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Address: g 1023+ 0)
“Block
(offset )

P t— P ———
’7 (_Tag / Q ata Blocg

Tag Data Block @: associativity

Tag Data Block

—»@» ﬁf’,: 4——z
No
Data

Miss!

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 5/58




SAARLAND

" ok UNIVERSITY LA
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Address: 10g2(5) — <= L09>(8 % D) P
Block
Tag (/chfx> offset
N
\
Cache Set: Cache Set:
Tag Data Block Tag Data Block *
Tag Data Block - Tag Data Block L
Tag Data Block | | Tag | Data Block | +
< S \—p
v \_»
Yes:
’@" Hit! MUX
No:
Miss! Data

Special cases:
m direct-mapped cache: only one line per cache set g =
m fully-associative cache: only one cache set
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Cache Replacement Policies o
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O Lgst-Recently-Used (LRU) used in
INTEL PENTIUM | and MIPS 24K/34K

m First-In First-Out (FIFO or Round-Robin) used in
MOTOROLA POWERPC 56X, INTEL XSCALE, ARM9, ARM11

m Pseudo-LRU (PLRU) used in
INTEL PENTIUM II-1V and POWERPC 75X

m Most Recently Used (MRU) as described in literature
IWTEL Neélggém

Each cache set is treated independently:
— Set-associative caches are compositions of fully-associative caches.
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Two types of cache analyses:

Local guarantees: classification of individual accesses

» May-Analysis — Overapproximates cache contents
» Must-Analysis — Underapproximates cache contents

Global guarantees: bounds on cache hits/misses

m Cache analyses almost exclusively fo@

m In practice: FIFO, PLRU, ...
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Always a cache hit/always a miss?
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Deriving Invariants about Cache States SRS
using Abstract Interpretation

Collecting Semantics =
set of states at each program point that
any execution may encounter there

Two approximations:

Collecting Semantics  uncomputable

C Cache Semantics computable

C ~(Abstract Cache Sem.) efficiently
computable
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LRU has

“Cache Hit”:

notion of age

L /@

o

m@
—~+ | <XIN|®W
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LRU: Must-Analysis: Abstract Domain e

COMPUTER SCIENCE

m Used to predict cache hits.
m Maintains upper bounds on ages of memory blocks.
m Upper bound < associativity — memory block definitely cached.

Example
...and its interpretation:

Abstract state:
Describes the set of all concrete cache

{x} age 0 states in which x, s, and t occur,
{1 1 m x with an age of 0,
@ 2 m s and f with an age not older than 2.
age 3
Y({x AL As th ) =

{[x,s,t, a|,[x,t s a,[x,stb],...}

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 14 /58




Sound Update — Local Consistency

Abstract Update

(must)

—

concrete cache states

Lifted
Concrete
Update
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concrete cache states
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Sound Update — Best Abstract Transformer
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Abstraction Function for Must-Analysis o
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What should the abstraction function @ be?
Do o and Tform a Galois connection?

A, o (F) = Ade 8. Nﬁ 4(4)

2.V
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LRU: Must-Analysis: Update ARSI
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Z

— S

{x} Gz

o i W
Potential Cache Miss”: \

(.1 ~ 0

{} {s,t}
.

gl X {s}

“Definite Cache Hit”: " ! i

2 {s:)t} {t}

30 { {}

Why does t not age in the second case?
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LRU: Must-Analysis: Join UNiversiTY B
Need to combine information where control-flow merges. .
Join should be conservative (ensures yxis monotone):

= ~(A) S(AUB)

= 7(B) C (AU B)

(a) (c} 0
! |_|U-h Gep —
{c,} {a} {a,c}
{d} {d} | {d} |
L
L o

“Intersection @imal @

f—,

(Q#L/ /1,7E' /%/': M & {«*{%/) /r#/ak]}
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Need to combine information where control-flow merges.
Join should be conservative (ensures -~ is monotone):

m (A C~(Au B)

m (B) (AU B)

{a} {c} {}
{} {e} _ {}
{c,f} L {a} {a,c}
{d} {d} {d}

“Intersection + Maximal Age”
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[ How many memory blocks can be in the must-cacheq—% /3

.
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Remember connection between C and L.
Does the ascending chain condition hold?

1. A'C@C:X ALI@:@_
2.V HOcr 8F LAYTICE £ 5}_1
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entry [{},.{}.{}.0] =T = Ak, »
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entry [{},{};{}{}]

LU s U =1 s 45 U
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entry [{} 1) 11 U]

LU s U =1 s 45 U

« AL U

{AL A U
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Example: Must-Analysis UnivRsiTy B

entry [{} 1) 11 U]

LU s U =1 s 45 U

AL U U

A'}a{vr I_I[C},{A},{} ]:
HAAL AT {D

{AL A U
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Example: Must-Analysis ——

COMPUTER SCIENCE

entry [{} 1) 11, U]

105, {1 AAL GIU R U 4 U =
[ 5 U

AL U U

{AL A U

1B} AAL L UITURCH 1AL Ul =
[ 1A U

exit\ {0} 1}, 1A} U]

No cache hits can be predicted :-(
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S5O =
m Problem: O \_\0“\(@

» The first iteration of a loop will always result in cache mls\e%. Y \
» Similarly for the first execution of a function.

m Solution:
» Virtually Lfnroll Loops: Distinguish the first iteration from othe

> Distinguish function calls by c,aw

Virtually unrolling the loop once:

entry

[{A} {3 {3 A A} {4 {0
m Accesses to A and D are provably
hits after the first iteration e
m Accesses to B and C can still not be exit
classified. Within each execution of o M

the loop, they may only miss once. [{A} (D}, {}
— Persistence Analysis

e —

9.@ AL (D}, {1, 1]
(11, 1A} {D}. {}]
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m Used to predict cache misses.
m Maintains lower bounds on ages of memory blocks.

m Lower bound > associativity

Example

Abstract state:

Xy}

{

{S,1}

{u}

age 0

age 3

— memory block definitely not cached.

...and its interpretation:

Describes the set of all concrete cache states in
which no memory blocks except x, y, s, t, and
U OCcCuUr,

m x and y with an age of at least 0,
m s and f with an age of at least 2,
m U with an age of at least 3.

’Y([{Xay}a {}7 {37 t}7 {U}]) —
{[x,y,s.t],lv,x,s,1],[x,y,s,ul,...}

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 23 /58
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Abstraction Function for May-Analysis e
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What should the abstraction function « be?
Do o and ~ form a Galois connection?

", X (®) = A, ',:{‘S 4 (4)

2.V
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LRU: May-Analysis: Update —
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o — @)
X,u Z
0 T (xu]
“Definite Cache Miss”: \
T
{y} {s,1}
/S\‘
{x,u} {s}
“Potential Cache Hit”: ETS% {X{’}U}
{y} v {yt}

Why does t age in the second case?
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LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures ~ is monotone):
m (A C~(Au B)
m(B) C~(AuU B)

{a,b} {c} {a,b,c}
{} {e} _ {e}

{c,f} n {a} {f}
{d} {d} {d}

“Union + Minimal Age”
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Does the ascending chain condition hold?

Does it matter in practice?

Y

2 JIMSTRu T AccerstT
—S Mo THOMENEAL PRIRLEm

M) DNaSx 4 clesec
—) Devemnd¢

-
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LRU: May-Analysis: Ascending Chain Condition2s= =

COMPUTER SCIENCE

C
7
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Notion of Persistence e
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entry
m Intuition: “Block b is persistent if it can only °
cause one cache miss in any execution.”

m What is an appropriate concrete e e
semantics that captures this property?

m |deas fo@ractions?

) NEED "THAc"
S & mgvnes

exit

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 28 /58
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Beyond Least-Recently-Used
m Predictability Metrics
m Relative Competitiveness
m Sensitivity — Caches and Measurement-Based Timing Analysis
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Uncertainty in WCET Analysis ——

COMPUTER SCIENCE

m Amount of uncertainty determines precision of WCET analysis
m Uncertainty in cache analysis depends on replacement policy

uncertainty

variation due to inputs X
and initial hardware state  penalty

BCET  ACET WCET upper  execution
bound time
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*~- 1. Initial cache contents unknown.
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Uncertainty in Cache Analysis ——
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*~- 1. Initial cache contents unknown.

"s= 2. Need to combine information.

1
1
I
;.- 3. Cannot resolve address of z.

- - g
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Uncertainty in Cache Analysis ——

COMPUTER SCIENCE

*~- 1. Initial cache contents unknown.

"s= 2. Need to combine information.

1
1
I
;.- 3. Cannot resolve address of z.

- g

- = Amount of uncertainty determined
by ability to recover information
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Predictability Metrics oniversiTy 8

COMPUTER SCIENCE

Evict
| | Fill ﬁ

[fed]
gfe]

[fec] [hot]|
[gfd]

[fde]

[dex]
Sequence: (a, ..., e, f, o} h)
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Meaning of Metrics —

COMPUTER SCIENCE

m Evict

» Number of accesses to obtain any may-information.
» |l.e. when can an analysis predict any cache misses?

m Fill

» Number of accesses to complete may- and must-information.
» |l.e. when can an analysis predict each access?

— Evict and Fill bound the precision of any static cache analysis.
Can thus serve as a benchmark for analyses.
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Evaluation of Least-Recently-Used

m LRU “forgets” about past quickly:

» cares about most-recent access to each block only
» order of previous accesses irrelevant

b

—

SAARLAND g
UNIVERSITY Bl
I —

COMPUTER SCIENCE

R

Y
I

e

J,

N[N

N[0T

NI |IT|O

a;

m In the example: Evict = Fill = 4
m In general: Evict(k) = Fill(k) = k, where k is the associativity of

the cache

VDIT|IO|QQ
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Evaluation of First-In First-Out (sketch) Univers ity B
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m Like LRU in the miss-case
m But: “Ignores” hits

d b C
— — —

o|lo ||
o|lo ||
o|lo ||
o|lo|o|-
///\)Q
olofvola

m In the worst-case kK — 1 hits and k misses: (k = associativity)
— BEvict(k) =2k — 1

m Another k accesses to obtain complete knowledge:
— Fill(k) = 3k — 1
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Evaluation of Pseudo-LRU (sketch) o

COMPUTER SCIENCE

m Tree-bits point to block to be replaced
c (0, e (1)
— —
OO 0
albjc|d albjc|d ajle|c|d

m Accesses “rejuvenate” neighborhood
» Active blocks keep their (inactive) neighborhood in the cache

m Analysis yields:
> Evict(k) = £log, k + 1
> Fill(k) = £log, k + k — 1
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Evaluation of Policies
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COMPUTER SCIENCE

Policy | Evict(k) Fill(k) Evict(8) Fill(8)
LRU K K 8 8
FIFO 2Kk — 1 3k — 1 15 23
MRU | 2k-—2 0 /3k — 4 14 50/20
PLRU | £log, k +1 %log, k + k — 1 13 19

m LRU is optimal w.r.t. metrics.
m Other policies are much less predictable.
— Use LRU if predictability is a concern.

m How to obtain may- and must-information within the given limits for
other policies?

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 38/58



SAARLAND
UNIVERSITY

Outline v

COMPUTER SCIENCE

Beyond Least-Recently-Used

m Relative Competitiveness
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Relative Competitiveness UnivERsiTy B

COMPUTER SCIENCE

m Competitiveness (Sleator and Tarjan, 1985):
worst-case performance of an online policy relative to the optimal
offline policy

» used to evaluate online policies

m Relative competitiveness (Reineke and Grund, 2008):
worst-case performance of an online policy relative to another
online policy

» used to derive local and global cache analyses
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Definition — Relative Miss-Competitiveness ——

CONMPIITER SCIENICE

Notation

mp(p,S) = number of misses that policy P incurs on
access sequence s € M* starting in state p € CP
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Definition — Relative Miss-Competitiveness =~ —=l'=

CONMPIITER SCIENICE

Notation

mp(p,S) = number of misses that policy P incurs on
access sequence s € M* starting in state p € CP

Definition (Relative miss competitiveness)

Policy P is (k, ¢)-miss-competitive relative to policy Q if
mP(p7 S) <k- mQ(q7 S) +C

for all access sequences s € M* and cache-set states p € CP, g € C?
that are compatible p ~ q.
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Definition — Relative Miss-Competitiveness =~ —=l'=

NMPIITER SCIENICE

Notation

mp(p,S) = number of misses that policy P incurs on
access sequence s € M* starting in state p € CP

Definition (Relative miss competitiveness)

Policy P is (k, ¢)-miss-competitive relative to policy Q if
mP(p7 S) <k- mQ(q7 S) +C

for all access sequences s € M* and cache-set states p € CP, g € C?
that are compatible p ~ q.

Definition (Competitive miss ratio of P relative to Q)

The smallest k, s.t. P is (k, ¢)-miss-competitive rel. to Q for some c.
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Example — Relative Miss-Competitiveness —l

COMPUTER SCIENCE

P is (3, 4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 - x + 4 misses.
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Example — Relative Miss-Competitiveness —

COMPUTER SCIENCE

P is (3, 4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 - x + 4 misses.

Best: P is (1, 0)-miss-competitive relative to Q.
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Example — Relative Miss-Competitiveness UNIVERSTY B

COMPUTER SCIENCE

P is (3, 4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 - x + 4 misses.

Best: P is (1, 0)-miss-competitive relative to Q.

Worst: P is not-miss-competitive (or oo-miss-competitive) relative to Q.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 42 /58
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Example — Relative Hit-Competitiveness —l

COMPUTER SCIENCE

P is (5, 3)-hit-competitive relative to Q.
If @ has x hits, then P has at least 5 - x — 3 hits.
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Example — Relative Hit-Competitiveness —l

COMPUTER SCIENCE

P is (5, 3)-hit-competitive relative to Q.
If @ has x hits, then P has at least £ - x — 3 hits.

Best: P is (1, 0)-hit-competitive relative to Q.
Equivalent to (1, 0)-miss-competitiveness.
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Example — Relative Hit-Competitiveness RIS

COMPUTER SCIENCE

P is (5, 3)-hit-competitive relative to Q.
If @ has x hits, then P has at least £ - x — 3 hits.

Best: P is (1, 0)-hit-competitive relative to Q.
Equivalent to (1, 0)-miss-competitiveness.

Worst: P is (0, 0)-hit-competitive relative to Q.
Analogue to co-miss-competitiveness.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 43 /58



SAARLAND
UNIVERSITY U4l

Local Guarantees: (1, 0)-Competitiveness —l

COMPUTER SCIENCE

Let P be (1,0)-competitive relative to Q:

mP(p7 S) <1 mQ(q7 S) +0

< mp(p, s) < mq(q,Ss)

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 44 /58



SAARLAND
UNIVERSITY U4l

Local Guarantees: (1, 0)-Competitiveness —l

COMPUTER SCIENCE

Let P be (1,0)-competitive relative to Q:

mp(p,s) <1-mq(q,s)+0

< mp(p, s) < mq(q,Ss)

If Q “hits”, so does P, and
if P “misses”, so does Q.
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Local Guarantees: (1, 0)-Competitiveness —l

COMPUTER SCIENCE

Let P be (1,0)-competitive relative to Q:

mP(p7 S) <1 mQ(q7 S) +0

< mp(p, s) < mq(q,Ss)

If Q “hits”, so does P, and
if P “misses”, so does Q.

As a consequence,
a must-analysis for Q is also a must-analysis for P, and

a may-analysis for P is also a may-analysis for Q.
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Global Guarantees: (k, c)-Competitiveness ~ Litiy =

COMPUTER SCIENCE

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.
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Global Guarantees: (k, c)-Competitiveness =2l

COMPUTER SCIENCE

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

Determine competitiveness of policy P relative to policy Q.

mp<k-mg-+c
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Global Guarantees: (k, ¢)-Competitiveness Lty =

COMPUTER SCIENCE

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

Determine competitiveness of policy P relative to policy Q.

mp<k-mg-+c

Compute global guarantee for task T under policy Q.
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Global Guarantees: (k, ¢)-Competitiveness Lty =

COMPUTER SCIENCE

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

Determine competitiveness of policy P relative to policy Q.

mp<k-mg-+c

Compute global guarantee for task T under policy Q.

Calculate global guarantee on the number of misses for P using
the global guarantee for Q and the competitiveness results of P

relative to Q.

e = ey ] - [
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Relative Competitiveness:
Automatic Computation
P and Q (here: FIFO and LRU) induce transition system:

(h, h) (le

[eabc] o, [€abc]| gy

cj(h, h)

([eabc] o [ceab] g,

[eabc]cq, [ceda] g,

m, m)

(h, m)

last-in

first-in MRU

]| T

[abed]g o, [abed] gy O

d|(hh)

Vv

[abcd] g eq, [dabc] g,

el (m,m)

Vv

[eabc] o, [€dab] g

(h, h)
a

SAARLAND  pfifls
UNIVERSITY [l
| ]

COMPUTER SCIENCE

[abcd]g.; Cache-set state

d  Memory access
(h,m),... Misses in pairs of
cache-set states

d

[deab ¢ o, [deab] g,

(m, h)

Competitive miss ratio = maximum ratio of misses in policy P to misses
in policy Q in transition system

Jan Reineke

Caches in WCET Analysis

Static Program Analysis 14/15 46 / 58
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Transition System is oo Large ——

COMPUTER SCIENCE

Problem: The induced transition system is oo large.
Observation: Only the relative positions of elements matter:

labc], n, [bAE] - e o ~ 1191 gy [9hM] ¢ 0
C (h, m) / (ha m)
[cabl, ny, [€bd) e o ~ 9] Lru- [I9h] g1k

Solution: Construct finite quotient transition system.
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~-Equivalent States in Running Example —

COMPUTER SCIENCE

(h, h) ae
e (h7 h)
[eabc] o, [€abC] | R ((m—m) [abcd] ¢ ko, [abed] 2.
cl(h, h) dl(h, h)
leabc] . o, [cEab) | Ay, [abcd] g e, [dabe] g, |

el( m, m)

[eabc] o, [ceda) g, [¢——1|[eabcls o, [€dab], p, [—>|[deab] o, [deab] g,
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Finite Quotient Transition System ——l

COMPUTER SCIENCE

Merging ~-equivalent states yields a finite quotient transition system:

(h,

=)

)

(m, m) d labed] ¢ gq. [abed] gy,

(h, h)

—

[abed] ¢ eq, [dabc] g, (m, h)

(m, m)

—

leabe]. o, [cedE], ny, W[[eabc]F,Fo, ledab], q,
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Competitive Ratio — MaXimum CyC|e Ratio UNIVERSITY b

COMPUTER SCIENCE

Competitive miss ratio =
maximum ratio of misses in policy P to misses in policy Q

(0,0)
n
e

)
(0,0)1

(1,0)
(

1,1)l

Q-0
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Competitive Ratio = Maximum Cycle Ratio —

COMPUTER SCIENCE

Competitive miss ratio =
maximum ratio of misses in policy P to misses in policy Q

(0,0)

o
(O

(0, O)l

© (1,0)

(1,1)1

“m@

- i _ O+141
Maximum cycle ratio = g7==5 = 2
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Tool Implementation RIEENE

COMPUTER SCIENCE

m Implemented in Java, called Relacs
m Interface for replacement policies

m Fully automatic
m Provides example sequences for competitive ratio and constant

m Analysis usually practically feasible up to associativity 8

» limited by memory consumption
» depends on similarity of replacement policies

Online version:
http://rwd.cs.uni-sb.de/~reineke/relacs
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Generalizations SALELI

|dentified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 52 /58



SAARLAND
UNIVERSITY [l

Generalizations SALELI

|dentified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp.rel.to LRU(1 + logok),
— LRU-must-analysis can be used for PLRU
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Generalizations SALELI

|dentified patterns and proved generalizations by hand. |
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp.rel.to LRU(1 + logok),
— LRU-must-analysis can be used for PLRU

FIFO(k) is (3,%3) hit-comp. rel. to LRU(k), whereas
LRU(k) is  (0,0) hit-comp. rel. to FIFO(k), but
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Generalizations SALELI

|dentified patterns and proved generalizations by hand. |
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp.rel.to LRU(1 + logok),
— LRU-must-analysis can be used for PLRU

FIFO(k) is (3,%3) hit-comp. rel. to LRU(k), whereas
LRU(k) is  (0,0) hit-comp. rel. to FIFO(k), but
LRU(2k—-1) is (1,0) comp.rel.to FIFO(k), and
LRU(2k—-2) is (1,0) comp.rel.to MRU(k).
— LRU-may-analysis can be used for FIFO and MRU
— optimal with respect to predictability metric Evict
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Generalizations SALELI

|dentified patterns and proved generalizations by hand. |
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1,0) comp.rel.to LRU(1 + logok),
— LRU-must-analysis can be used for PLRU

FIFO(k) is (},%51) hit-comp. rel. to LRU(k), whereas

s (272
LRU(k) is  (0,0) hit-comp. rel. to FIFO(k), but
LRU(2k—-1) is (1,0) comp.rel.to FIFO(k), and

LRU(2k—-2) is (1,0) comp.rel.to MRU(k).
— LRU-may-analysis can be used for FIFO and MRU
— optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.
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COMPUTER SCIENCE

Beyond Least-Recently-Used

m Sensitivity — Caches and Measurement-Based Timing Analysis

Jan Reineke Caches in WCET Analysis
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Measurement-Based Timing Analysis e

COMPUTER SCIENCE

m Run program on a number of inputs and
initial states.

m Combine measurements for basic blocks
to obtain WCET estimation.

m Sensitivity Analysis demonstrates this
approach may be dramatically wrong.
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Measurement-Based Timing Analysis e

COMPUTER SCIENCE

m Run program on a number of inputs and
initial states.

m Combine measurements for basic blocks
to obtain WCET estimation.

m Sensitivity Analysis demonstrates this
approach may be dramatically wrong.

v
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Influence of Initial Cache State S,

COMPUTER SCIENCE

variation due to
initial cache state

BCET WCET upfoer execution
bound time

Definition (Miss sensitivity)

Policy P is (k, c)-miss-sensitive if
mp(p, S) <k- mp(plv S) +C

for all access sequences s € M* and cache-set states p, p’ € CP.
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Sensitivity Results UN_VEi
Policy | 2 3 4 S 6 7 8
LRU| 1,2 1,3 1,4 15 1,6 1,7 1,8
FIFO| 2,2 3,3 44 55 66 7,7 8,8
PLRU| 1,2 - o -  — _ o
MRU| 1,2 34 56 7,8 MEM MEM MEM

m LRU is optimal. Performance varies in the least possible way.

m For FIFO, PLRU, and MRU the number of misses may vary
strongly.

m Case study based on simple model of execution time by
Hennessy and Patterson (2003):
WCET may be 3 times higher than a measured execution time
for 4-way FIFO.
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COMPUTER SCIENCE

Summary
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Cache Analysis for Least-Recently-Used COMPUTER SCIENCE

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

... requires context-sensitivity for precision.
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Summary Y
Cache Analysis for Least-Recently-Used COMPUTER SCIENCE

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

... requires context-sensitivity for precision.
Predictability Metrics

... quantify the predictability of replacement policies.

— LRU is the most predictable policy.
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Summary Y
Cache Analysis for Least-Recently-Used COMPUTER SCIENCE

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

... requires context-sensitivity for precision.
Predictability Metrics

... quantify the predictability of replacement policies.

— LRU is the most predictable policy.

Relative Competitiveness
... allows to derive guarantees on cache performance,

... yields first may-analyses for FIFO and MRU.
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Summary Y
Cache Analysis for Least-Recently-Used COMPUTER SCIENCE

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

... requires context-sensitivity for precision.
Predictability Metrics

... quantify the predictability of replacement policies.

— LRU is the most predictable policy.

Relative Competitiveness
... allows to derive guarantees on cache performance,

... yields first may-analyses for FIFO and MRU.
Sensitivity Analysis
... determines the influence of initial state on cache performance.
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Summary Y
Cache Analysis for Least-Recently-Used COMPUTER SCIENCE

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

... requires context-sensitivity for precision.
Predictability Metrics

... quantify the predictability of replacement policies.

— LRU is the most predictable policy.

Relative Competitiveness
... allows to derive guarantees on cache performance,

... yields first may-analyses for FIFO and MRU.
Sensitivity Analysis
... determines the influence of initial state on cache performance.

Thank you for your attention!
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Summary Y
Cache Analysis for Least-Recently-Used COMPUTER SCIENCE

... efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.

... requires context-sensitivity for precision.
Predictability Metrics

... quantify the predictability of replacement policies.

— LRU is the most predictable policy.

Relative Competitiveness
... allows to derive guarantees on cache performance,

... yields first may-analyses for FIFO and MRU.
Sensitivity Analysis
... determines the influence of initial state on cache performance.

Thank you for your attention!
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Most-Recently-Used — MRU vy

COMPUTER SCIENCE

MRU-bits record whether line was recently used

[abcd]yyo1|ob,d

lebcd|,441] > €,b,d

[ebed]ggigj o C

— Never converges
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Pseudo-LRU — PLRU RN

COMPUTER SCIENCE

(1) (0) (0)
1 © 1 @ OO

alblc|d alble|d alble|d alble]|f

Initial cache- After a miss After a hit After a miss
set state on e. State: on a State: on f. State:
la, b, c,d]y10- [a, b, e, d]|p1- |a, b, e, d]41- [a, b, e,y

Hit on a “rejuvenates” neighborhood; “saves” b from eviction.
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May- and Must-Information niversiry B8

COMPUTER SCIENCE

MayP(s) = | ] CCp(updatep(p.s))
peCP
Must®(s) = (] CCp(updatep(p,s))
peCP
may®(n) = |MayP(s)|,where sc S* C M*,|s|=n

Must®(s)|,where s € S* C M*,|s| = n

must® (n)

S7 : set of finite access sequences with pairwise different accesses

Jan Reineke Caches in WCET Analysis Static Program Analysis 14/15 58 /58



SAARLAND
UNIVERSITY

Definitions of Metrics e

COMPUTER SCIENCE

Evict® = min {n | may®(n) < n},
FilP .= min {n | must®(n) = k} |

where k is P’s associativity.
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Relation: Pred. Metrics <+ Rel. Competitivenesa_ ==

COMPUTER SCIENCE

Let P(k) be (1,0)-miss-competitive relative to policy Q(/), then
(i) EvictP(k) > Evict9(]),
(i) misP(k) > mis®(l).
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Alternative Pred. Metrics <> Rel. Competitivengagism =

COMPUTER SCIENCE

Let / be the smallest associativity, such that LRU(/) is
(1,0)-miss-competitive relative to P(k). Then

Alt-Evict” (k) = I.

Let / be the greatest associativity, such that P(k) is
(1, 0)-miss-competitive relative to LRU(/). Then

Alt-mis” (k) = 1.
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Size of Transition System AN

COMPUTER SCIENCE

k K k' K/ min{i,i’'} i i
I+ . . |
& Z(/) Z(i’) 2 (1) (/)"
status bits i=0 i"=0 j=0
of Pand Q N——— N—— ~ ~

non-empty linesin P non-empty lines in Q@ number of:)(/erlappings
in non-empty lines

min{k,k’} K i/ min{k,k’} ’
Do) < kK D — Y
pars (/)(/) = (K=DYHk —))
=1
< k! k’!zj—!:e k! Kl
j=0
This can be bounded by
RIH/HIFK < |(Ch x Cpi) ) m | < 2HH IR e k- Kl

-~

bound on number of overlappings
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Compatible States ——

COMPUTER SCIENCE

P=[LLll]p| ~ [f=[LLLll],
updatep(iP, s) updateq(iQ, s)
) > q
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(1,0)-Competitiveness and May/Must-Analysessisn =

COMPUTER SCIENCE

Let P be (1, 0)-competitive relative to Q, then

p ~ q
mp(p; (X)) =1 — ma(q, (x)) =1
P ~ q
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(1,0)-Competitiveness and May/Must-Analysessisn =

COMPUTER SCIENCE

2

| 0) e
2
@‘ 0) .

vpePimp(p, (X)) =1| = |¥geQ:ma(q (x) =1

Q
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Case Study: Impact of Sensitivity ——

COMPUTER SCIENCE

m Simple model of execution time from Hennessy & Patterson (2003)

m CPl,; = Cycles per instruction assuming cache hits only
g Memory accesses ;a1 ding instruction and data fetches

Instruction
Twe ~ CPlpi+ MeTr?Srt{:;f:rfses x Miss rateyc x Miss penalty
Tmeas ~ CPlp+ Me”fr?srtﬁj‘;f;fses x Miss rate meas x Miss penalty
_ 1.541.2x0.20x50 __ 13.5 _3

— 1.54+1.2x0.05x50 ~— 4.5
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