {}
{} {e} _ {}
{c,f} L {a} {a,c}
{d} {d} {d}

“Intersection + Maximal Age”

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 19/58

SAARLAND pfia

LRU: Must-Analysis: Join ol

COMPUTER SCIENCE

Need to combine information where control-flow merges.
Join should be conservative (ensures -~ is monotone):

m (A C~(Au B)

m (B) (AU B)

{a} {c} {}
{} {e} _ {}
{c,f} L {a} {a,c}
{d} {d} {d}

“Intersection + Maximal Age”

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 19/58

SAARLAND pfia

LRU: Must-Analysis: Join ol

COMPUTER SCIENCE

Need to combine information where control-flow merges.
Join should be conservative (ensures -~ is monotone):

m (A C~(Au B)

m (B) (AU B)

{a} {c} {}
{} {e} _ {}
{c,f} L {a} {a,c}
{d} {d} {d}

“Intersection + Maximal Age”

[How many memory blocks can be in the must-cacheq—% /3

.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 19/58

LRU: Must-Analysis: Ascending Chain Condition2:

COMPUTER SCIENCE

Remember connection between C and L.
Does the ascending chain condition hold?

1. A'C@C:X ALI@:@_
2.V HOcr 8F LAYTICE £ 5}_1

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 20/58

Example: Must-Analysis e

COMPUTER SCIENCE

entry [{},.{}.{}.0] =T = Ak, »

Jan Reineke Caches in WCET Analysis

Example: Must-Analysis e

COMPUTER SCIENCE

entry [{},{};{}{}]

LU s U =1 s 45 U

Jan Reineke Caches in WCET Analysis

SAARLAND pfia

Example: Must-Analysis UnivRsiTy B

entry [{} 1) 11 U]

LU s U =1 s 45 U

« AL U

{AL A U

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 21/58

SAARLAND pfia

Example: Must-Analysis UnivRsiTy B

entry [{} 1) 11 U]

LU s U =1 s 45 U

AL U U

A'}a{vr I_I[C},{A},{}]:
HAAL AT {D

{AL A U

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 21/58

SAARLAND giflq
UNIVERSITY 4l

Example: Must-Analysis ——

COMPUTER SCIENCE

entry [{} 1) 11, U]

105, {1 AAL GIU R U 4 U =
[5 U

AL U U

{AL A U

1B} AAL L UITURCH 1AL Ul =
[1A U

exit\ {0} 1}, 1A} U]

No cache hits can be predicted :-(

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 21/58

Context-Sensitive Analysis/Virtual Loop-Unrollings=iy =

QCOMI UTER SCIENCE

S5O =
m Problem: O _\0“\(@

» The first iteration of a loop will always result in cache mls\e%. Y \
» Similarly for the first execution of a function.

m Solution:
» Virtually Lfnroll Loops: Distinguish the first iteration from othe

> Distinguish function calls by c,aw

Virtually unrolling the loop once:

entry

[{A} {3 {3 A A} {4 {0
m Accesses to A and D are provably
hits after the first iteration e
m Accesses to B and C can still not be exit
classified. Within each execution of o M

the loop, they may only miss once. [{A} (D}, {}
— Persistence Analysis

e —

9.@ AL (D}, {1, 1]
(11, 1A} {D}. {}]

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 22/58

LRU: May-Analysis: Abstract Domain e

SAARLAND pfifls
UNIVERSITY U3

COMPUTER SCIENCE

m Used to predict cache misses.
m Maintains lower bounds on ages of memory blocks.

m Lower bound > associativity

Example

Abstract state:

Xy}

{

{S,1}

{u}

age 0

age 3

— memory block definitely not cached.

...and its interpretation:

Describes the set of all concrete cache states in
which no memory blocks except x, y, s, t, and
U OCcCuUr,

m x and y with an age of at least 0,
m s and f with an age of at least 2,
m U with an age of at least 3.

’Y([{Xay}a {}7 {37 t}7 {U}]) —
{[x,y,s.t],lv,x,s,1],[x,y,s,ul,...}

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 23 /58

SAARLAND
UNIVERSITY U4l

Abstraction Function for May-Analysis e

COMPUTER SCIENCE

What should the abstraction function « be?
Do o and ~ form a Galois connection?

", X (®) = A, ',:{‘S 4 (4)

2.V

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 24 /58

SAARLAND
UNIVERSITY [l

LRU: May-Analysis: Update —

COMPUTER SCIENCE

o — @)
X,u Z
0 T (xu]
“Definite Cache Miss”: \
T
{y} {s,1}
/S\‘
{x,u} {s}
“Potential Cache Hit”: ETS% {X{’}U}
{y} v {yt}

Why does t age in the second case?

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 25/58

LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures ~ is monotone):
m (A C~(Au B)
m(B) C~(AuU B)

{a,b} {c} {a,b,c}
{} {e} _ {e}

{c,f} n {a} {f}
{d} {d} {d}

“Union + Minimal Age”

SAARLAND pfifls
UNIVERSITY U3
|]

COMPUTER SCIENCE

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 26 /58

LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures ~ is monotone):
m (A C~(Au B)
m(B) C~(AuU B)

{a,b} {c} {a,b,c}
{} {e} _ {e}

{c,f} n {a} {f}
{d} {d} {d}

“Union + Minimal Age”

SAARLAND pfifls
UNIVERSITY U3
|]

COMPUTER SCIENCE

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 26 /58

LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures ~ is monotone):
m (A C~(Au B)
m(B) C~(AuU B)

{a,b} {c} {a,b,c}
{} {e} _ {e}

{c,f} n {a} {f}
{d} {d} {d}

“Union + Minimal Age”

SAARLAND pfifls
UNIVERSITY U3
|]

COMPUTER SCIENCE

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 26 /58

LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures ~ is monotone):
m (A C~(Au B)
m(B) C~(AuU B)

{a,b} {c} {a,b,c}
{} {e} _ {e}

{c,f} n {a} {f}
{d} {d} {d}

“Union + Minimal Age”

SAARLAND pfifls
UNIVERSITY U3
|]

COMPUTER SCIENCE

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 26 /58

LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures ~ is monotone):
m (A C~(Au B)
m(B) C~(AuU B)

{a,b} {c} {a,b,c}
{} {e} _ {e}

{c,f} n {a} {f}
{d} {d} {d}

“Union + Minimal Age”

SAARLAND pfifls
UNIVERSITY U3
|]

COMPUTER SCIENCE

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 26 /58

LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures ~ is monotone):
m (A C~(Au B)
m(B) C~(AuU B)

{a,b} {c} {a,b,c}
{} {e} _ {e}

{c,f} n {a} {f}
{d} {d} {d}

“Union + Minimal Age”

SAARLAND pfifls
UNIVERSITY U3
|]

COMPUTER SCIENCE

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 26 /58

Does the ascending chain condition hold?

Does it matter in practice?

Y

2 JIMSTRu T AccerstT
—S Mo THOMENEAL PRIRLEm

M) DNaSx 4 clesec
—) Devemnd¢

-

SAARLAND gife

LRU: May-Analysis: Ascending Chain Condition2s= =

COMPUTER SCIENCE

C
7

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15

27 /58

SAARLAND gifa
UNIVERSITY [

Notion of Persistence e

COMPUTER SCIENCE

entry
m Intuition: “Block b is persistent if it can only °
cause one cache miss in any execution.”

m What is an appropriate concrete e e
semantics that captures this property?

m |deas fo@ractions?

) NEED "THAc"
S & mgvnes

exit

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 28 /58

SAARLAND
UNIVERSITY

Outline v

COMPUTER SCIENCE

Beyond Least-Recently-Used
m Predictability Metrics
m Relative Competitiveness
m Sensitivity — Caches and Measurement-Based Timing Analysis

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 29/58

Outline

COMPUTER SCIENCE

Beyond Least-Recently-Used
m Predictability Metrics

Jan Reineke Caches in WCET Analysis

SAARLAND
UNIVERSITY [l

Uncertainty in WCET Analysis ——

COMPUTER SCIENCE

m Amount of uncertainty determines precision of WCET analysis
m Uncertainty in cache analysis depends on replacement policy

uncertainty

variation due to inputs X
and initial hardware state penalty

BCET ACET WCET upper execution
bound time

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 31/58

SAARLAND
UNIVERSITY

Uncertainty in Cache Analysis ——

COMPUTER SCIENCE

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 32/58

SAARLAND
UNIVERSITY

Uncertainty in Cache Analysis ——

COMPUTER SCIENCE

*~- 1. Initial cache contents unknown.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 32/58

SAARLAND
UNIVERSITY

Uncertainty in Cache Analysis ——

COMPUTER SCIENCE

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 32/58

SAARLAND
UNIVERSITY

Uncertainty in Cache Analysis ——

COMPUTER SCIENCE

*~- 1. Initial cache contents unknown.

"s= 2. Need to combine information.

1
1
I
;.- 3. Cannot resolve address of z.

- - g

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 32/58

SAARLAND
UNIVERSITY

Uncertainty in Cache Analysis ——

COMPUTER SCIENCE

*~- 1. Initial cache contents unknown.

"s= 2. Need to combine information.

1
1
I
;.- 3. Cannot resolve address of z.

- g

- = Amount of uncertainty determined
by ability to recover information

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 32/58

SAARLAND gl

Predictability Metrics oniversiTy 8

COMPUTER SCIENCE

Evict
| | Fill ﬁ

[fed]
gfe]

[fec] [hot]|
[gfd]

[fde]

[dex]
Sequence: (a, ..., e, f, o} h)

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 33/58

SAARLAND

Meaning of Metrics —

COMPUTER SCIENCE

m Evict

» Number of accesses to obtain any may-information.
» |l.e. when can an analysis predict any cache misses?

m Fill

» Number of accesses to complete may- and must-information.
» |l.e. when can an analysis predict each access?

— Evict and Fill bound the precision of any static cache analysis.
Can thus serve as a benchmark for analyses.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 34 /58

Evaluation of Least-Recently-Used

m LRU “forgets” about past quickly:

» cares about most-recent access to each block only
» order of previous accesses irrelevant

b

—

SAARLAND g
UNIVERSITY Bl
I —

COMPUTER SCIENCE

R

Y
I

e

J,

N[N

N[0T

NI |IT|O

a;

m In the example: Evict = Fill = 4
m In general: Evict(k) = Fill(k) = k, where k is the associativity of

the cache

VDIT|IO|QQ

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 35/58

Evaluation of First-In First-Out (sketch) Univers ity B

COMPUTER SCIENCE

m Like LRU in the miss-case
m But: “Ignores” hits

d b C
— — —

o|lo ||
o|lo ||
o|lo ||
o|lo|o|-
///\)Q
olofvola

m In the worst-case kK — 1 hits and k misses: (k = associativity)
— BEvict(k) =2k — 1

m Another k accesses to obtain complete knowledge:
— Fill(k) = 3k — 1

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 36 /58

SAARLAND
UNIVERSITY [l

Evaluation of Pseudo-LRU (sketch) o

COMPUTER SCIENCE

m Tree-bits point to block to be replaced
c (0, e (1)
— —
OO 0
albjc|d albjc|d ajle|c|d

m Accesses “rejuvenate” neighborhood
» Active blocks keep their (inactive) neighborhood in the cache

m Analysis yields:
> Evict(k) = £log, k + 1
> Fill(k) = £log, k + k — 1

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 37 /58

Evaluation of Policies

SAARLAND pfifls
UNIVERSITY [l
|]

COMPUTER SCIENCE

Policy | Evict(k) Fill(k) Evict(8) Fill(8)
LRU K K 8 8
FIFO 2Kk — 1 3k — 1 15 23
MRU | 2k-—2 0 /3k — 4 14 50/20
PLRU | £log, k +1 %log, k + k — 1 13 19

m LRU is optimal w.r.t. metrics.
m Other policies are much less predictable.
— Use LRU if predictability is a concern.

m How to obtain may- and must-information within the given limits for
other policies?

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 38/58

SAARLAND
UNIVERSITY

Outline v

COMPUTER SCIENCE

Beyond Least-Recently-Used

m Relative Competitiveness

Jan Reineke Caches in WCET Analysis

SAARLAND pe

Relative Competitiveness UnivERsiTy B

COMPUTER SCIENCE

m Competitiveness (Sleator and Tarjan, 1985):
worst-case performance of an online policy relative to the optimal
offline policy

» used to evaluate online policies

m Relative competitiveness (Reineke and Grund, 2008):
worst-case performance of an online policy relative to another
online policy

» used to derive local and global cache analyses

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 40/ 58

SAARLAND gifa
UNIVERSITY [

Definition — Relative Miss-Competitiveness ——

CONMPIITER SCIENICE

Notation

mp(p,S) = number of misses that policy P incurs on
access sequence s € M* starting in state p € CP

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 41 /58

SAARLAND g

Definition — Relative Miss-Competitiveness =~ —=l'=

CONMPIITER SCIENICE

Notation

mp(p,S) = number of misses that policy P incurs on
access sequence s € M* starting in state p € CP

Definition (Relative miss competitiveness)

Policy P is (k, ¢)-miss-competitive relative to policy Q if
mP(p7 S) <k- mQ(q7 S) +C

for all access sequences s € M* and cache-set states p € CP, g € C?
that are compatible p ~ q.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 41 /58

SAARLAND piifiq

Definition — Relative Miss-Competitiveness =~ —=l'=

NMPIITER SCIENICE

Notation

mp(p,S) = number of misses that policy P incurs on
access sequence s € M* starting in state p € CP

Definition (Relative miss competitiveness)

Policy P is (k, ¢)-miss-competitive relative to policy Q if
mP(p7 S) <k- mQ(q7 S) +C

for all access sequences s € M* and cache-set states p € CP, g € C?
that are compatible p ~ q.

Definition (Competitive miss ratio of P relative to Q)

The smallest k, s.t. P is (k, ¢)-miss-competitive rel. to Q for some c.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 41 /58

SAARLAND
UNIVERSITY

Example — Relative Miss-Competitiveness —l

COMPUTER SCIENCE

P is (3, 4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 - x + 4 misses.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 42 /58

Example — Relative Miss-Competitiveness —

COMPUTER SCIENCE

P is (3, 4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 - x + 4 misses.

Best: P is (1, 0)-miss-competitive relative to Q.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 42 /58

SAARLAND piff

Example — Relative Miss-Competitiveness UNIVERSTY B

COMPUTER SCIENCE

P is (3, 4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 - x + 4 misses.

Best: P is (1, 0)-miss-competitive relative to Q.

Worst: P is not-miss-competitive (or oo-miss-competitive) relative to Q.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 42 /58

SAARLAND
UNIVERSITY U4l

Example — Relative Hit-Competitiveness —l

COMPUTER SCIENCE

P is (5, 3)-hit-competitive relative to Q.
If @ has x hits, then P has at least 5 - x — 3 hits.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 43 /58

SAARLAND
UNIVERSITY U4l

Example — Relative Hit-Competitiveness —l

COMPUTER SCIENCE

P is (5, 3)-hit-competitive relative to Q.
If @ has x hits, then P has at least £ - x — 3 hits.

Best: P is (1, 0)-hit-competitive relative to Q.
Equivalent to (1, 0)-miss-competitiveness.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 43 /58

Example — Relative Hit-Competitiveness RIS

COMPUTER SCIENCE

P is (5, 3)-hit-competitive relative to Q.
If @ has x hits, then P has at least £ - x — 3 hits.

Best: P is (1, 0)-hit-competitive relative to Q.
Equivalent to (1, 0)-miss-competitiveness.

Worst: P is (0, 0)-hit-competitive relative to Q.
Analogue to co-miss-competitiveness.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 43 /58

SAARLAND
UNIVERSITY U4l

Local Guarantees: (1, 0)-Competitiveness —l

COMPUTER SCIENCE

Let P be (1,0)-competitive relative to Q:

mP(p7 S) <1 mQ(q7 S) +0

< mp(p, s) < mq(q,Ss)

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 44 /58

SAARLAND
UNIVERSITY U4l

Local Guarantees: (1, 0)-Competitiveness —l

COMPUTER SCIENCE

Let P be (1,0)-competitive relative to Q:

mp(p,s) <1-mq(q,s)+0

< mp(p, s) < mq(q,Ss)

If Q “hits”, so does P, and
if P “misses”, so does Q.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 44 /58

SAARLAND
UNIVERSITY [l

Local Guarantees: (1, 0)-Competitiveness —l

COMPUTER SCIENCE

Let P be (1,0)-competitive relative to Q:

mP(p7 S) <1 mQ(q7 S) +0

< mp(p, s) < mq(q,Ss)

If Q “hits”, so does P, and
if P “misses”, so does Q.

As a consequence,
a must-analysis for Q is also a must-analysis for P, and

a may-analysis for P is also a may-analysis for Q.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 44 /58

SAARLAND it

Global Guarantees: (k, c)-Competitiveness ~ Litiy =

COMPUTER SCIENCE

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

Jan Reineke Caches in WCET Analysis

SAARLAND
UNIVERSITY U4l

Global Guarantees: (k, c)-Competitiveness =2l

COMPUTER SCIENCE

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

Determine competitiveness of policy P relative to policy Q.

mp<k-mg-+c

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 45/ 58

Global Guarantees: (k, ¢)-Competitiveness Lty =

COMPUTER SCIENCE

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

Determine competitiveness of policy P relative to policy Q.

mp<k-mg-+c

Compute global guarantee for task T under policy Q.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 45/ 58

SAARLAND M

Global Guarantees: (k, ¢)-Competitiveness Lty =

COMPUTER SCIENCE

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

Determine competitiveness of policy P relative to policy Q.

mp<k-mg-+c

Compute global guarantee for task T under policy Q.

Calculate global guarantee on the number of misses for P using
the global guarantee for Q and the competitiveness results of P

relative to Q.

e = ey] - [

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 45/ 58

Relative Competitiveness:
Automatic Computation
P and Q (here: FIFO and LRU) induce transition system:

(h, h) (le

[eabc] o, [€abc]| gy

cj(h, h)

([eabc] o [ceab] g,

[eabc]cq, [ceda] g,

m, m)

(h, m)

last-in

first-in MRU

]| T

[abed]g o, [abed] gy O

d|(hh)

Vv

[abcd] g eq, [dabc] g,

el (m,m)

Vv

[eabc] o, [€dab] g

(h, h)
a

SAARLAND pfifls
UNIVERSITY [l
|]

COMPUTER SCIENCE

[abcd]g.; Cache-set state

d Memory access
(h,m),... Misses in pairs of
cache-set states

d

[deab ¢ o, [deab] g,

(m, h)

Competitive miss ratio = maximum ratio of misses in policy P to misses
in policy Q in transition system

Jan Reineke

Caches in WCET Analysis

Static Program Analysis 14/15 46 / 58

SAARLAND
UNIVERSITY [l

Transition System is oo Large ——

COMPUTER SCIENCE

Problem: The induced transition system is oo large.
Observation: Only the relative positions of elements matter:

labc], n, [bAE] - e o ~ 1191 gy [9hM] ¢ 0
C (h, m) / (ha m)
[cabl, ny, [€bd) e o ~ 9] Lru- [I9h] g1k

Solution: Construct finite quotient transition system.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 47/ 58

SAARLAND
UNIVERSITY [l

~-Equivalent States in Running Example —

COMPUTER SCIENCE

(h, h) ae
e (h7 h)
[eabc] o, [€abC] | R ((m—m) [abcd] ¢ ko, [abed] 2.
cl(h, h) dl(h, h)
leabc] . o, [cEab) | Ay, [abcd] g e, [dabe] g, |

el(m, m)

[eabc] o, [ceda) g, [¢——1|[eabcls o, [€dab], p, [—>|[deab] o, [deab] g,

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 48 /58

SAARLAND
UNIVERSITY [l

Finite Quotient Transition System ——l

COMPUTER SCIENCE

Merging ~-equivalent states yields a finite quotient transition system:

(h,

=)

)

(m, m) d labed] ¢ gq. [abed] gy,

(h, h)

—

[abed] ¢ eq, [dabc] g, (m, h)

(m, m)

—

leabe]. o, [cedE], ny, W[[eabc]F,Fo, ledab], q,

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 49 /58

SAARLAND it

Competitive Ratio — MaXimum CyC|e Ratio UNIVERSITY b

COMPUTER SCIENCE

Competitive miss ratio =
maximum ratio of misses in policy P to misses in policy Q

(0,0)
n
e

)
(0,0)1

(1,0)
(

1,1)l

Q-0

Jan Reineke Caches in WCET Analysis

SAARLAND
UNIVERSITY U4l

Competitive Ratio = Maximum Cycle Ratio —

COMPUTER SCIENCE

Competitive miss ratio =
maximum ratio of misses in policy P to misses in policy Q

(0,0)

o
(O

(0, O)l

© (1,0)

(1,1)1

“m@

- i _ O+141
Maximum cycle ratio = g7==5 = 2

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 50/ 58

SAARLAND piff

Tool Implementation RIEENE

COMPUTER SCIENCE

m Implemented in Java, called Relacs
m Interface for replacement policies

m Fully automatic
m Provides example sequences for competitive ratio and constant

m Analysis usually practically feasible up to associativity 8

» limited by memory consumption
» depends on similarity of replacement policies

Online version:
http://rwd.cs.uni-sb.de/~reineke/relacs

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 51/58

SAARLAND
UNIVERSITY

Generalizations SALELI

|dentified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 52 /58

SAARLAND
UNIVERSITY [l

Generalizations SALELI

|dentified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp.rel.to LRU(1 + logok),
— LRU-must-analysis can be used for PLRU

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 52 /58

SAARLAND
UNIVERSITY

Generalizations SALELI

|dentified patterns and proved generalizations by hand. |
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp.rel.to LRU(1 + logok),
— LRU-must-analysis can be used for PLRU

FIFO(k) is (3,%3) hit-comp. rel. to LRU(k), whereas
LRU(k) is (0,0) hit-comp. rel. to FIFO(k), but

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 52/58

SAARLAND
UNIVERSITY

Generalizations SALELI

|dentified patterns and proved generalizations by hand. |
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp.rel.to LRU(1 + logok),
— LRU-must-analysis can be used for PLRU

FIFO(k) is (3,%3) hit-comp. rel. to LRU(k), whereas
LRU(k) is (0,0) hit-comp. rel. to FIFO(k), but
LRU(2k—-1) is (1,0) comp.rel.to FIFO(k), and
LRU(2k—-2) is (1,0) comp.rel.to MRU(k).
— LRU-may-analysis can be used for FIFO and MRU
— optimal with respect to predictability metric Evict

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 52/58

SAARLAND pfifls
UNIVERSITY U3

Generalizations SALELI

|dentified patterns and proved generalizations by hand. |
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp.rel.to LRU(1 + logok),
— LRU-must-analysis can be used for PLRU

FIFO(k) is (},%51) hit-comp. rel. to LRU(k), whereas

s (272
LRU(k) is (0,0) hit-comp. rel. to FIFO(k), but
LRU(2k—-1) is (1,0) comp.rel.to FIFO(k), and

LRU(2k—-2) is (1,0) comp.rel.to MRU(k).
— LRU-may-analysis can be used for FIFO and MRU
— optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 52/58

Outline

COMPUTER SCIENCE

Beyond Least-Recently-Used

m Sensitivity — Caches and Measurement-Based Timing Analysis

Jan Reineke Caches in WCET Analysis

UNIVERSITY U4l

Measurement-Based Timing Analysis e

COMPUTER SCIENCE

m Run program on a number of inputs and
initial states.

m Combine measurements for basic blocks
to obtain WCET estimation.

m Sensitivity Analysis demonstrates this
approach may be dramatically wrong.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 54 /58

SAARLAND
UNIVERSITY [l

Measurement-Based Timing Analysis e

COMPUTER SCIENCE

m Run program on a number of inputs and
initial states.

m Combine measurements for basic blocks
to obtain WCET estimation.

m Sensitivity Analysis demonstrates this
approach may be dramatically wrong.

v

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 54 /58

SAARLAND
UNIVERSITY [l

Influence of Initial Cache State S,

COMPUTER SCIENCE

variation due to
initial cache state

BCET WCET upfoer execution
bound time

Definition (Miss sensitivity)

Policy P is (k, c)-miss-sensitive if
mp(p, S) <k- mp(plv S) +C

for all access sequences s € M* and cache-set states p, p’ € CP.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 55/58

SAARLAND pfia

Sensitivity Results UN_VEi
Policy | 2 3 4 S 6 7 8
LRU| 1,2 1,3 1,4 15 1,6 1,7 1,8
FIFO| 2,2 3,3 44 55 66 7,7 8,8
PLRU| 1,2 - o - — _ o
MRU| 1,2 34 56 7,8 MEM MEM MEM

m LRU is optimal. Performance varies in the least possible way.

m For FIFO, PLRU, and MRU the number of misses may vary
strongly.

m Case study based on simple model of execution time by
Hennessy and Patterson (2003):
WCET may be 3 times higher than a measured execution time
for 4-way FIFO.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 56 /58

SAARLAND

Qutline UNIVERSITY |

COMPUTER SCIENCE

Summary

Jan Reineke Caches in WCET Analysis

SAARLAND
UNIVERSITY U4l

Cache Analysis for Least-Recently-Used COMPUTER SCIENCE

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

... requires context-sensitivity for precision.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

SAARLAND
UNIVERSITY [l

Summary Y
Cache Analysis for Least-Recently-Used COMPUTER SCIENCE

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

... requires context-sensitivity for precision.
Predictability Metrics

... quantify the predictability of replacement policies.

— LRU is the most predictable policy.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

SAARLAND
UNIVERSITY [l

Summary Y
Cache Analysis for Least-Recently-Used COMPUTER SCIENCE

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

... requires context-sensitivity for precision.
Predictability Metrics

... quantify the predictability of replacement policies.

— LRU is the most predictable policy.

Relative Competitiveness
... allows to derive guarantees on cache performance,

... yields first may-analyses for FIFO and MRU.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

SAARLAND
UNIVERSITY [l

Summary Y
Cache Analysis for Least-Recently-Used COMPUTER SCIENCE

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

... requires context-sensitivity for precision.
Predictability Metrics

... quantify the predictability of replacement policies.

— LRU is the most predictable policy.

Relative Competitiveness
... allows to derive guarantees on cache performance,

... yields first may-analyses for FIFO and MRU.
Sensitivity Analysis
... determines the influence of initial state on cache performance.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

SAARLAND
UNIVERSITY [l

Summary Y
Cache Analysis for Least-Recently-Used COMPUTER SCIENCE

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

... requires context-sensitivity for precision.
Predictability Metrics

... quantify the predictability of replacement policies.

— LRU is the most predictable policy.

Relative Competitiveness
... allows to derive guarantees on cache performance,

... yields first may-analyses for FIFO and MRU.
Sensitivity Analysis
... determines the influence of initial state on cache performance.

Thank you for your attention!

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

SAARLAND
UNIVERSITY [l

Summary Y
Cache Analysis for Least-Recently-Used COMPUTER SCIENCE

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

... requires context-sensitivity for precision.
Predictability Metrics

... quantify the predictability of replacement policies.

— LRU is the most predictable policy.

Relative Competitiveness
... allows to derive guarantees on cache performance,

... yields first may-analyses for FIFO and MRU.
Sensitivity Analysis
... determines the influence of initial state on cache performance.

Thank you for your attention!

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

SAARLAND pite

Most-Recently-Used — MRU vy

COMPUTER SCIENCE

MRU-bits record whether line was recently used

[abcd]yyo1|ob,d

lebcd|,441] > €,b,d

[ebed]ggigj o C

— Never converges

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

Pseudo-LRU — PLRU RN

COMPUTER SCIENCE

(1) (0) (0)
1 © 1 @ OO

alblc|d alble|d alble|d alble]|f

Initial cache- After a miss After a hit After a miss
set state on e. State: on a State: on f. State:
la, b, c,d]y10- [a, b, e, d]|p1- |a, b, e, d]41- [a, b, e,y

Hit on a “rejuvenates” neighborhood; “saves” b from eviction.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

SAARLAND piff

May- and Must-Information niversiry B8

COMPUTER SCIENCE

MayP(s) = |] CCp(updatep(p.s))
peCP
Must®(s) = (] CCp(updatep(p,s))
peCP
may®(n) = |MayP(s)|,where sc S* C M*,|s|=n

Must®(s)|,where s € S* C M*,|s| = n

must® (n)

S7 : set of finite access sequences with pairwise different accesses

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

SAARLAND
UNIVERSITY

Definitions of Metrics e

COMPUTER SCIENCE

Evict® = min {n | may®(n) < n},
FilP .= min {n | must®(n) = k} |

where k is P’s associativity.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

SAARLAND g

Relation: Pred. Metrics <+ Rel. Competitivenesa_ ==

COMPUTER SCIENCE

Let P(k) be (1,0)-miss-competitive relative to policy Q(/), then
(i) EvictP(k) > Evict9(]),
(i) misP(k) > mis®(l).

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

SAARLAND gl

Alternative Pred. Metrics <> Rel. Competitivengagism =

COMPUTER SCIENCE

Let / be the smallest associativity, such that LRU(/) is
(1,0)-miss-competitive relative to P(k). Then

Alt-Evict” (k) = I.

Let / be the greatest associativity, such that P(k) is
(1, 0)-miss-competitive relative to LRU(/). Then

Alt-mis” (k) = 1.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

SAARLAND

Size of Transition System AN

COMPUTER SCIENCE

k K k' K/ min{i,i’'} i i
I+ . . |
& Z(/) Z(i’) 2 (1) (/)"
status bits i=0 i"=0 j=0
of Pand Q N——— N—— ~ ~

non-empty linesin P non-empty lines in Q@ number of:)(/erlappings
in non-empty lines

min{k,k’} K i/ min{k,k’} ’
Do) < kK D — Y
pars (/)(/) = (K=DYHk —))
=1
< k! k’!zj—!:e k! Kl
j=0
This can be bounded by
RIH/HIFK < |(Ch x Cpi)) m | < 2HH IR e k- Kl

-~

bound on number of overlappings

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

SAARLAND
UNIVERSITY U4l

Compatible States ——

COMPUTER SCIENCE

P=[LLll]p| ~ [f=[LLLll],
updatep(iP, s) updateq(iQ, s)
) > q

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

(1,0)-Competitiveness and May/Must-Analysessisn =

COMPUTER SCIENCE

Let P be (1, 0)-competitive relative to Q, then

p ~ q
mp(p; (X)) =1 — ma(q, (x)) =1
P ~ q

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

SAARLAND gt

(1,0)-Competitiveness and May/Must-Analysessisn =

COMPUTER SCIENCE

2

| 0) e
2
@‘ 0) .

vpePimp(p, (X)) =1| = |¥geQ:ma(q (x) =1

Q

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

SAARLAND
UNIVERSITY U4

Case Study: Impact of Sensitivity ——

COMPUTER SCIENCE

m Simple model of execution time from Hennessy & Patterson (2003)

m CPl,; = Cycles per instruction assuming cache hits only
g Memory accesses ;a1 ding instruction and data fetches

Instruction
Twe ~ CPlpi+ MeTr?Srt{:;f:rfses x Miss rateyc x Miss penalty
Tmeas ~ CPlp+ Me”fr?srtﬁj‘;f;fses x Miss rate meas x Miss penalty
_ 1.541.2x0.20x50 __ 13.5 _3

— 1.54+1.2x0.05x50 ~— 4.5

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58

