
C ISPA
Center for IT-Security, Privacy
and Accountability

C ISPA
Center for IT-Security, Privacy
and Accountability

Static&Program&Analysis

Interprocedural-Data-Flow-
Analysis-

18. Juni 2014

Christian&Hammer



C ISPA
Center for IT-Security, Privacy
and Accountability

(1) int'a,'b,'c;'

!
(3) void'q'()'{'

(4) ''int'z=1;'

(5) ''a=2;'

(6) ''b=3;'

(7) ''p(4,'z);'

(8) ''z=a;'

(9) ''c=5;'

(10) ''p(6,'c);'

(11) }  
 
 
 
 

(12) void'p(int'x,int'&y)'{'

(13) ''static'int'd'='6;'

(14) ''a=c;'

(15) ''if(x)'{'

(16) ''''d=7;'

(17) ''''p(8,'x);'

(18) ''}'else'{''

(19) ''''b=9;'

(20) ''}'

(21) ''y'=0;'

(22) }

Interprocedural'Reaching'Definitions

2



C ISPA
Center for IT-Security, Privacy
and Accountability

(1) int'a,'b,'c;'

!
(3) void'q'()'{'

(4) ''int'z=1;'

(5) ''a=2;'

(6) ''b=3;'

(7) ''p(4,'z);'

(8) ''z=a;'

(9) ''c=5;'

(10) ''p(6,'c);'

(11) }  
 
 
 
 

(12) void'p(int'x,int'&y)'{'

(13) ''static'int'd'='6;'

(14) ''a=c;'

(15) ''if(x)'{'

(16) ''''d=7;'

(17) ''''p(8,'x);'

(18) ''}'else'{''

(19) ''''b=9;'

(20) ''}'

(21) ''y'=0;'

(22) }

Interprocedural'Reaching'Definitions

2



C ISPA
Center for IT-Security, Privacy
and Accountability

(1) int'a,'b,'c;'

!
(3) void'q'()'{'

(4) ''int'z=1;'

(5) ''a=2;'

(6) ''b=3;'

(7) ''p(4,'z);'

(8) ''z=a;'

(9) ''c=5;'

(10) ''p(6,'c);'

(11) }  
 
 
 
 

(12) void'p(int'x,int'&y)'{'

(13) ''static'int'd'='6;'

(14) ''a=c;'

(15) ''if(x)'{'

(16) ''''d=7;'

(17) ''''p(8,'x);'

(18) ''}'else'{''

(19) ''''b=9;'

(20) ''}'

(21) ''y'=0;'

(22) }

Interprocedural'Reaching'Definitions

2

call-
by-value

call-
by-reference



C ISPA
Center for IT-Security, Privacy
and Accountability

(1) int'a,'b,'c;'

!
(3) void'q'()'{'

(4) ''int'z=1;'

(5) ''a=2;'

(6) ''b=3;'

(7) ''p(4,'z);'

(8) ''z=a;'

(9) ''c=5;'

(10) ''p(6,'c);'

(11) }  
 
 
 
 

(12) void'p(int'x,int'&y)'{'

(13) ''static'int'd'='6;'

(14) ''a=c;'

(15) ''if(x)'{'

(16) ''''d=7;'

(17) ''''p(8,'x);'

(18) ''}'else'{''

(19) ''''b=9;'

(20) ''}'

(21) ''y'=0;'

(22) }

Interprocedural'Reaching'Definitions

3

Global Variables



C ISPA
Center for IT-Security, Privacy
and Accountability

▪ definition&of&a&(line&5)&reaches&6–7&but&not&8–11&(killed&by&14&through&call&in&7),&
also&reaches&13–14&but&not&15–22&

▪ definition&of&c&in&line&9&reaches&13–22&through&call&in&line&10.&&
!

! •! More complex are the definitions of global b: the definition in line 6 can- not reach lines 8–10 or 21, as line 19 kills it         
—any call of p must execute line 19 to terminate the recursion. Also, the definition in line 19 reaches line 13–19, as it 
might reach the call in line 10 by procedure p returning from the call in line 7. !

! •! The variable d is global and only visible inside procedure p. the definition in line 16 may reach lines 13–16 because of          
the call in line 17. Through procedure p returning from the call in line 7, both definitions (line 13 and 16) may reach 
lines 8–10 and therefore also line 13–16 and 18–22. !

! •! Locals like z are (usually) only visible in procedures they are defined in. Call-by-value parameters are like locals, with          
a definition at the proce- dure entry: x is defined in line 12. !

! •! Call-by-reference introduces a simple form of aliasing and make other- wise invisible variables available in called          
procedures. 

4



C ISPA
Center for IT-Security, Privacy
and Accountability

Interprocedural-Control-Flow-Graph

5

6.2 Interprocedural Realizable Paths 77

Figure 6.2: Interprocedural control flow graph

6.2 Interprocedural Realizable Paths

In the intraprocedural case all paths in the CFG were assumed to be executable
and therefore realizable. In the interprocedural case this is more complicated:

The individual procedures of a program are represented in control flow
graphs G

p

= (N
p

, E
p

, ns

p

, ne

p

) for each procedure p. An interprocedural control
flow graph (ICFG) is a directed graph G = (N?, E?, ns

0 , ne

0 ), where N? =
S

p

N
p

and E? = EC [
S

p

E
p

. One procedure q is the program’s main procedure, its
START and EXIT nodes are the main START and EXIT nodes: ns

0 = ns

q

and ne

0 = ne

q

.
The calls are represented by call and return edges in EC: A call edge e 2 EC is
going from a call node n 2 N

p

to the START node ns

q

of the called procedure q.
A return edge e 2 EC is going from the EXIT node ne

q

of the called procedure q

back to the immediate successor of the call node n 2 N
p

.1

Example 6.2: Figure 6.2 shows the ICFG for the reaching definition example.
Note that there are control flow edges between call nodes and their immediate
successors.

If any path through the ICFG is assumed to be a realizable path, data flow
analysis will become imprecise, as clearly unrealizable paths can be traversed:
Consider the definition of global c in line/node 9, which reaches the called
procedure via the call edge at line/node 10. All paths through p are free of
definitions for c and the definition gets propagated along the return edges: via

1There are two common variants: First, the immediate successor of a call node is an explicitly
defined return node. Second, the return edge is going from the EXIT node to the call node itself.



C ISPA
Center for IT-Security, Privacy
and Accountability

▪ Control'Flow'Graph&Gp#=#(Np,#Ep,#nsp,#nep)&for&each&procedure&p.&An&
interprocedural&control&flow&graph&(ICFG)&is&a&directed&graph&G#=#(N*,#E*,#ns0#,#
ne0),&where&N*#="⋃p#Np&and&E*#=#EC#∪"⋃p#Ep&

▪ call&and&return'edges&in&EC:&A&call&edge&e&∈&EC&is&going&from&a&call&node&n-∈-Np&
to&the&START&node&nsq&of&the&called&procedure&q.&A&return&edge&e&∈&EC&is&going&
from&the&EXIT&node&neq&of&the&called&procedure&q&back&to&the&immediate&

successor&of&the&call&node&n-∈-Np&
▪ unrealizable'paths&possible&if&leaving&a&function&on&a&different&node&than&the&

call’s&successor

6



C ISPA
Center for IT-Security, Privacy
and Accountability

Interprocedural-Control-Flow-Graph

7

6.2 Interprocedural Realizable Paths 77

Figure 6.2: Interprocedural control flow graph

6.2 Interprocedural Realizable Paths

In the intraprocedural case all paths in the CFG were assumed to be executable
and therefore realizable. In the interprocedural case this is more complicated:

The individual procedures of a program are represented in control flow
graphs G

p

= (N
p

, E
p

, ns

p

, ne

p

) for each procedure p. An interprocedural control
flow graph (ICFG) is a directed graph G = (N?, E?, ns

0 , ne

0 ), where N? =
S

p

N
p

and E? = EC [
S

p

E
p

. One procedure q is the program’s main procedure, its
START and EXIT nodes are the main START and EXIT nodes: ns

0 = ns

q

and ne

0 = ne

q

.
The calls are represented by call and return edges in EC: A call edge e 2 EC is
going from a call node n 2 N

p

to the START node ns

q

of the called procedure q.
A return edge e 2 EC is going from the EXIT node ne

q

of the called procedure q

back to the immediate successor of the call node n 2 N
p

.1

Example 6.2: Figure 6.2 shows the ICFG for the reaching definition example.
Note that there are control flow edges between call nodes and their immediate
successors.

If any path through the ICFG is assumed to be a realizable path, data flow
analysis will become imprecise, as clearly unrealizable paths can be traversed:
Consider the definition of global c in line/node 9, which reaches the called
procedure via the call edge at line/node 10. All paths through p are free of
definitions for c and the definition gets propagated along the return edges: via

1There are two common variants: First, the immediate successor of a call node is an explicitly
defined return node. Second, the return edge is going from the EXIT node to the call node itself.



C ISPA
Center for IT-Security, Privacy
and Accountability

Inter7procedurally-Realizable-Path

78 Interprocedural Data Flow Analysis

the return edge for the call in line/node 8 the definition may reach line/node 9.
However, this is clearly an interprocedurally unrealizable path, because the path
does not return to the matching successor in line/node 10.

One way to describe interprocedurally realizable paths is via context-free
language reachability: The intraprocedural control flow graph can be seen as
a finite automaton and the intraprocedurally realizable paths are words of its
accepted language. Therefore, reachability in the control flow graph is an in-
stance of regular language reachability. The problem in interprocedural reacha-
bility is the proper matching of call edges to return edges. This can be achieved
by defining a context-free language on top of the ICFG: Edges from E

p

are
marked with the empty word ✏ and edges from EC are marked according to
their source and target nodes:

• Call edges between a call node m and a START node ns

p

are marked with

“(
n

s

p

m

”.

• Return edges between an EXIT node ne

p

and a (return) node n are marked

with “)
n

s

p

m

”, where m is the predecessor of n (the corresponding call node
m) and ns

p

is the START node of p.

• Edges between a call node n and its successor (the return node) are marked
with ?.

Let ⌃ be the set of all edge labels in an ICFG G. Every path in G induces a
word over ⌃ by concatenating the labels of the edges on the path. A path is an
interprocedural matched path if it is a word of the context-free language defined
by:

M ! MM

| (
n

s

p

m

M)
n

s

p

m

8(n
s

p

m

2 ⌃

| ✏

This grammar assures the proper matching of calls and returns by simulating
an abstract call stack. Notice the absence of ? from the grammar: this assures
that paths must pass through called procedures. On the other hand, it is some-
times desirable to allow paths to bypass calls—in that case edges between call
and return are labeled with the empty word ✏ instead.

Interprocedural matched paths require their start and end node to be in the
same procedure. Interprocedurally realizable paths with start and end node in
different procedures have only partially matching calls and returns: dependent
if the end node is lower or higher in the abstract call stack, the paths are right-
balanced or left-balanced. A path is an interprocedural right-balanced path if it
is a word of the context free language defined by:

R ! MR

| (
n

s

p

m

R 8(n
s

p

m

2 ⌃

| ✏

78 Interprocedural Data Flow Analysis

the return edge for the call in line/node 8 the definition may reach line/node 9.
However, this is clearly an interprocedurally unrealizable path, because the path
does not return to the matching successor in line/node 10.

One way to describe interprocedurally realizable paths is via context-free
language reachability: The intraprocedural control flow graph can be seen as
a finite automaton and the intraprocedurally realizable paths are words of its
accepted language. Therefore, reachability in the control flow graph is an in-
stance of regular language reachability. The problem in interprocedural reacha-
bility is the proper matching of call edges to return edges. This can be achieved
by defining a context-free language on top of the ICFG: Edges from E

p

are
marked with the empty word ✏ and edges from EC are marked according to
their source and target nodes:

• Call edges between a call node m and a START node ns

p

are marked with

“(
n

s

p

m

”.

• Return edges between an EXIT node ne

p

and a (return) node n are marked

with “)
n

s

p

m

”, where m is the predecessor of n (the corresponding call node
m) and ns

p

is the START node of p.

• Edges between a call node n and its successor (the return node) are marked
with ?.

Let ⌃ be the set of all edge labels in an ICFG G. Every path in G induces a
word over ⌃ by concatenating the labels of the edges on the path. A path is an
interprocedural matched path if it is a word of the context-free language defined
by:

M ! MM

| (
n

s

p

m

M)
n

s

p

m

8(n
s

p

m

2 ⌃

| ✏

This grammar assures the proper matching of calls and returns by simulating
an abstract call stack. Notice the absence of ? from the grammar: this assures
that paths must pass through called procedures. On the other hand, it is some-
times desirable to allow paths to bypass calls—in that case edges between call
and return are labeled with the empty word ✏ instead.

Interprocedural matched paths require their start and end node to be in the
same procedure. Interprocedurally realizable paths with start and end node in
different procedures have only partially matching calls and returns: dependent
if the end node is lower or higher in the abstract call stack, the paths are right-
balanced or left-balanced. A path is an interprocedural right-balanced path if it
is a word of the context free language defined by:

R ! MR

| (
n

s

p

m

R 8(n
s

p

m

2 ⌃

| ✏

6.3 Analyzing Interprocedural Programs 79

Here, every )
n

s

p

m

is properly matched to a (
n

s

p

m

to the left, but the converse need
not hold. A path is an interprocedural left-balanced path if it is a word of the
context free language defined by:

L ! LM

| L)
n

s

p

m

8(n
s

p

m

2 ⌃

| ✏

An interprocedurally realizable path is an interprocedurally right- or left-balanced
path.

I ! L

| R

Definition 6.1 (Interprocedural Reachability)
A node n is interprocedurally reachable from node m, iff an interprocedurally
realizable path from m to n in the ICFG exists, written as m *?

R n.

The concept of a witness (see 2.1 on page 15) must also be transfered to the
interprocedural case:

Definition 6.2 (Interprocedural Witness)
A sequence hn1, . . . , n

k

i of nodes is called an interprocedurally (realizable) wit-
ness, iff n

k

is interprocedurally reachable from n1 via an interprocedurally re-
alizable path p = hm1, . . . , m

l

i with:

1. m1 = n1, m
l

= n
k

, and

2. 81 6 i < k : 9x, y : x < y ^ m
x

= n
i

^ m
y

= n
i+1.

6.3 Analyzing Interprocedural Programs

Ignoring parameters, the interprocedural meet-over-all-paths (IMOP) solution of
a data flow problem can be defined just by using the definition of interproce-
durally realizable paths. For example, the interprocedural reaching definition
problem is:

RDIMOP(n) =
[

p=hns

0 ,...,ni
[[p]](;)

where all p are interprocedurally realizable paths. As in the intraprocedural
case, the computation of the IMOP solution is impossible in general. There-
fore only the interprocedural minimal-fixed-point (IMFP) solution is computed.
However, complete paths are no longer analyzed, it is impossible to check for
interprocedurally realizable paths and different approaches must be applied:

• Procedures can be inlined: calls get replaced by the called procedure and
the resulting program can be analyzed like an intraprocedural one. How-
ever, this is not possible in the presence of recursion and even without,
the size of the inlined programs may grow exponentially.

6.3 Analyzing Interprocedural Programs 79

Here, every )
n

s

p

m

is properly matched to a (
n

s

p

m

to the left, but the converse need
not hold. A path is an interprocedural left-balanced path if it is a word of the
context free language defined by:

L ! LM

| L)
n

s

p

m

8(n
s

p

m

2 ⌃

| ✏

An interprocedurally realizable path is an interprocedurally right- or left-balanced
path.

I ! L

| R

Definition 6.1 (Interprocedural Reachability)
A node n is interprocedurally reachable from node m, iff an interprocedurally
realizable path from m to n in the ICFG exists, written as m *?

R n.

The concept of a witness (see 2.1 on page 15) must also be transfered to the
interprocedural case:

Definition 6.2 (Interprocedural Witness)
A sequence hn1, . . . , n

k

i of nodes is called an interprocedurally (realizable) wit-
ness, iff n

k

is interprocedurally reachable from n1 via an interprocedurally re-
alizable path p = hm1, . . . , m

l

i with:

1. m1 = n1, m
l

= n
k

, and

2. 81 6 i < k : 9x, y : x < y ^ m
x

= n
i

^ m
y

= n
i+1.

6.3 Analyzing Interprocedural Programs

Ignoring parameters, the interprocedural meet-over-all-paths (IMOP) solution of
a data flow problem can be defined just by using the definition of interproce-
durally realizable paths. For example, the interprocedural reaching definition
problem is:

RDIMOP(n) =
[

p=hns

0 ,...,ni
[[p]](;)

where all p are interprocedurally realizable paths. As in the intraprocedural
case, the computation of the IMOP solution is impossible in general. There-
fore only the interprocedural minimal-fixed-point (IMFP) solution is computed.
However, complete paths are no longer analyzed, it is impossible to check for
interprocedurally realizable paths and different approaches must be applied:

• Procedures can be inlined: calls get replaced by the called procedure and
the resulting program can be analyzed like an intraprocedural one. How-
ever, this is not possible in the presence of recursion and even without,
the size of the inlined programs may grow exponentially.

call&node

entry&

node

call&edge

return&

edge

Edges&from&Ep&are&marked&with&the&empty&word&ε&and&edges&from&EC&are&marked&

according&to&their&source&and&target&nodes

An&interprocedurally&realizable&path&I&is&an&interprocedurally&rightV&or&leftVbalanced&
path.&



C ISPA
Center for IT-Security, Privacy
and Accountability

▪ A&node&n&is&interprocedurally&reachable&from&node&m,&iff&an&interprocedurally&

realizable&path&from&m&to&n&in&the&ICFG&exists,&written&as&m-⇀*R#n.&
▪ A&sequence&⟨n1,-.-.-.-,-nk⟩&of&nodes&is&called&an&interprocedurally&(realizable)&witV&

ness,&iff&nk&is&interprocedurally&reachable&from&n1&via&an&interprocedurally&reV&
alizable&path&p-=-⟨m1,-.-.-.-,-ml⟩&with:&

−m1-=-n1,-ml-=-nk,&and&
− ∀1≤i<k-∃x,y:-x<y#∧-mx-=-ni-∧-my-=-ni-+-1.

Interprocedural-Reachability,-Witness

9



C ISPA
Center for IT-Security, Privacy
and Accountability

Interprocedural-Control-Flow-Graph

10

6.2 Interprocedural Realizable Paths 77

Figure 6.2: Interprocedural control flow graph

6.2 Interprocedural Realizable Paths

In the intraprocedural case all paths in the CFG were assumed to be executable
and therefore realizable. In the interprocedural case this is more complicated:

The individual procedures of a program are represented in control flow
graphs G

p

= (N
p

, E
p

, ns

p

, ne

p

) for each procedure p. An interprocedural control
flow graph (ICFG) is a directed graph G = (N?, E?, ns

0 , ne

0 ), where N? =
S

p

N
p

and E? = EC [
S

p

E
p

. One procedure q is the program’s main procedure, its
START and EXIT nodes are the main START and EXIT nodes: ns

0 = ns

q

and ne

0 = ne

q

.
The calls are represented by call and return edges in EC: A call edge e 2 EC is
going from a call node n 2 N

p

to the START node ns

q

of the called procedure q.
A return edge e 2 EC is going from the EXIT node ne

q

of the called procedure q

back to the immediate successor of the call node n 2 N
p

.1

Example 6.2: Figure 6.2 shows the ICFG for the reaching definition example.
Note that there are control flow edges between call nodes and their immediate
successors.

If any path through the ICFG is assumed to be a realizable path, data flow
analysis will become imprecise, as clearly unrealizable paths can be traversed:
Consider the definition of global c in line/node 9, which reaches the called
procedure via the call edge at line/node 10. All paths through p are free of
definitions for c and the definition gets propagated along the return edges: via

1There are two common variants: First, the immediate successor of a call node is an explicitly
defined return node. Second, the return edge is going from the EXIT node to the call node itself.



C ISPA
Center for IT-Security, Privacy
and Accountability

Interprocedural-Control-Flow-Graph

10

6.2 Interprocedural Realizable Paths 77

Figure 6.2: Interprocedural control flow graph

6.2 Interprocedural Realizable Paths

In the intraprocedural case all paths in the CFG were assumed to be executable
and therefore realizable. In the interprocedural case this is more complicated:

The individual procedures of a program are represented in control flow
graphs G

p

= (N
p

, E
p

, ns

p

, ne

p

) for each procedure p. An interprocedural control
flow graph (ICFG) is a directed graph G = (N?, E?, ns

0 , ne

0 ), where N? =
S

p

N
p

and E? = EC [
S

p

E
p

. One procedure q is the program’s main procedure, its
START and EXIT nodes are the main START and EXIT nodes: ns

0 = ns

q

and ne

0 = ne

q

.
The calls are represented by call and return edges in EC: A call edge e 2 EC is
going from a call node n 2 N

p

to the START node ns

q

of the called procedure q.
A return edge e 2 EC is going from the EXIT node ne

q

of the called procedure q

back to the immediate successor of the call node n 2 N
p

.1

Example 6.2: Figure 6.2 shows the ICFG for the reaching definition example.
Note that there are control flow edges between call nodes and their immediate
successors.

If any path through the ICFG is assumed to be a realizable path, data flow
analysis will become imprecise, as clearly unrealizable paths can be traversed:
Consider the definition of global c in line/node 9, which reaches the called
procedure via the call edge at line/node 10. All paths through p are free of
definitions for c and the definition gets propagated along the return edges: via

1There are two common variants: First, the immediate successor of a call node is an explicitly
defined return node. Second, the return edge is going from the EXIT node to the call node itself.


