Center for IT-Security, Privacy
and Accountability

SAARLANDES

Center for IT-Security, Privacy
and Accountability

‘ OOle UNIVERSITAT
H“Uuu"“" DES
T

Interprocedural Data Flow
Analysis

Static Program Analysis

Christian Hammer
18. Juni 2014

SPONSORED BY THE

% Federal Ministry orman Max
of Education l l I I I m? pl atik k stitut Research Center Plath
and Research orma b | for Artificial Institute
Intelligence for

Software Svstems

Interprocedural Reaching Definitions

((1) inta, b, c) (12) void p(int
Global Variables

(13)
(3) voidq(){ (14)
(4) intz=1; (15)
(5) a=2z (16)
(6) b=3; (17)
(7) p42); (18)
(8) z=a; (19)
(9) =5 (20) }
(10) p(6, c); (21) y=0;
(11) } (22) }

.
Interprocedural Control Flow Graph C ’ISPA

(START)

v START

L control flow:
1 @ —» intraprocedural

--» interprocedural

A
4
LA

Analyzing Interprocedural Programs CISPA

= RDmmor(n) = U [pl(D)

p=<{n®y, ..., Ny
= where p are inter procedurally realizable paths (impossible in general)
= interprocedural minimal-fixed-point (IMFP) solution is computed

= However, impossible to check for interprocedurally realizable paths

= Procedures can be inlined
— replace calls by the called procedure
— resulting program can be analyzed like an intraprocedural one
— not possible in the presence of recursion
— even without the size of the inlined programs may grow exponentially

— not feasible in practice

o@!

»
0 UNIVERSITAT ey Geman Planck
[IE) oes LTIV LT o [Q|| e
AAAAAAAAAAAAAAAAAAAA ce. g v, N

R —————————————————————.
Analyzing Interprocedural Programs (cont.) CISPA

= Compute effects of procedures
— represented in a transfer function
— maps flow information at a call site from the call to the return
— call statements are ordinary statements with transfer functions

— intraprocedural techniques can be applied

= Explicit encoding of calling context of a procedure
— procedure is analyzed for each calling context separately
— in the presence of recursion the set of calling contexts may be infinite
— depending on the encoding of the calling context

-) .

M) UNIVERSITAT _ _ _ _ _ _ gy Gorman Planck

[IE) oes LTIV LT o [Q|| e
AAAAAAAAAAAAAAAAAAAA ce. g v, N

Effect Calculation CISPA

= functional approach [SP81]

= maps the data flow information at the entry of a procedure to the information
that holds at the exit

= computed function can be used in the transfer functions at the call statements
= intraprocedural data flow analysis can then be used in a second pass

= first pass is a data flow analysis where the data flow information are functions
and the transfer functions are function compositions

= For some data flow problems the resulting data flow information is infinite
function compositions and therefore not computable

= For a large class of data flow problems these computed functions reduce to
simple mappings where the composition can be computed instantly

.
Context Encoding C ’ISPA

= call strings capture the “history” of calls that lead to a node n

= abstraction of the call stack

= |attice elements combine calling context and intraprocedural data flow facts
= transfer functions extended to handle the additional calling context

= |ength of the call strings can be limited to a certain length k

= call string longer than k are shortened such that the “oldest” elements are
removed first

= overcomes limitations of recursion

= maybe imprecise

o@!

»
0 UNIVERSITAT ey Geman Planck
[IE) oes LTIV LT o [Q|| e
AAAAAAAAAAAAAAAAAAAA ce. g v, N

I
Call Strings CISPA

calling context c € C encoded through data flow facts that hold at the entry to
procedurep € P
= data flow facts c’ at the exit of the procedure stored in mappingCxP - C

= At every call node n of a procedure p the data flow facts c are then bound to
data flow facts ¢’ = bind(c) that hold at the entry node of p

= |f the effect of p for ¢’ has already been computed, it can be reused from the
mapping which contains the data flow facts ¢ holding at the exit of p

= After back-binding the effect to the call site, the effect ¢’ = bind™(c"') holds at
the exit of the call node n

I
Interprocedural Data Dependence CISPA

Let G = (N",E",n%,n%) be an ICFG. A node m € N" is data dependent on node n
e N, if

— there is an interprocedurally matched path p from n to m in the ICFG,

— there is a variable v, with v € def(n) and v € ref(m), and

— for all nodes k # n of path p, v € def(k) holds.

= At call sites the global variables are modeled as call-by-value-result
parameters, which is correct without call-by-reference parameters and aliasing

= GMOD(p): the set of all variables that might be modified if procedure p is
called.

= GREF(p): the set of all variables that might be referenced if procedure p is
called.

o@! A Max

odf) UNIVERSITAT _ _ _ _ _ _ _ gy German Planck

[P o= LTIV LT o [Q|
AAAAAAAAAAAAAAAAAAAA ce fo v, N

D
Effect Calculation C ’ISPA

= bind™! (S, p) =S - locals(p)
= GMOD(n) = bind™! (GMOD(p))
= GREF(n) =bind™! (GREF(p))

= GMOD(q) =IMOD(q) U U bind-1(GMOD(p), p)
p€Ecalls(q)

= GREF(q) = IREF(q) U U bind-!(GREF(p), p)
p€Ecalls(q)

s def(n) = GMOD(n)
= ref(n) = GMOD(n) U GREF(n)

Example Interprocedural Data Dependences C’ISPA
_ START) |

¥ START

¢
13

